
Enhancing Pigeon-Hole based Encoding of Boolean Cardinality
Constraints

Soukaina Hattad, Said Jabbour, Lakhdar Sais and Yakoub Salhi
CRIL - CNRS UMR 8188, University of Artois, Lens, France

Keywords: Satisfiability, Linear inequalities, Cardinality Constraints.

Abstract: In this paper, we propose to deal with the encoding of cardinality constraints ∑n
i=1 xi > b into conjunctive

normal form. We consider the one proposed recently (Jabbour et al., 2014) based on pigeon-hole problem.
Then, we show that even if the number of clauses of the CNF based encoding is in O(b×(n−b)) , the number
of literals of resulting formula can be much more higher: O(b(n−b)2). To decrease the complexity in terms
of number of literals, we propose a compact representation of some clauses of the encoding. Our approach
allows to have a quadratic encoding in terms of literals while maintaining the same complexity in terms of
clauses and additional variables. An experimental evaluation is performed to show the competitiveness of the
new encoding.

1 INTRODUCTION

Today, Boolean satisfiability (SAT) has gained a con-
siderable audience with the advent of a new gener-
ation of solvers able to solve large instances encod-
ing real-world problems. In addition to the traditional
applications of SAT to hardware and software for-
mal verification, this impressive progress led to in-
creasing use of SAT technology to solve new real-
world applications such as planning, bioinformatics,
cryptography, and data mining. Encoding applica-
tions as formulas in CNF became now a usual prac-
tice. One of the most important flaws of CNF or
Boolean representation in general rises in the diffi-
culty to deal with counting constraints, among them
the cardinality constraint and its more general form
the pseudo Boolean constraint. Indeed, several appli-
cations involve counting arguments expressed as car-
dinality or pseudo Boolean constraint. This kind of
constraints arises frequently out of the encoding of
real-world problems such as radio frequency assign-
ment, time tabling and product configuration prob-
lems to cite a few. For the above reasons, several
authors have addressed the issue of finding an effi-
cient encoding of cardinality (e.g. (Warners, 1996),
(Bailleux and Boufkhad, 2003), (Sinz, 2005), (Silva
and Lynce, 2007), (Ası́n et al., 2009)) and pseudo
Boolean constraints (e.g. (Eén and Sörensson, 2006;
Bailleux et al., 2009)) as a CNF formula. Efficiency
refers to both the compactness of the representation

(size of the CNF formula) and to the ability to achieve
the same level of constraint propagation (generalized
arc consistency) on the CNF formula.

In this paper, we present an enhancement of the
pigeon-hole based encoding of the cardinality con-
straint into CNF. We provide a new encoding allow-
ing a compact representation leading to a reduction in
terms of the number of literals of the original one.

The rest of this paper is organized as follows. Af-
ter some preliminary definitions and technical back-
ground, we recall the Pigeon-Hole based CNF encod-
ing of the cardinality constraint. Then, we present
our approach to enhance this encoding by provid-
ing a more compact representation in terms of num-
ber of literals. An experimental evaluation on Partial
MaxSAT instances is performed to demonstrate the
competitiveness of our proposal. We conclude with
some interesting and general perspectives.

2 TECHNICAL BACKGROUND
AND PRELIMINARY
DEFINITIONS

2.1 Preliminary Definitions and
Notations

A Boolean formula F in Conjunctive Normal Form
(CNF) is a conjunction of clauses, where a clause is

Hattad S., Jabbour S., Sais L. and Salhi Y.
Enhancing Pigeon-Hole based Encoding of Boolean Cardinality Constraints.
DOI: 10.5220/0006252502990307
In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), pages 299-307
ISBN: 978-989-758-220-2
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

299

a disjunction of literals. A literal is a positive (x) or
negated (¬x) propositional variable. The two literals
x and ¬x are called complementary. We denote by
l̃ the complementary literal of l. More precisely, if
l = x then l̃ = ¬x, otherwise l̃ = x. The variable as-
sociated to a literal l is denoted by |l|. Let us recall
that any Boolean formula can be translated to CNF
using linear Tseitin’s encoding (Tseitin, 1968). The
size of the CNF F is defined as ∑c∈F |c|, where |c| is
the number of literals in c. A unit clause is a clause
containing only one literal (called unit literal), while
a binary clause contains exactly two literals. A Horn
(resp. reverse Horn) clause is a clause with at-most
one positive (resp. negative) literal. A positive (resp.
negative) clause is a clause whose literals are all pos-
itive (resp. negative). An empty clause, denoted ⊥, is
interpreted as false (unsatisfiable), whereas an empty
CNF formula, denoted >, is interpreted as true (satis-
fiable).

The set of variables occurring in F is denoted VF
and its associated set of literals LF = ∪x∈VF

{x,¬x}
. A set of literals is complete if it contains one lit-
eral for each variable in VF , and fundamental if it
does not contain complementary literals. A literal l
is called monotone or pure if l̃ does not appear in F .
An interpretation ρ of a Boolean formula F is a func-
tion which associates a truth value ρ(x)∈ {0,1} (0 for
false and 1 for true) to some of the variables x ∈ VF .
ρ is complete if it assigns a value to every x ∈VF , and
partial otherwise. An interpretation is alternatively
represented by a complete and fundamental set of lit-
erals. A model of a formula F is an interpretation ρ
that satisfies the formula, denoted ρ |= F . A formula
G is a logical consequence of a formula F , denoted
F |= G , iff every model of F is a model of G .

