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Abstract: Entity Resolution (ER) is the problem of identifying groups of tuples from one or multiple data sources that 
represent the same real-world entity. This is a crucial stage of data integration processes, which often need to 
integrate data at query time. This task becomes even more challenging in scenarios with dynamic data sources 
or with a large volume of data. As most ER techniques deal with all tuples at once, new solutions have been 
proposed to deal with large volumes of data. One possible approach consists in performing the ER process on 
query results rather than the whole data set. It is also possible to reuse previous results of ER tasks in order to 
reduce the number of comparisons between pairs of tuples at query time. In a similar way, indexing techniques 
can also be employed to help the identification of equivalent tuples and to reduce the number of comparisons 
between pairs of tuples. In this context, this work proposes an indexing technique for incremental Entity 
Resolution processes. The expected contributions of this work are the specification, the implementation and 
the evaluation of the proposed indexes. We performed some experiments and the time spent for storing, 
accessing and updating the indexes was measured. We concluded that the reuse turns the ER process more 
efficient than the reprocessing of tuples comparison and with similar quality of results.

1 INTRODUCTION 

In the last years, companies and government 
organizations around the world increased their 
production of digital data. In general, these data are 
stored in multiple data sources, which can be 
heterogeneous and dynamic. To access and analyze 
these data in a uniform and integrated fashion, data 
integration strategies are needed. The aim of data 
integration is to combine heterogeneous and 
autonomous data sources for providing a single view 
to the user (Gruenheid et al, 2014). One of the main 
steps of the data integration process is the Entity 
Resolution (ER) (Christen, 2012). 

The ER process aims to identify tuples from one 
or multiple data sources referring to the same real-
world entity. This problem has been the focus of 
several works (Christen, 2012) and it is known by a 
variety of names: Record Linkage, Entity Resolution, 
Object Reference, Reference Linkage, Duplicate 
Detection or Deduplication. In this paper, we adopt 
the term Entity Resolution (Christen, 2012). 

Given a large volume of data, ER can be a very 
costly and time-consuming process. In general, the 

most cost-demanding task of the ER process is the 
tuple pair comparison, which requires the comparison 
of every pair of tuples to calculate the corresponding 
similarity. To reduce costs, ER can be performed in 
an incremental way. In this case, just a subset of the 
available tuples, i.e., an increment, is processed and 
compared at each iteration of the ER process. 
Additionally, results of previous iterations can be 
reused during the comparison of new tuples. Doing 
this, the volume of classified tuples increases 
incrementally reducing the costs of the overall ER 
process. 

In this paper, we focus on an incremental ER 
approach over query results. This means that the 
increment is the query result and the ER should be 
performed at query execution time. Given that we are 
dealing with large volumes of data, performing the 
ER at query time is even more challenging. Among 
the solutions proposed in the literature to deal with 
this challenge, we are interested on the use of 
indexing techniques (Christen, 2012). 

To reduce the costs of performing ER at query 
execution time, we propose a dynamic indexing 
technique. The dynamic indexes are available in main 
memory, reducing the costs of disk access, and can be 
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updated to reflect the new results of the incremental 
ER process. In the following, we summarize the main 
contributions of this paper: 

 To the best of our knowledge, this is the first work 
that proposes and formalizes an indexing 
technique for incremental ER over query results; 

 We propose two dynamic indexes: Similarity 
Index and Cluster Index. The first one is used to 
index the similarity values between each pair of 
tuples being compared. The second one indexes a 
list of clusters of tuple identifiers; 

 We show that reusing the results of previous 
iterations turns the ER process significantly faster 
and with results of similar quality compared with 
traditional approaches.  

The remainder of the paper is organized as 
follows. Section 2 describes some important 
theoretical concepts related to ER and indexing 
techniques. Section 3 describes our proposal for 
dynamic indexes. Section 4 presents some 
experimental results. Section 5 discusses related 
work. Finally, Section 6 concludes the paper. 

