
Improving Open Source Face Detection by Combining an Adapted

Cascade Classification Pipeline and Active Learning

Steven Puttemans1, Can Ergün2 and Toon Goedemé1

1KU Leuven, EAVISE Research Group, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver, Belgium
2Istanbul University, Faculty of Economics, Beyazt, 34452 Fatih/Istanbul, Turkey

{steven.puttemans, toon.goedeme}@kuleuven.be, can.e992@hotmail.com

Keywords: Open Source, Face Detection, Cascade Classification, Active Learning.

Abstract: Computer vision has almost solved the issue of in the wild face detection, using complex techniques like

convolutional neural networks. On the contrary many open source computer vision frameworks like OpenCV

have not yet made the switch to these complex techniques and tend to depend on well established algorithms

for face detection, like the cascade classification pipeline suggested by Viola and Jones. The accuracy of

these basic face detectors on public datasets like FDDB stays rather low, mainly due to the high number of

false positive detections. We propose several adaptations to the current existing face detection model training

pipeline of OpenCV. We improve the training sample generation and annotation procedure, and apply an active

learning strategy. These boost the accuracy of in the wild face detection on the FDDB dataset drastically,

closing the gap towards the accuracy gained by CNN-based face detectors. The proposed changes allow us to

provide an improved face detection model to OpenCV, achieving a remarkably high precision at an acceptable

recall, two critical requirements for further processing pipelines like person identification, etc.

1 INTRODUCTION

Face detection (see Figure 1) is a well studied pro-

blem in computer vision, and good solutions are pre-

sented in literature. However we notice that open

source computer vision frameworks like OpenCV

(Bradski et al., 2000), offer face detectors based on

existing learning techniques, which are unable to

yield high accuracies on the available public datasets.

A root cause can be the fact that most of these mo-

dels have been created in the earlier ages of compu-

ter vision, when academic research was still interested

in older cascade classifier based techniques, like (Vi-

ola and Jones, 2001). Academic research evolved

and moved on, discovering more promising techni-

ques like convolutional neural networks and loosing

interest in well established and proven-to-work algo-

rithms. This resulted in a well known computer vision

library still providing a basic face detector, achieving

only average detection results on any given dataset.

On the other side, users from the industry in-

terested in turning these open source computer vi-

sion frameworks into working applications, get stuck

at improving the existing performance of the face

detection techniques. Their internal organizational

structure does not allow to put efforts into research

that tries to boost the performance of current algo-

rithms. Two of the largest issues when trying to im-

prove these existing techniques, are the availability

of large amounts of training data and the achievable

accuracy limitation reported by academic research of

different detection set-ups, using this basic detection

model.

In order to fill the gap we decided to investigate

how the current cascade classification pipeline for

training a face detector inside OpenCV could be adap-

ted to achieve a higher detection accuracy. We do this

by adjusting the face annotations, improving the nega-

tive training sample collection and by using an active

learning strategy to iteratively add hard positive (po-

sitive windows classified as negatives in the previous

iteration) and hard negative (negative windows classi-

fied as positives in the previous iteration) samples to

the object detector training process.

Furthermore, we experience that industrial appli-

cations of face detection tend to fail due to false po-

sitive detections, as seen in Figure 1, because post-

detection processing steps depend on a face being

available. In the case of a face recognition appli-

Figure 1: Example of CascadeClassifier.detectMultiScale()
in OpenCV3.1 framework (OpenCVBaseline model).

396
Puttemans S., Ergun C. and GoedemÃl’ T.
Improving Open Source Face Detection by Combining an Adapted Cascade Classification Pipeline and Active Learning.
DOI: 10.5220/0006256003960404
In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), pages 396-404
ISBN: 978-989-758-226-4
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



cation, the face detection can be the basis of gat-

hering training and test annotations (Learned-Miller

et al., 2016; Wolf et al., 2011). Therefore we aim

at improving the available face detection model of

OpenCV3.1, based on local binary patterns (Liao

et al., 2007), aiming for a very high precision at an

acceptable recall.