Let ci and c j be two clauses such that ci = (x∨α)
and c j = (¬x∨ β), η[x,ci,c j] = (α∨ β) denotes the
resolvent on x between ci and c j. A resolvent is called
tautological when it contains complementary literals.

F |x denotes the formula obtained from F by as-
signing x the truth-value true. Formally F |x = {c | c∈
F ,{x,¬x} ∩ c = /0} ∪ {c\{¬x} | c ∈ F ,¬x ∈ c}.
This notation is extended to interpretations: given
an interpretation ρ = {x1, . . . ,xn}, we define F |ρ =
(. . .((F |x1)|x2) . . . |xn).

F ∗ denotes the formula F closed under unit prop-
agation, defined recursively as follows: (1) F ∗ = F
if F does not contain any unit clause, (2) F ∗ =⊥ if
F contains two unit-clauses {x} and {¬x}, (3) other-
wise, F ∗ = (F |x)∗ where x is the literal appearing in
a unit clause of F .

Let c1 and c2 be two clauses of a formula F . We
say that c1 (respectively c2) subsume (resp. is sub-
sumed) c2 (resp. by c1) iff c1 ⊆ c2. If c1 subsume c2,

then c1 |= c2 (the converse is not true).
Let c ∈ F such that x ∈ c, the literal x of c

is called blocked if ∀c′ ∈ F such that ¬x ∈ c′ and
c 6= c′, η[x,c,c′] is a tautology. A clause c ∈ F is a
blocked clause if it contains a blocked literal (Kull-
mann, 1997). A blocked clause c ∈ F can be deleted
from F while preserving satisfiability.

2.2 Pigeon-Hole Principle

The pigeon-hole based encoding is based on the
Pigeon-Hole principle widely used in proof complex-
ity. It asserts that there is no injective mapping from
b pigeons to n holes as long as b > n. Stephen A.
Cook proved that the propositional formula encod-
ing the Pigeon-Hole problem have polynomial size
proof in extended resolution proof system (Cook,
1976). A polynomial proof is also obtained by Kr-
ishnamurthy (Krishnamurthy, 1985) using resolution
with symmetry. The Pigeon-Hole principle PHPb

n can
be expressed as a propositional formula in conjunc-
tive normal form. The variables of PHPb

n are pi j with
1 6 i 6 b, 1 6 j 6 n; the variable pi j is intended to
denote the condition that pigeon i is sitting in hole j.
The CNF formula encoding PHPb

n can be stated as
follows:

n∨

j=1

pi j, 1 6 i 6 b (1)

∧

16i<k6b

(¬pi j ∨¬pk j), 1 6 j 6 n (2)

The first equation (1) expresses that any pigeon
must be put in at least one hole, while the equation (2)
constrains each hole to contain at most one pigeon.

2.3 Symmetries in SAT

As the Pigeon-Hole based encoding heavily exploit
symmetries (Krishnamurthy, 1985), we briefly recall
the symmetry breaking framework in SAT. For more
details on symmetry, we refer the reader to some but
not exhaustive list of works in SAT (Benhamou and
Sais, 1992), (Benhamou and Sais, 1994), (Crawford
et al., 1996; Aloul et al., 2003) and CSP (Puget, 1993;
Gent et al., 2006).

First, let us introduce some definitions on group
theory. A group (G ,◦) is a finite set G with an asso-
ciative binary operation ◦ : G ×G → G admitting a
neutral and an inverse element. The set of all permuta-
tion P over a finite set E associated to the composition
operator ◦, denoted (P ,◦), forms a group. Further-
more, each permutation σ∈P can be represented by a
set of cycles {c1 . . .cn} where each cycle ci is a list of

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

300

elements of E (li1 . . . lini
) s.t. ∀16 k < ni,σ(lik) = lik+1

and σ(lini
) = li1 .

Let F be a CNF formula, and σ a permutation
over L(F). We can extend the definition of the per-
mutation σ to F as follows: σ(F) = {σ(c)|c ∈ F }
and σ(c) = {σ(l)|l ∈ c}.
Definition 1. Let F be a CNF formula and σ a per-
mutation over the literals of F , σ is a symmetry of F
if it satisfies the following conditions:

• σ(¬x) = ¬σ(x), ∀x ∈ LF
• σ(F) = F

From the definition above, a symmetry σ defines
an equivalence relation over the set of possible assign-
ments. We need to consider only one assignment from
each equivalence class. Breaking symmetries consist
in eliminating all symmetric assignments except one
in each equivalence class. The most used approach
to break symmetries consists in adding new clauses
- called symmetry breaking predicates (SBP) or lex
leader constraints - to the original formula (Crawford,
1992; Crawford et al., 1996; Aloul et al., 2003; Walsh,
2006).