2 BACKGROUND  

In general, the traditional ER process includes five 
steps (Christen, 2012): (i) Data pre-processing: 
ensures that the attributes used for the comparison 
have the same structure, and their content follows the 
same format. (ii) Indexing: reduces the quadratic 
complexity of the ER process using data structures 
that facilitate the efficient and effective generation of 
candidate pairs of tuples that likely correspond to the 
same real-world entity. (iii) Tuple pair comparison: 
calculates the similarity value (Christen, 2012) 
between each candidate pair of tuples. (iv) 
Classification: defines if a pair of tuples is a match or 
not. (v) Evaluation: assess the quality of result of the 
ER process.  

 However, other approaches, like the incremental 
ER (Gruenheid et al., 2014) and the query-based ER 
(Bhattacharya and Getoor, 2007; Altwaijry et al., 
2013; Su et al., 2010), can have additional steps in 
order to reduce the costs of the overall process. The 
incremental approach, for example, has additional 
steps to allow the reuse of previous ER iterations 
during the record pair comparison step (Whang and 
Garcia-Molina, 2014). 

 This paper focus on indexing step for incremental 
ER. Different indexing techniques are proposed in the 
literature, like the standard blocking (Christen, 2012; 
Christen, 2012a; Ramadan et al., 2015). This 
technique segregates tuples into blocks according to 
a certain criteria, called blocking key, whose values 

are calculated based on one or more attributes that 
describe the tuple. Doing this, just tuples belonging to 
the same block will be compared during the record 
pair comparison step.  

Most of the indexing techniques deals with the 
problem of traditional ER (offline processing of static 
databases). In this case, all the available tuples are 
indexing once. A limited number of research aims 
real-time ER or ER for dynamic databases.  

The dynamic indexes can be updated to reflect the 
new results of the incremental ER process. In this 
case, just a subset of the available tuples are inserted 
or searched at query-time.  

3 APPROACH FOR DYNAMIC 
INDEXING FOR ENTITY 
RESOLUTION  

In this section, we present our dynamic indexing 
approach for incremental ER over query results. 
Initially, we present an overview of our approach for 
incremental ER and next we define the dynamic 
indexes proposed in this work. 

As mentioned earlier, the ER process is 
essentially a clustering problem, in which each cluster 
contains tuple identifiers that represent a single real-
world entity. If we consider the ER problem in 
multiple data sources, each tuple can be from a 
different source. 

In the following, consider S = {s1, s2, ..., sm}, a set 
of data sources and Q = {q1, q2, ..., qn}, a set of queries 
running on S. Given a query qd, a data integration 
system (Gruenheid et al., 2014) reformulates the 
query into queries that can be executed over each data 
source belonging to S, qd = {s1.qd1, s2.qd2, …, sm.qdm}, 
where si.qdi is the query qd reformulated over the data 
source si. Each data source has a set of concepts L 
denoted by si.L = {l1, l2, ..., lo}, which represent 
concepts from the real-world. For example, Author or 
Person. Considering that our approach is based on 
query results, in the following we present a definition 
for query result and tuple.  

Definition 1 (Query Result). A query result, 
denoted by qd.r, is a set qd.r = {s1.qd1.r1, s2.qd2.r2, …, 
sm.qdm.rm}, where si.qdi.ri is the result of the query qd 
reformulated over the data source si. Each si.qdi.ri has 
a set of tuples (T). 

Definition 2 (Tuple). Each tuple tk belonging to 
T has a data source identifier, denoted sk.Id, that 
represents the data source the tuple belongs to, and a 
set of pairs,ሼሺܽଵ, ,ଵሻݒ ሺܽଶ, ,ଶሻݒ … , ሺܽ௤,  ௤ሻሽ, where axݒ
denotes an attribute of a concept and vx denotes its 
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value. A tuple tk has a pair	ሺܽ௫,  ௫), that represents aݒ
single identifier of tk (tk.Id). 

In this work, we make the following three 
assumptions: 

 The mapping between schemas was resolved in 
the schema matching step of the data integration 
process (Gruenheid, 2014); 

 All the tuples that answer a query were retrieved, 
utilizing a search engine (Bhattacharya and 
Getoor, 2007; Su et al., 2010); 

 All the clusters were created considering a single 
concept, for example clustering by Author, 
Affiliation or Address. This allows better reuse of 
clusters. For example, if a query requires 
information about Author and Address concepts, 
and to identify an author it is necessary to 
disambiguate the Address, the two concepts are 
clustered separately and the ER process combines 
the results. In other moment, if a query needs only 
information about Address concept, the previous 
clusters of the Address can be reused. To simplify 
matters, we assume that all queries in the 
experiments are related to a single real-word 
concept. 