The remainder of this paper is structured as fol-

lows. Section 2 presents related research, while

section 3 discusses the used framework and datasets.

This is followed by section 4 discussing the proposed

approach in detail. Finally section 5 elaborates on the

obtained results while section 6 and section 7 sum up

conclusions and possible future improvements.

2 RELATED WORK

The OpenCV framework is an open source computer

vision framework providing a collection of techniques

ranging from basic image segmentation to complex

3D model generation. It steadily grows in size by con-

tributions from a community of both academic rese-

archers and industrial partners, adding recent advan-

ces in the computer vision community, while trying

to maintain the quality of the existing back-end. We

notice that once new functionality is integrated for a

longer period of time and heavily used by the commu-

nity, investments in improving the functionality tends

to stop. This could be explained by the fact that the

computer vision community has no interest in actual

relevant industrial implementations, but rather in pus-

hing the state-of-the-art even further.

Recent advances in computer vision solve face de-

tection by using complex techniques like multi-task

cascaded convolutional neural networks (Zhang et al.,

2016), convolutional neural networks combined with

3D information (Li et al., 2016) or recurrent convo-

lutional neural networks (Jiang and Learned-Miller,

2016). These techniques yield very promising results,

but tend to be fairly complex to implement in actual

applications. There is still a lack in well documen-

ted and supported open source software libraries that

are easy to use. Furthermore we noticed OpenCV is

paving the way of integrating these newer techniques,

but up till now, their performance inside the OpenCV

framework is still not as bug and error free as desired

by industrial companies.

The work of Viola and Jones (Viola and Jones,

2001) on face detection using a boosted cascade of

weak classifiers has been around for quite some time.

It is the standard frontal face detector for many indus-

trial applications so far, like e.g. digital photo came-

ras. A downside is that many companies use the avai-

lable software to train their own more complex face

detection models, without sharing the models back

with the community. This is mainly due to the fact

that OpenCV operates under a BSD license, allowing

companies to use the code without sharing back any

critical adaptations or changes. With our work we aim

at improving the currently available frontal face mo-

del based on local binary patterns (used as a baseline

in this publication) and achieve a model that is able

to accurately detect frontal faces in a large variety of

set-ups.

One could argue that working on such an old

technique is basically a waste of time invested. Howe-

ver, several recent research papers like (Zheng et al.,

2016; Puttemans et al., 2016a; Frejlichowski et al.,

2016; Puttemans et al., 2016b; Shaikh et al., 2016)

prove the importance of such well established techni-

ques for specific cases of industrial object detection.

3 FRAMEWORK AND DATASET

For building our approach we depend on the

OpenCV3.1 framework 1, provided and maintained

by Intel. We focus on using the CascadeClassifier ob-

ject detection functionality in the C++ interface toget-

her with the opencv traincascade application, contai-

ning all functionality for building a boosted cascade

of weak classifiers using the approach suggested by

(Viola and Jones, 2001).

Since the training data of the current OpenCV face

detection models is no longer available, we collected

a set of face images for training our own frontal face

detection model. The images are collected from vari-

ous sources like YouTube videos and by using a bulk

image grabber on social media, imageboards and goo-

gle image search results. Remark that all of these ima-

ges are not accompanied by ground truth face labels.

On top of that, we created a multi-threaded tool that

can use an existing face detection model to efficiently

search for valuable face data in a given video, that can

then again be added to the training data sets as hard

positive and hard negative samples.

Table 1: Training data overview for trained models.