Before introducing the general definition of SBP,
let us illustrate the main idea behind this technique
using a simple example. Let σ = (x1,y1) be a sym-
metry of a CNF formula F with only one cycle. Sup-
pose that F admits m = {x1,¬y1 . . .} as a model, then
σ(m) = {¬x1,y1, . . .} is also a model of F . To break
this symmetry, it is sufficient to lay down an order-
ing on the values of x1 and y1. For example, adding
conjunctively the constraint x1 6 y1, which can be ex-
pressed by the clause c = (¬x1 ∨ y1), to the formula
F , leads to a new formula Φ = F ∪ {c} while pre-
serving satisfiability. The model m of F is eliminated
as it is not a model of Φ. All other models of F not
satisfying the added binary clause are also eliminated.
This idea is generalized in definition 3 to a symmetry
containing arbitrary number of cycles.

Definition 2. Let σ = (x1,y1), . . . ,(xn,yn) be a sym-
metry of F . σ is called lexicographically ordered
iff ∀i(1 6 i 6 n− 1) |xi| < |xi+1| and ∀i(1 6 i 6 n)
|xi|< |yi| holds.

Definition 3 (SBP (Crawford et al., 1996)). Let F be
a CNF and σ = (x1,y1)(x2,y2) . . .(xn,yn) a symmetry
of F . Then the symmetry breaking predicates, called
sbpσ, associated to a lexicographically ordered sym-
metry σ is defined as the conjunction of the following
constraints:

• (x1 6 y1)∧
• (x1 = y1)→ (x2 6 y2)∧
• . . .∧
• (x1 = y1)∧(x2 = y2) . . .(xn−1 = yn−1)→ (xn 6 yn)

Similarly, in order to break a set of symmetries
one need to add conjunctively symmetry breaking
predicates associated to each individual symmetry.

The following property shows that symmetry
breaking predicates approach preserves the satisfia-
bility between the original formula and the generated
one.

Proposition 1 ((Crawford et al., 1996)). Let F be a
CNF formula and σ a symmetry of F . Then F and
(F ∧ sbpσ) are equivalent w.r.t. satisfiability.

In order to limit the combinatorial explosion of the
clausal transformation of these predicates, one has to
add one variable αi per cycle (xi,yi) to express the
equality between xi and yi. However, one of the major
drawbacks of this approach is that the size of the sym-
metry breaking predicates is exponential in the worst
case. Recently, interesting reductions in the size of
the SBP has been obtained in (Aloul et al., 2006) us-
ing non redundant generators concept.

3 PIEGON-HOLE BASED
ENCODING OF CARDINALITY
CONSTRAINTS

∑n
i=1 xi > b such that xi is propositional variable (xi ∈
{0,1}), for 1 6 i 6 n, is a well known cardinality con-
straint. As mentioned by Joot P. Warners in (Warn-
ers, 1996), this kind of constraints and its generalized
form ∑n

i=1 aixi > b (where ai are positive integers) can
be polynomially encoded as a propositional formula
in CNF. The first polynomial CNF expansion of cardi-
nality constraint is proposed by Hooker in an unpub-
lished note (see also (Warners, 1996)). The authors
start from the encoding formulated of the constraint
∑n

i=1 xi > b as it is was described in (Warners, 1996)
(page 12):

(¬zik ∨ xi), 1 6 i 6 n, 1 6 k 6 b (3)

n∨

i=1

zik, 1 6 k 6 b (4)

(¬zik ∨¬z jk), 1 6 i < j 6 n, 1 6 k 6 b (5)

In (Warners, 1996) the author mentions that the
formula (3) says that xi is true if some zik is true, while
formula (4) combined with formula (5) say that for
each k exactly one zik must be true.

However this formulation is clearly wrong. Let
us give a counter example. Suppose that xi = 0 for
16 i6 n−(b−1). In such a case, the cardinality con-
straint ∑n

i=1 xi > b is unsatisfiable as one needs to set

Enhancing Pigeon-Hole based Encoding of Boolean Cardinality Constraints

301

b variables to true among the set of remaining unas-
signed variables R = {xn−(b−2),xn−(b−3), . . . ,xn}. In-
deed, this is clearly impossible as the number of unas-
signed variables is n− (n− (b− 2))+ 1 = b− 1. On
the contrary, the CNF formula made of (3), (4) and
(5) is satisfiable. One can set the remaining variables
of R to true and for each k (1 6 k 6 b) set exactly one
zik to true for (n− (b−2)6 i 6 n).

Despite of the importance of the Warners’ paper
and its precursory nature on the subject, to our knowl-
edge, this error in the formulation of the first transla-
tion of the cardinality constraint to CNF reported by
Warners was never raised.

Based on the description above, Jabbour et al. pro-
posed in (Jabbour et al., 2014) the correct reformula-
tion of the CNF representation of the cardinality con-
straint ∑n

j=1 x j > b, denoted P b
n in the sequel:

b∧

k=1

(¬pki∨ xi), 1 6 i 6 n (6)

n∨

i=1

pki, 1 6 k 6 b (7)

∧

16k<k′6b

(¬pki∨¬pk′i), 1 6 i 6 n (8)

Let us mention that the two equations (7) and (8)
encode the well-known pigeon hole problem PHPb

n ,
where b is the number of pigeons and n is the num-
ber of holes (pki expresses that pigeon k is in hole i).
The mapping between the models of PHPb

n and those
of ∑n

i=1 xi > b are obtained thanks to the equation (6).
Indeed, the propositional variable xi is true if the hole i
contains one of the pigeons k for 1 6 k 6 b. If we take
again the previous counter example, the CNF formula
P b

n becomes unsatisfiable as it encodes an unsatisfi-
able Pigeon-Hole problem PHPb

b−1.
In this original polynomial transformation, the

number of variables is n+ b× n and the number of
clauses required is n×b+b+n× b×(b−1)

2 . The over-
all complexity is in O(b×n) variables and O(n×b2)
clauses.