Model #pos #neg #stages #stumps

OpenCVB xxx xxx 20 139

BoostedB 1.000 750k 26 137

IterHardPos 1.250 750k 19 146

IterHardPos+ 1.500 750k 19 149

For training our new models, we manually anno-

1http://www.opencv.org

Improving Open Source Face Detection by Combining an Adapted Cascade Classification Pipeline and Active Learning

397



Figure 2: Changing the annotations from full-face to inner-face: (green) OpenCV (red) ours.

tate 1.000 face regions as positive training windows

and combine this with 750.000 negative training win-

dows, automatically grabbed from large resolution

negative images not containing faces. As show in Ta-

ble 1 we then increase the positives dataset for each

new iteration with 250 extra hard positive samples.

These are gathered from a large set of positive ima-

ges, in which we know faces occur. Whenever the

initial detector is not able to find a face region, a ma-

nual intervention is required, asking for a face label,

and adding it as a training sample for the following

training iteration. The positive training set used for

training our final IterativeHardPositives+ model, can

be requested by contacting one of the paper authors.

For validating our new models and comparing

them to the existing OpenCV baseline, we use the

Face Detection Data Set and Benchmark2 (FDDB) da-

taset (Jain and Learned-Miller, 2010). This dataset

contains 5171 face annotations in 2845 images col-

lected from the larger Faces in the Wild dataset (Berg

et al., 2005). The dataset focuses on pushing the li-

mits in unconstrained face detection. In order to be

able to obtain a decent baseline, we converted the ex-

isting image annotations into the OpenCV used for-

mat, and made them publicly available 3.

4 SUGGESTED APPROACH

In the following subsections we will discuss the dif-

ferent adaptations made to the existing cascade clas-

sifier training pipeline, leading to an overall increase

in performance, as discussed in section 5.

4.1 Changing the Face’s Region of

Interest During Annotation

When taking a closer look at the output of the

OpenCV LBP frontal face detector, we notice that in

2http://vis-www.cs.umass.edu/fddb/
3http://eavise.be/OpenSourceFaceDetection/

many cases the detection output contains the com-

plete head, including ears, hair and sometimes even

background information. This is due to the OpenCV

training data annotations. Figure 2 indicates that

OpenCV aimed to include as much facial information

as possible to feed to the training algorithm. Since a

face detector needs to be generic, we focus on the face

part containing the most general features over any gi-

ven face dataset. In order to reduce the amount of

non-trivial face information, we decided to annotate

faces as the inner face region only, seen as the red

annotations in Figure 1, and as previously suggested

by (Mathias et al., 2014) for similar face detection

techniques. This approach has several benefits. It re-

moves tons of features from the feature pool of the

boosting algorithm, reducing the amount of features

that need to be evaluated during model training. Furt-

hermore the inner face is more robust to rotation (both

in-plane as out-of-plane). We elaborate more on these

in-plane and out-of-plane rotations in section 5.4.

4.2 Adapting the Negative Training

Sample Collection

OpenCV offers an automated way of collecting nega-

tive samples from a set of random background ima-

ges not containing the object. The algorithm resca-

les the given negative images to different sizes and

uses a sliding window based sequential collecting of

negative windows, without any overlap between sub-

sequential windows. Once the set of negative images

is completely processed, the process is repeated and

adding a pixel offset in each image, to obtain slightly

different samples (at pixel level). If a set is traversed

multiple times, increasing the offset each time, this

process equals applying a pixel shifting sliding win-

dow approach, as illustrated in Figure 3(a). While the

basic idea of capturing slight differences in your data

might be a good starting point, this approach genera-

tes a huge amount of negative samples which do not

add extra meaningful knowledge to the process, and

can thus not be seen as unique samples.

VISAPP 2017 - International Conference on Computer Vision Theory and Applications

398



(a) Original proces inside OpenCV framework.

(b) Suggested adapted pipeline.

Figure 3: Adaptations to the negative windows collection
process.