Unfortunately, checking the satisfiability of a
Pigeon-Hole formula is computationally hard except
if we use resolution with symmetry or extended reso-
lution proof systems. In the following, we show how
to improve the efficiency of this Pigeon-Hole based
encoding of the cardinality constraint. By efficiency,
we mean enhancing the propagation capabilities (unit
propagation) of the obtained CNF. To this end, we
show in the next section, how symmetries of the this
Pigeon-Hole formulation can be used to enhance this
first version of our encoding.

3.1 Symmetry Breaking on the
Pigeon-Hole based Encoding

An enhancement of Pigeon-Hole Based Encoding is
proposed using symmetry breaking predicates and
used to reduce the size of Pigeon-Hole based encod-
ing of the cardinality constraint while ensuring unit
propagation.

For clarity reason, and to better visualize the re-
ductions on the previous encoding P b

n , we use the fol-
lowing matrix representation for the CNF formula (7).
Each row represents a positive clause of (7).




p11 · · · [p1b · · · p1n]

p21 · · · [p2(b−1) · · · p2(n−1)] p2n

... . .
.

. .
. ...

[pb1 · · · pb(n−(b−1))] · · · pbn




Efficient Encoding. The enhanced CNF Pigeon-
Hole based encoding, called phP b

n , of a cardinality
constraint is defined as:

¬p(b−k+1)(i+k−1)∨ x(i+k−1), 1 6 i 6 n−b+1,

1 6 k 6 b
(9)

n−b+1∨

i=1

p(b−k+1)(i+k−1), 1 6 k 6 b (10)

p(b−k+1)k ∨·· · ∨ p(b−k+1)(i+k)∨¬p(b−k)(i+k+1),

0 6 i 6 n−b−1,1 6 k 6 b−1
(11)

This efficient phP b
n encoding is obtained from P b

n en-
coding using sophisticated reductions. Before illus-
trating how such reductions are performed, let us de-
scribe briefly this encoding. The formula (10) cor-
responds to the reduction of (7) to only the sub-
clauses represented in brackets (see the previous ma-
trix). These sub-clauses are obtained by deducing that
the literals belonging to the upper-left corner triangle
and to the lower-right corner triangle of the previous
matrix must be assigned to false. For instance, the
clause pb1 ∨ ·· · ∨ pb(n−(b−1)) ∈ (11) is obtained for
k = 1, corresponding to the last clause in brackets of
the previous matrix. Moreover, the formula (9) cor-
responds to the restriction of (6) to the variables ap-
pearing in (10). Finally, the formula (11), called stair-
implications, link successive rows in the matrix from
the bottom to the top. With these implications the set
of negative binary clauses (8) are made redundant and

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

302

then can be dropped. One can see that the number of
clauses of (11) is smaller than that of (8).
From phP b

n , one can deduce that the overall complex-
ity of our encoding is in O(b× (n−b)) variables and
clauses.

3.2 phP b
n Encoding: Algorithm

In this section, we provide an algorithm to help the
user to generate CNF Pigeon-Hole Based encoding
in a simple way. Let us first consider the following
example.

Example 1. Let x1 +x2 +x3 +x4 +x5 +x6 +x7 ≥ 5 a
cardinality constraint. The following matrix, is given
in order to better visualise how the CNF Pigeon-Hole
Based encoding is derived.



p51 p52 p53
p41 p42 p43

p31 p32 p33
p21 p22 p23

p11 p12 p13
↓ ↓ ↓ ↓ ↓ ↓ ↓
x1 x2 x3 x4 x5 x6 x7




The rows of the matrix allow us to derive the positive
clauses of (10):

p51∨ p52∨ p53
p41∨ p42∨ p43
p31∨ p32∨ p33
p21∨ p22∨ p23
p11∨ p12∨ p13

The binary clauses of (9) are obtained as follows:
for each column j of the matrix, we generate the
binary clauses connecting the literals of the column j
with the variables x j

¬p11∨ x1
¬p12∨ x2 ¬p21∨ x2
¬p13∨ x3 ¬p22∨ x3 ¬p31∨ x3
¬p23∨ x4 ¬p32∨ x4 ¬p41∨ x4
¬p33∨ x5 ¬p42∨ x5 ¬p51∨ x5
¬p43∨ x6 ¬p52∨ x6
¬p53∨ x7

The last category of clauses corresponds to
(11). The clauses express a relation between two
successives lines in the matrix representation. Such a
relation can be easily derived by a simple observation
on the above matrix.

p11∨¬p21 p11∨ p12∨¬p22
p21∨¬p31 p21∨ p22∨¬p32
p31∨¬p41 p31∨ p32∨¬p42
p41∨¬p51 p41∨ p42∨¬p52