Looking at the boosting process used to train the

cascade classifier (by default AdaBoost (Freund et al.,

1999)), we notice that each new negative window can

only be allowed as negative training sample for a new

stage, if the previous stages do not reject it. If there is

only a slight pixel shift for different negatives, then

this rejection phase will just evaluate a lot of win-

dows, of which we already know that they will be

rejected. Therefore we adapted the interface and re-

moved the pixel offset procedure. By removing this

procedure and having no overlap between subsequent

negative windows, we introduce a possible loss of va-

luable information shared around the borders of sub-

sequent samples. This lost information might contain

critical knowledge for building a robust detector. To

reduce this loss of information we refine the scale ge-

neration in the image pyramid. Where OpenCV ge-

nerates an image pyramid with a scale parameter of

1.4, we decide to lower this scale parameter value 1.1

to ensure that negative samples gathered on different

pyramid scales are diverse enough while keeping as

much valuable information as possible. This is illus-

trated in Figure 3(b). By doing so, lost information on

sample borders on one scale will be captured by either

the previous or the subsequent scale. An extra bene-

fit of refining the scale pyramid, is that the resulting

object detection model is more robust to scale chan-

ges of the object, able to capture smaller variations in

size.

Based on these adaptations it is quite straightfor-

ward to collect a large set of negative data samples,

something necessary to create a robust face detection

model for in the wild applications. Considering a high

resolution image of 1.080× 1.920 pixels, we can al-

ready collect 30.000 negative training samples. This

allows us to increase the number of negative samples

per stage in our trained cascade classifier to multiple

hundred thousands of samples, trying to model the

background as good as possible. This will increase

training time per stage, but will reduce the amount of

stages, and thus make the model faster, less complex

and more accurate at detection time.

4.3 Iterative Active Learning Strategy

for Hard Training Samples

Supplying heaps of data to machine learning algo-

rithms allow to learn very complex object detection

models. The downside is that both in gathering po-

sitive and negative training data, it is very difficult to

tell which new sample will actually improve the ef-

ficiency of the detection model. In order to decide

which samples are actually valuable to be added to

the process, we apply a technique called active le-

arning. The idea is to use the model trained by the

previous iteration and use that model to tell us which

samples are valuable (close to the decision boundary)

and which are not (no ambiguity in labelling), when

adding them to the next iteration training process, as

seen in Figure 4. We make a distinction between hard

negatives and hard positives as explained below. Furt-

hermore the advantage of active learning is that we li-

mit the amount of manual labour drastically, since we

only need to provide labels to new training samples

that add extra knowledge to the trained classifier.

4.3.1 Hard Negative Samples

Hard negative samples are gathered by collecting a set

of negative images and running our previously trai-

ned face detector on them. All detections returned are

Figure 4: A schematic overview of the active learning pro-
cess (hand symbol) manual intervention/annotation (com-
puter symbol) fully automated processing.

Improving Open Source Face Detection by Combining an Adapted Cascade Classification Pipeline and Active Learning

399



in fact negative windows that still trigger a detection,

and are thus not assigned to the background yet by our

current model. Basically these samples contain infor-

mation that was not yet captured by the previously

collected set of negative samples and thus provide va-

luable information to the training process.

4.3.2 Hard Positive Samples

Hard positive samples are gathered by collecting a

large set of unlabelled images containing faces. We

only know the images contain one (or more) faces,

but we do not have a labelled location. On these ima-

ges, the current face detector is executed (with a low

detection certainty threshold) and a piece of software

keeps track of images that do not trigger a detection.

In that case, an operator is asked to manually select

the face region for those triggered images and thus

provide labels. This region is stored as a hard positive

sample that can still give the model learning interface

enough extra valuable knowledge on how it should be

learning its model.

4.4 Halting Training when Negative

Dataset is Consumed

The original OpenCV implementation use pixel-wise

offsets in the negative sample grabbing to avoid the

training to halt when the original provided dataset is

completely consumed in a first run. In section 4.2 we

already describe that using these pixel shifted win-

dows is overkill and adds a lot of redundant data. We

halt the training when the negative dataset is comple-

tely consumed. Once that happens we give the ope-

rator two possibilities. Either we allow to add ex-

tra images to the negative image dataset, or we re-

turn the amount of negative samples that was grab-

bed in the last stage before the training was halted.

This allows the operator to finalize the last stage with

this exact amount of samples and thus train a model

using every single negative sample window, comple-

tely consuming the available negative dataset.

4.5 Using the Adaptations to Train

Different Face Detection Models

By smartly combining all the adaptations suggested

in section 4.1, 4.2 and 4.3 we train different face de-

tection models where we iteratively try to improve the

accuracy of the obtained model. Table 1 describes the

training data used for these models, in combination

with the number of model stages and the number of

features (each forming a stump/binary decision tree)

selected by the boosting process.

Our first model (referred to as ‘BoostedBaseline’)

can be seen as our baseline we iteratively try to im-

prove by applying the active learning strategy. We

limit the training to only incorporate stumps, which

are single layer decision trees. One might argue that

using more complex decision trees is more profitable

but previous research shows that using more complex

trees actually slows the detection process (Reyzin and

Schapire, 2006), because more features need to be

evaluated in early stages. For each boosted learning

model, the increase in performance when adding fe-

atures should outweigh the complexity and thus the

processing time. Our model training is halted when

the collected set of random negative background ima-

ges is completely consumed.

For the second model, referred to as ‘Iterati-

veHardPositives’, we add 250 hard positive training

samples collected through the active learning proce-

dure, trying to improve the recall rate of the detector.

We also gather a limited set of hard negatives and add

those to the training set. We noticed that adding these

extra quality samples pushes the recall rate while slig-

htly increasing the precision rate. The third and fi-

nal model, referred to as ‘IterativeHardPositives+’, is

again improved by providing 250 extra hard positive

samples, in an attempt to push the reported recall even

further.

5 RESULTS

5.1 Performance of Trained Models

Figure 5 compares the trained models (BoostedBase-

line, IterativeHardPositives and IterativeHardPositi-

ves+) from section 4.5 to the OpenCVBaseline detec-

tor on the FDDB test dataset. Performance is measu-

red using precision-recall plots. We notice a generally

large improvement of our self trained models (green,

red and blue curve) over the OpenCV baseline (black

curve). The OpenCV baseline model is only able to

achieve a recall of about 40% (meaning 4 out of 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall = TP / (TP + FN)

P
re

c
is

io
n

 =
 T

P
 /

 (
T

P
 +

 F
P

)

 

 

OpenCVBaseline

BoostedBaseline

IterativeHardPositives

IterativeHardPositives+

Figure 5: Precision-Recall for all models on FDDB dataset.

VISAPP 2017 - International Conference on Computer Vision Theory and Applications

400



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.85

0.9

0.95

1

Recall = TP / (TP + FN)

P
re

c
is

io
n

 =
 T

P
 /

 (
T

P
 +

 F
P

)

 

 

BoostedBaseline

IterativeHardPositives

IterativeHardPositives+

Figure 6: Close-up of PR curves of our detection models.

objects are detected) at a precision of 40% (of all the

detections returned, only 4 out of 10 are actual ob-

jects) for its optimal point. Of course one can make

a trade-off and decide to sacrifice recall for a higher

precision. Nonetheless the current OpenCV model is

not able to detect objects with a certainty higher than

50% on the given FDDB dataset, containing a wild

variety of faces in very challenging conditions.

Compared to the OpenCVBaseline detector, at the

optimal recall of 40% for that model, our BoostedBa-

seline detector already increases the precision towards

99.5%, almost completely removing the existence of

false positive detections. Furthermore, each of our

subsequent models, as seen in the close-up in Figure

6, increases the recall further without sacrificing the

very high precision rate. At a recall value of 60%, a

50% increase compared to the OpenCVBaseline de-

tector, our IterativeHardPositives+ detector only has

a slight drop to 99% precision. As an optimal wor-

king point our IterativeHardPositives+ model reaches

a precision of 90% at a recall of 68%.