In the sequel we present a transformation proce-
dure (Algorithm 1) allowing us to derive phP b

n from
a given cardinality constraint. Algorithm 1 starts by
creating the matrix p(b× n− b+ 1) with b rows and
n− b+ 1 columns, where each element pi j(0 ≤ i <
b,0≤ j < n−b+1) corresponds to the propositional
variables set by the function newVar() (line 4). In
line 5, we generate the positive clauses of (10). The
initialization of the matrix p of variables together with
the generation of the positives clauses of (10) are done
in lines 1-8. From line 9 to line 20, the algorithm build
all the clauses of (11) and (9). Note that by inverting
the rows and columns of the matrix, the clauses of
(9) are generated as (xi+ j−1∨¬pi j) (line 18) which is
clearly more simple.

Algorithm 1: Pigeon-Hole-Based CNF encoding.

Require: A cardinality constraint ∑n
i=1 xi > b

1: for (i = 1; i≤ b; i++) do
2: c = /0
3: for (j = 1; j ≤ (n−b+1); j++) do
4: pi j = newVar()
5: c← c∪ pi j
6: end for
7: F ← F ∪ c
8: end for
9: for (i = 1; i≤ b; i++) do

10: c = /0
11: for (j = 1; j ≤ (n−b+1); j++) do
12: c← c∪ pi j
13: if (i≤ b−1 && j ≤ n−b) then
14: c← c∪¬p(i+1) j
15: F ← F ∪ c
16: c← c\{¬p(i+1) j};
17: end if
18: F ← F ∪{¬pi j,xi+ j−1}
19: end for
20: end for
21: return F

4 ENHANCING PHP N
B BY

REDUCING THE SIZE OF THE
CNF IN TERMS OF LITERALS

In this section we propose an enhancement of the pre-
vious encoding in order to reduce the size of the CNF
i.e. the total number of literal occurrences. Indeed,
until now we considered the complexity w.r.t. the
number of variables and clauses needed to encode the
cardinality constraint into CNF. In the sequel, we pro-
pose an interesting enhancement of our encoding by
reducing the size of the CNF. The following proposi-

Enhancing Pigeon-Hole based Encoding of Boolean Cardinality Constraints

303

tion states the number of literals occurrences needed
to obtain phP b

n .
Proposition 2. |phP n

b | is in O(n3)

Proof. The pigeon-hole encoding is obtained through
three set of clauses (9), (10) and (11). The number
of literals of (9) is equals to (b−1)× (2+ . . .+(n−
b+ 1)) = (b− 1)× ((n− b+ 1)× (n−b+2

2)− 1). For
(10) the size of the clauses is b× (n−b+1). Finally
the total size of the clauses of (11) is 2×b× (n−b+
1). By considering the worst case, where b = n

2 , we
deduce that the size of phP n

b is in O(n3).

According to Proposition 2, the number of literal
occurrences is in O(b× (n− b)2) in the worst case.
Consequently, for b near n

2 and for large values of n,
the encoding leads to huge CNF formula. Further-
more, as many clauses of (10) and (11) are of large
size, this will slow down the unit propagation pro-
cess. To overcome this drawback, we propose a more
compact representation of (10) and (11) allowing to
reduce the complexity in terms of literal occurrences
from O(n3) to quadratic in the worse case. To this
end, we propose to make use of the mining based
compression approach of CNF formulae proposed in
(Jabbour et al., 2013). The compression approach is
obtained using an original combination of data min-
ing techniques with the well known Tseitin’s encod-
ing (Tseitin, 1968). The proposed approach called
Mining4CNF uses itemset mining techniques to de-
tect hidden structures in the CNF and use them to re-
duce the size of the CNF formula. More precisely,
the approach allows to derive frequent (appearing
many times in the formula) sub-clauses. Such sub-
clauses are then substituted by a fresh variable, while
adding a new boolean function representing such sub-
clauses (Tseitin encoding). Also, in (Jabbour et al.,
2013), the authors show that this compression tech-
nique achieves significant compression rate on many
CNF instances including some specialized constraints
such as the AtMostOne Constraint (∑n

i=1 xi 6 1). To
illustrate such approach, let us consider the following
example.
Example 2. Let Φ be the formula containing the fol-
lowing 10 clauses:

x0 ∨ ¬x4, x0 ∨ ¬x5, x0 ∨ ¬x6,
¬x3 ∨ ¬x4, ¬x3 ∨ ¬x5, ¬x3 ∨ ¬x6,

¬x0 ∨ x1 ∨ x4 ∨ x5 ∨ x6
x3 ∨ x4 ∨ x5 ∨ x6

¬x1 ∨ x2 ∨ x4 ∨ x5 ∨ x6
¬x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6

Mining4CNF first enumerates some interesting
(or frequent) sub-clauses, and use them to compress
the CNF formula in the second step. Suppose that

(x4∨ x5∨ x6) is a frequent sub-clause, the formula Φ
can be rewritten as:

x0 ∨ ¬x4, x0 ∨ ¬x5, x0 ∨ ¬x6,
¬x3 ∨ ¬x4, ¬x3 ∨ ¬x5, ¬x3 ∨ ¬x6,

¬x0 ∨ x1 ∨ y
x3 ∨ y

¬x1 ∨ x2 ∨ y
¬x2 ∨ x3 ∨ y

¬y ∨ x4 ∨ x5 ∨ x6

As we can remark, an implication y → x4 ∨ x5 ∨
x6 is sufficient, as the sub-clause (x4 ∨ x5 ∨ x6) oc-
curs with positive polarity. This enhancement is in-
troduced by Plaisted and Greenbaum that essentially
produces a subset of Tseitin’s representation (Plaisted
and Greenbaum, 1986).
In this simple example, the original formula contains
31 literals, while the new formula involves only 27
literals. As the compression process is based on the
Tseitin encoding, the transformation preserves satis-
fiability.

Before presenting how Mining4CNF can be
adapted to compress our Pigeon-Hole based encod-
ing of cardinality constraints, let us recall the clauses
encoded in (11) and (10). Equation 11 expresses a
relation between two successives rows in the matrix
representation. In order to simplify its representation
the indices are then changed below since some literals
are proved to be false. The clauses of (11) present a
staircase form.

Let us fix k = (n− b) to simplify the new matrix
representation as follows:




pb1 pb2 . . . pb(n−b) pb(k+1)
...

→ p21 p22 . . . p2k p2(k+1)

→ p11 p12 . . . p1k p1(k+1)

↓ ↓ ↓ ↓ ↓ ↓ ↓
x1 x2 xn




The clauses linking the two rows pointed by ar-
rows in the above matrix are:

p11 ∨ ¬p21
p11 ∨ p12 ∨ ¬p22
p11 ∨ p12 ∨ p13 ∨ ¬p23
...
p11 ∨ p12 ∨ . . . ∨ p1k ∨ ¬p2k

So such clauses form a triangle. Note that the
clauses of (10) corresponds to the rows of the ma-
trix. For the compression purposes, we add to each
triangle one positive clause (in bold font) from (10)
as follows:

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

304

p11 ∨ ¬p21
p11 ∨ p12 ∨ ¬p22
p11 ∨ p12 ∨ p13 ∨ ¬p23
...
p11 ∨ p12 ∨ . . . ∨ p1k ∨ ¬p2k

p11 ∨ p12 ∨ . . . ∨ p1k ∨ p1(k+1) ∨ ⊥
To obtain the set of all clauses encoded by (10) and
(11), we add conjunctively all the triangles (clauses)
that can be generated from each two successives rows
of the matrix. As we can observe, the number of tri-
angles is b− 1 while the number of rows (positive
clauses) is b. By adding one positive clause of (10)
to its corresponding triangle, the following positive
clause (pb1∨ . . .∨ pb(k+1)) remains.

Based on this sets of clauses (in the form of tri-
angles), we can observe that there they contain many
frequent sub-clauses. For example, the sub-clauses
c = (p11 ∨ p12 ∨ . . . ∨ p1 k+1

2
) appears (k + 1)/2

times. For the simplicity of the presentation, we
consider k an odd number. Applying Mining4CNF
approach leads to the substitution each sub-clause in
all clauses where it appears with a new variable α.
To preserve satisfiability, we have to add the clause
(p11∨ p12∨ . . .∨ p1 k+1

2
∨¬α). This process allows to

substitute (k+1
2)2 literals with (k+1

2 + k+1
2 +1) literals.

Consequently, the size reduction in terms of number
of literals is (k+1

2)2− (k+1
2 + k+1

2 + 1) = k2

4 − k
2 − 7

4
literals. After replacing such sub-clause and adding
the new clause, one can remark that the new derived
formula can be divided into the two following
formulae:

p11 ∨ ¬p21

p11 ∨ p12 ∨ ¬p22

p11 ∨ p12 ∨ p13 ∨ ¬p23
...

p11 ∨ p12 ∨ . . . ∨ p1 k
2
∨ ¬p2 k

2
p11 ∨ p12 ∨ . . . ∨ p1 k

2
∨ p1 k+1

2
∨ ¬α

and

α ∨ ¬p2 k+1
2

α ∨ p1 k+3
2
∨ ¬p2 k+3

2
α ∨ p1 k+3

2
∨ p1 k+5

2
∨ ¬p2 k+5

2
...

α ∨ p1 k+3
2
∨ p1 k+5

2
∨ p1 k+7

2
∨ . . . ∨ p1k ∨ ¬p2k

α ∨ p1 k+3
2
∨ p1 k+5

2
∨ ¬p1 k+7

2
∨ . . . ∨ p1k ∨ ¬p1(k+1) ∨ ⊥

Interestingly, partitioning the original formula (trian-
gle) as two formulae (triangles) allows us to define a
recurrence relation that we describe later.