While many papers on face detection use precision

recall curves to compare detection models efficiently,

the official FDDB evaluation criteria is based on the

true positive rate compared to the number of false po-

sitive detections. We include this comparison for both

the OpenCVBaseline detector and our IterativeHard-

Positives+ detector, as seen in Figure 7. We also

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positives = #FP

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 =
 T

P
 /

 (
T

P
 +

 F
N

)

 

 

FastRCNN

ConvNet3D

MultiTaskCNN

OpenCVBaseline

IterativeHardPositives+

Figure 7: Evaluation for FDDB dataset, comparing our al-
gorithm to neural network based approaches.

Table 2: Timing results comparing both OpenCV baseline
and self trained models for the FDDB dataset.

Model Whole Set Per Image

OpenCVBaseline 9 min 30 sec 0.20 sec

BoostedBaseline 6 min 8 sec 0.13 sec

IterativeHardPos 7 min 7 sec 0.15 sec

IterativeHardPos+ 9 min 6 sec 0.19 sec

compare our technique to some state-of-the-art face

detection algorithms based on neural networks like

FastRCNN (Jiang and Learned-Miller, 2016), Con-

vNet3D (Li et al., 2016) and MultiTaskCNN (Zhang

et al., 2016). This clearly shows that we already close

the gap between cascade classifiers and neural net-

works a lot, while still having room for improvement.

5.2 Influence of Adaptations to

Processing Time

One must make sure that adding all this extra trai-

ning data does not make the model overly complex

and slow during detection time. As shown in Table

1 we have only a limited increase in used features

as stump classifiers, while adding 50% more valua-

ble positive training data. Furthermore the complex-

ity in number of stages drops with our models. Since

processing time is a key feature for many computer

vision approaches applied in embedded systems, we

took the liberty of measuring processing time over the

complete FDDB test set, which can be seen in Ta-

ble 2. We average the timings to receive a timing per

image, given the average resolution of the test images

is 400× 300 pixels. These timings are performed on

a Intel(R) Xeon(R) CPU E5-2630 v2 system set-up.

Our OpenCV build is optimized using the Threading

Building Blocks for parallel processing. We clearly

see, although we are using more features in our mo-

del, that the processing time of our IterativeHardPo-

sitives+ model does not exceed the processing time of

the OpenCVBaseline model. Furthermore, if we use

our BoostedBaseline or IterativeHardPositives detec-

tor, we process images remarkably faster than the

OpenCVBaseline detector.

5.3 A Visual Confirmation

Figure 8 shows some visual detection output of our

algorithm. We start by selecting a low detection cer-

tainty threshold (Figure 8(a)) which clearly shows

that both models are able to find faces, but immedia-

tely shows the downside of the OpenCV model, which

generates a lot of false positive detections. We incre-

Improving Open Source Face Detection by Combining an Adapted Cascade Classification Pipeline and Active Learning

401



(a) Detection results with low detection certainty threshold.

(b) Detection results with medium detection certainty threshold.

(c) Detection results with high detection certainty threshold.

(d) Cases where both detectors fail (high certainty threshold) or where OpenCV finds a detection while we do not.

Figure 8: Detection results and failures on FDDB dataset for (red) OpenCVBaseline and (green) IterHardPos+ model.

ase the detection certainty threshold to a mediate level

(Figure 8(b)) and notice that both OpenCV and our

own trained model are able to find faces, but gradu-

ally OpenCV starts to miss faces that are still detected

by our model. Finally when setting a high detection

certainty threshold (Figure 8(c)), we see that OpenCV

misses a lot of faces that are still found by our model.

But even in the case that our model detects more fa-

ces than OpenCV we still find cases where both mo-

dels fail or where OpenCV actually finds a face that

our models does not capture, as seen in Figure 8(d).

These undetected faces could be used as hard positive

training samples but then we would need to search for

a new database for evaluation purposes in order not to

introduce dataset bias.