In the following, we formally describe how to
compact the equations (10) and (11), using the sets of

clauses (in the form of triangles). Let us first define
the function f as follows:

f (x1, . . . ,xn,y1, . . . ,yn) =
n∧

i=1

(¬yi∨
i∨

j=1

x j)

It is straightforward to conclude that the clauses
linking two rows in the matrix can be expressed using
the function f . For rows number 1 and 2 (with arrows
on the left hand side of the matrix), it can be defined as
f (p11, . . . , p1(k+1), p21, . . . , p2k,⊥). Each application
of f corresponds to a triangle of clauses (see above).
Then the clauses of equations (10) and (11) can be
rewritten using f as:




(pb1∨ . . .∨ pb(k+1)) ∧
b−1∧

i=1
f (pi1, . . . , pi(k+1), p(i+1)1, . . . , p(i+1)k,⊥)




Then, the general CNF formula of phP n
b can be

defined as:




(pb1∨ . . .∨ pb(k+1)) ∧
b−1∧

i=1
f (pi1, . . . , pin, p(i+1)1, . . . , p(i+1)k,⊥) ∧

∧

i+ j=k+1

(xk ∨¬pi j)




Algorithm 2 describes how to compress
f (x1, . . . ,xn,y1, . . . ,yn). It apply a greedy ap-
proach to replace frequent sub-clauses by choosing
the one allowing to maximize the reduction rate.
Note that, when n is less than 5 (line 1), compacting f
do not leads to any improvement in terms of number
of literals.

Algorithm 2: f (x1, . . . ,xn,y1, . . . ,yn).

1: if n≤ 5 then
2: return

∧n
i=1(¬yi∨

∨i
j=1 x j)

3: end if
4: k = (int) (n / 2)
5: α← newVar()
6: return f (x1, . . . ,xk−1,xk,y1, . . . ,yk−1,¬α) ∧

f (α,xk+1, . . . ,xn,yk, . . . ,yn)

Proposition 3. Using Mining4CNF compression ap-
proach, |phP n

b | is in O(n2).

Proof. Let us now show the complexity of our new
encoding after the applications of the compression ap-
proach. Note that the number of literals occurrences
encoded in f (pi1, . . . , pi(k+1), p(i+1)1, . . . , p(i+1)k,⊥)
is in O(k). Indeed, let us denote by L(n) the number

Enhancing Pigeon-Hole based Encoding of Boolean Cardinality Constraints

305

of literal occurrences of f (x1, . . . ,xn,y1, . . . ,yn). Ac-
cording to Algorithm 2, L(n) satisfies the following
recurrence equation:

L(n) = 2×L(
n
2
) (12)

L(5) = 20. (13)

It is clear that L(n) is in O(n). Then, using such
algorithm, the number of literal occurrences of f is re-
duced from quadratic to linear. As in phP n

b , f is used
(b−1) times, then the complexity of phP n

b in term of
number of literal occurrences becomes quadratic, i.e.,
O(b× (n−b)).

Let us note that the compression approach in-
creases the number of fresh variables and clauses.
However, the complexity of our Pigeon-Hole based
encoding phP b

n in term of additional clauses and lit-
erals remains the same. Indeed, the number of new
variables and clauses added using Algorithm 2 does
not exceed n. Then the complexity of phP b

n is in
O(b× (n−b)) variables and O(b× (n−b)) clauses.

5 EXPERIMENTS

In this section, we carried out an experimental eval-
uation of the performance of our enhanced Pigeon-
Hole based encoding of the cardinality constraint.
The primary goal is to assess the competitiveness
of our proposal. For this purpose, we compared
the performances using QMaxSAT 1 solver used to
solve MaxSAT instances. Let us recall that QMaxSAT
uses the encoding defined in (Bailleux and Boufkhad,
2003). It is also based on minsat 2 solver. We use
the last version of minisat. We denote by QMaxSAT-
PHP the version of QMaxSAT where the encoding
(Bailleux and Boufkhad, 2003) is substituted with
the enhanced pigeon-holed based encoding. We con-
sidered the instances of Partial MaxSAT competition
2015 3. All the experiments are done on a cluster In-
tel Xeon quad-core avec 32GB of RAM et 2.66 Ghz.
The time out is fixed to 30 minutes.

Figure 1 represents the results obtained on in-
stances encoding partial MaxSAT problems belong-
ing to crafted category. Each dot (x,y) represents the
number of instances x solved in less than y seconds.
As we can see, QMaxSAT-PHP is more efficient than
classical QMaxSAT. It solves 32 instances more. Fur-
thermore, there exists some classes of instances where
our approach is clearly the best e.g., AES*, s38584*.

1https://sites.google.com/site/qmaxsat/
2http://minisat.se/
3http://www.maxsat.udl.cat/15/

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600

tim
e

(s
ec

on
ds

)

#instances

QMaxSAT
QMaxSAT-PHP

Figure 1: Results on crafteds instances.

Figure 2 represents the results obtained on in-
stances encoding partial MaxSAT problems be-
longing to application category. In contrast to
crafted instances, here classical QMaxSAT out-
performs our solver. It solves 51 instances
more. Furthermore, as for crafted case, there
exists a set of classes where QMaxSAT is the
best e.g., splitedReads*, b20 C-mbd14-0202*,
b20-s PathRelaxation Set FS*. However, there
exists classes where our solver is better e.g., atcoss*.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350 400 450

tim
e

(s
ec

on
ds

)

#instances

QMaxSAT
QMaxSAT-PHP

Figure 2: Results on applications instances.