5.4 Testing Out-of-plane Rotation

Robustness

As already stated in section 4.1 reducing the annota-

tion region, which directly influences the face region

that the detector will return, helps improving the out-

of-plane rotation of the face detector. To test this, we

evaluated the OpenCVBaseline and the IterativeHard-

VISAPP 2017 - International Conference on Computer Vision Theory and Applications

402



Figure 9: Testing out-of-plane rotational robustness for both OpenCVBaseline and the IterativeHardPositives+ detector.

Positives+ detector on the Head Pose Image Database

(Gourier et al., 2004), as seen in Figure 9. This data-

set contains a set of 30 sequences (15 persons, 2 se-

quences per person) where people sequentially look

at different positions, each associated with a pan (in

the range [-90◦,+90◦]) and a tilt angle (in the range

[-60◦,60◦]). At each position, we execute both de-

tectors and return the detection certainty of the mo-

dels. averaged over the 30 sequences. We use the

highest returned detection score on the dataset as the

outer bound of our score range and normalize all ot-

her values for this maximum. We see that in both pan

and tilt angle evaluations our IterativeHardPositives+

detector clearly outperforms the OpenCVBaseline de-

tector. Especially in the tilt angle range, we see a large

increase in efficiency. This extra test also confirms

that at a full frontal face, the IterativeHardPositives+

detector has about double the detection certainty as

the OpenCVBaseline detector, which was already cle-

arly noticeable in Figure 5.

6 CONCLUSIONS

The goal of this paper is to suggest adaptations to

the current existing cascade classification pipeline in

the open source computer vision framework OpenCV

with the eye on improving its frontal face detection

model. We aim at reducing the huge amount of false

positive detections, by guaranteeing a high precision,

while maintaining the recall as high as possible, to

detect as many faces as possible. We test our appro-

ach on the publicly available FDDB face dataset and

prove that our adaptations to the pipeline generate an

enormous increase in performance. Using our Iterati-

veHardPositives+ detector, we achieve an increase in

recall to 68% while maintaining a high precision of

90%. Compared to a 40% precision at 40% recall for

the current implementation, this is quite impressive.

The suggested adaptations to the framework and

the model clearly have benefits over the currently

available model. Imagine a case where the output

of the face detector is used to perform face recogni-

tion. In such cases we aim at a precision that is as

high as possible, since we want to ensure that the pi-

peline following on the actual detection, is not provi-

ded with rubbish but with an actual face. Furthermore

our model is able to find more faces in the wild and is

more robust to out-of-plane rotations compared to the

OpenCV baseline model.

We should take into account that we will never hit

a 100% recall on datasets like FDDB, due to some

high out-of-plane rotations, as seen in Figure 8(d).

However one could argue that faces with an out-of-

plane rotation of more than 45 degrees should be

found by a profile face detector and combine both de-

tectors together, as suggested in (Hulens et al., 2016).

Improving Open Source Face Detection by Combining an Adapted Cascade Classification Pipeline and Active Learning

403



7 FUTURE WORK

As future work we suggest to push the accuracy of the

face detection model in the OpenCV framework even

further. We have still room to increase the amount

of hard positives samples, aiming for an even higher

recall rate. A good start could be to run our Iterati-

veHardPositives+ detector on the FDDB dataset and

use the returned hard positive faces as training data.

However this will force us to look at new evaluation

datasets besides FDDB to avoid dataset bias.

At the moment the model is only evaluated on a

single in-plane rotation. Like suggested in (Puttemans

et al., 2016a) we could build a rotational 3D matrix of

the image and apply our IterativeHardPositives+ de-

tector several times to incorporate these in-plane ro-

tations. This would allow us to find more faces and

push the performance of our pipeline even further.

ACKNOWLEDGEMENTS

This work is supported by the KU Leuven, Campus

De Nayer and the Flanders Innovation & Entrepe-

neurship (AIO).