6 CONCLUSION AND FUTURE
WORKS

In this paper, we proposed an enhancement of
the Pigeon-Hole based encoding of cardinality con-
straints into CNF. The new encoding is competitive
as it remains in O(b(n−b)) variables and clauses. In-
terestingly, we demonstrate that mining-based com-
pression techniques can achieve substantial reduction
in the size of the encoding. This opens a promising
perspective on how to extend the reasoning applied in
this paper to other kinds of constraints (e.g. global
constraints). Experimental results shows that our new
encoding is competitive on crafted instances.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

306

The generalization of our reasoning to encode
general pseudo Boolean constraint to CNF is also a
short term perspective. Finally, we plan to conduct
an experimental evaluation of our Pigeon-Hole based
encoding w.r.t. the well-known encodings.

REFERENCES

Aloul, F. A., Ramani, A., Markov, I. L., and Sakallah, K. A.
(2003). Solving difficult instances of boolean satisfi-
ability in the presence of symmetry. IEEE Trans. on
CAD of Integrated Circuits and Systems, 22(9):1117–
1137.

Aloul, F. A., Sakallah, K. A., and Markov, I. L. (2006).
Efficient symmetry breaking for boolean satisfiability.
IEEE Trans. Computers, 55(5):549–558.

Ası́n, R., Nieuwenhuis, R., Oliveras, A., and Rodrı́guez-
Carbonell, E. (2009). Cardinality networks and their
applications. In 12th International Conference on
Theory and Applications of Satisfiability Testing (SAT
2009), pages 167–180.

Bailleux, O. and Boufkhad, Y. (2003). Efficient cnf encod-
ing of boolean cardinality constraints. In 9th Interna-
tional Conference on Principles and Practice of Con-
straint Programming (CP 2003), pages 108–122.

Bailleux, O., Boufkhad, Y., and Roussel, O. (2009). New
encodings of pseudo-boolean constraints into cnf. In
SAT’2009, pages 181–194.

Benhamou, B. and Sais, L. (1992). Theoretical study of
symmetries in propositional calculus and applications.
In 11th International Conference on Automated De-
duction (CADE’1992), volume 607 of Lecture Notes
in Computer Science, pages 281–294. Springer.

Benhamou, B. and Sais, L. (1994). Tractability through
symmetries in propositional calculus. Journal of Au-
tomated Reasoning, 12(1):89–102.

Cook, S. A. (1976). A short proof of the pigeon hole
principle using extended resolution. SIGACT News,
8(4):28–32.

Crawford, J. (1992). A theorical analysis of reasoning by
symmetry in first order logic. In Proceedings of Work-
shop on Tractable Reasonning, AAAI, pages 17–22.

Crawford, J. M., Ginsberg, M. L., Luks, E. M., and Roy,
A. (1996). Symmetry-breaking predicates for search
problems. In KR, pages 148–159.

Eén, N. and Sörensson, N. (2006). Translating pseudo-
boolean constraints into sat. JSAT, 2(1-4):1–26.

Gent, I. P., Petrie, K. E., and Puget, J.-F. (2006). Chapter 10
symmetry in constraint programming. In F. Rossi, P.
v. B. and Walsh, T., editors, Handbook of Constraint
Programming, volume 2 of Foundations of Artificial
Intelligence, pages 329 – 376. Elsevier.

Jabbour, S., Saı̈s, L., and Salhi, Y. (2014). A pigeon-hole
based encoding of cardinality constraints. In Interna-
tional Symposium on Artificial Intelligence and Math-
ematics, ISAIM 2014, Fort Lauderdale, FL, USA, Jan-
uary 6-8, 2014.

Jabbour, S., Sais, L., Salhi, Y., and Uno, T. (2013). Mining-
based compression approach of propositional formu-
lae. In CIKM, pages 289–298.

Krishnamurthy, B. (1985). Shorts proofs for tricky formu-
las. Acta Informatica, 22:253–275.

Kullmann, O. (1997). On a generalization of extended res-
olution. Discrete Applied Mathematics, 34:73–95.

Plaisted, D. A. and Greenbaum, S. (1986). A structure-
preserving clause form translation. Journal of Sym-
bolic Computation, 2(3):293–304.

Puget, J. (1993). On the satisfiability of symmetrical con-
straint satisfaction problems. In proceedings of ISMIS,
pages 350–361.

Silva, J. P. M. and Lynce, I. (2007). Towards robust cnf
encodings of cardinality constraints. In 13th Interna-
tional Conference on Principles and Practice of Con-
straint Programming (CP 2007), pages 483–497.

Sinz, C. (2005). Towards an optimal cnf encoding of
boolean cardinality constraints. In 11th International
Conference on Principles and Practice of Constraint
Programming (CP 2005), pages 827–831.

Tseitin, G. (1968). On the complexity of derivations in the
propositional calculus. In Slesenko, H., editor, Struc-
tures in Constructives Mathematics and Mathematical
Logic, Part II, pages 115–125.

Walsh, T. (2006). General symmetry breaking con-
straints. In 12th International Conference on Prin-
ciples and Practice of Constraint Programming (CP
2006), pages 650–664.

Warners, J. P. (1996). A linear-time transformation of linear
inequalities into conjunctive normal form. Informa-
tion Processing Letters.

Enhancing Pigeon-Hole based Encoding of Boolean Cardinality Constraints

307