REFERENCES

Berg, T. L., Berg, A. C., Edwards, J., and Forsyth, D.
(2005). Whos in the picture. Advances in neural in-
formation processing systems, 17:137–144.

Bradski, G. et al. (2000). The opencv library. Doctor Dobbs
Journal, 25(11):120–126.

Frejlichowski, D., Gościewska, K., Forczmański, P., Nowo-
sielski, A., and Hofman, R. (2016). Applying image
features and adaboost classification for vehicle de-
tection in the sm4public system. In Image Processing
and Communications Challenges 7, pages 81–88.

Freund, Y., Schapire, R., and Abe, N. (1999). A short in-
troduction to boosting. Japanese Society For Artificial
Intelligence, 14(771-780):1612.

Gourier, N., Hall, D., and Crowley, J. L. (2004). Estimating
face orientation from robust detection of salient facial
features. In ICPR International Workshop on Visual
Observation of Deictic Gestures.

Hulens, D., Van Beeck, K., and Goedemé, T. (2016). Fast
and accurate face orientation measurement in low-
resolution images on embedded hardware. In Procee-
dings of VISIGRAPP, volume 4, pages 538–544.

Jain, V. and Learned-Miller, E. (2010). Fddb: A benchmark
for face detection in unconstrained settings. Techni-
cal Report UM-CS-2010-009, University of Massa-
chusetts, Amherst.

Jiang, H. and Learned-Miller, E. (2016). Face de-
tection with the faster r-cnn. arXiv preprint
arXiv:1606.03473.

Learned-Miller, E., Huang, G. B., RoyChowdhury, A., Li,
H., and Hua, G. (2016). Labeled faces in the wild:
A survey. In Advances in Face Detection and Facial
Image Analysis, pages 189–248.

Li, Y., Sun, B., Wu, T., Wang, Y., and Gao, W. (2016). Face
detection with end-to-end integration of a convnet and
a 3d model. arXiv preprint arXiv:1606.00850.

Liao, S., Zhu, X., et al. (2007). Learning multi-scale block
local binary patterns for face recognition. In Advances
in Biometrics, pages 828–837.

Mathias, M., Benenson, R., Pedersoli, M., and Van Gool,
L. (2014). Face detection without bells and whistles.
In European Conference on Computer Vision, pages
720–735.

Puttemans, S., Van Ranst, W., and Goedemé, T. (2016a).
Detection of photovoltaic installations in rgb aerial
imaging: a comparative study. In GEOBIA2016.

Puttemans, S., Vanbrabant, Y., Tits, L., and Goedemé, T.
(2016b). Automated visual fruit detection for harvest
estimation and robotic harvesting. In IPTA2016.

Reyzin, L. and Schapire, R. E. (2006). How boosting the
margin can also boost classifier complexity. In Pro-
ceedings of the 23rd international conference on Ma-
chine learning, pages 753–760.

Shaikh, F., Sharma, A., Gupta, P., and Khan, D. (2016).
A driver drowsiness detection system using cascaded
adaboost. Imperial Journal of Interdisciplinary Rese-
arch, 2(5).

Viola, P. and Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. In CVPR, vo-
lume 1, pages I–511.

Wolf, L., Hassner, T., and Maoz, I. (2011). Face recognition
in unconstrained videos with matched background si-
milarity. In CVPR, pages 529–534.

Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016).
Joint face detection and alignment using multi-task
cascaded convolutional networks. arXiv preprint
arXiv:1604.02878.

Zheng, Y., Yang, C., Merkulov, A., and Bandari, M. (2016).
Early breast cancer detection with digital mammo-
grams using haar-like features and adaboost algo-
rithm. In SPIE Commercial+ Scientific Sensing and
Imaging, pages 98710D–98710D. International So-
ciety for Optics and Photonics.

VISAPP 2017 - International Conference on Computer Vision Theory and Applications

404