3.1 Overview of the ER Approach over 
Query Results 

Our proposal for an incremental ER approach over 
query results is presented in Figure 1. Consider as 
input a set of tuples obtained as the result of a query 
qd. The first step is the Dynamic Indexing (step 1), 
which consists of creating blocks of tuple pairs that 
are candidate to correspond to the same real-world 
entity. For each tuple of each block, a blocking key 
(or search key) (Christen, 2012) is created, whose 
values are generated based on the values of either a 
single or several attributes. As an example, consider 
the Figure 2, which shows blocking key values 
created using the Double-Metaphone function 
(Christen, 2012) over the attribute Name. 

Next, previous indexes are analyzed to be reused 
(Analysis of Previous Indexes, step 2) in order to 
reduce the execution time of the ER process. For this 
purpose, we propose two indexes: Cluster Index (CI) 
and Similarity Index (SI). The first one indexes a list 
of clusters of tuple identifiers. The second one 
indexes similarity values between pairs of tuples. 
More details about these indexes are presented in the 
next sections. At the end of this step, tuples that were 
not previously processed, denoted by new tuples, are 
sent as input to the Tuple Pair Comparison step (step 
3). Additionally, information about existing clusters 
is sent as input to the Local Clustering step (step 4). 

  

Figure 1: Entity resolution over query results. 

 

Figure 2: Query result over Author concept. The last 
column shows the generated blocking keys. 

During the Tuple Pair Comparison step, the 
similarity values between each pair of new tuples 
from qd.r is calculated. At the end of this step, the 
similarity values are sent as input to the Local 
Clustering step (step 4). Next, the new tuples are 
classified considering tuples from existing clusters. 
Doing this, existing clusters will grow incrementally 
with the addition of new similar tuples or new clusters 
will be created. At the end of the process, the 
duplicated tuples are identified and the dynamic 
indexes are updated (step 5). In the next section, we 
define the dynamic indexes and we present how they 
are created 

3.2 Cluster Index 

A Cluster Index (CI) indexes a list of clusters of tuple 
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identifiers and is defined as follows. 

Definition 3 (Cluster Index). A cluster index is 
defined by a list of pairs, CI = [(key1, Clus1), (key2, 
Clus2), …,(keyn, Clusn)], where keyi is a blocking key 
to access the index and Clusi is a list of triples, defined 
by Clusi = {(s1.Id, t1.Id, ClusterId1), (s2.Id, t2.Id, 
ClusterId2), …, {(sm.Id, tm.Id, ClusterIdm)}, where sk.Id 
denotes the data source identifier of the tuple 
identified by tk.Id and ClusterIdk is the identifier of the 
cluster that tk.Id belongs to. 

Figure 3 shows the CI corresponding to the tuples 
of Figure 2. Each blocking key corresponds to an 
entry in the cluster index, which points to a list of 
tuple identifiers together with their corresponding 
data source and cluster identifiers. For example, the 
tuple with id2 from so1 and the tuple with id2 from so2 
will have the same blocking key value (e.g. krls) and 
therefore will be on the same list pointed by als. 
However, those tuples belong to different clusters, c1 
and c2 respectively.  

 

Figure 3: The Cluster Index created from the tuples in 
Figure 2. 

During the Analysis of Previous Indexes, a search 
is performed on the CI in order to find tuples that were 
previously indexed. For each tuple tk from qd.r, a 
blocking key is generated. If there is a corresponding 
entry in the CI for this key and tk.Id was previously 
indexed, i.e, the identifier of tk is in the list of 
identifiers of key, then the corresponding ClusterId is 
retrieved. When a tuple was not previously indexed, 
then it should be compared with other tuples from qd.r 
in order to obtain the similarity values between them. 
Finally, during the Local Clustering step, existing 
clusters will be updated or new clusters will be 
created based on those similarity values. 

3.3 Similarity Index 

To identify if a tuple is duplicated regarding a set of 
tuples (if they belong to the same cluster), it is 
necessary to make comparisons between this tuple 

and each one of the others. For this purpose, similarity 
functions are commonly used. 

The Similarity Index (SI) indexes the similarity 
values between pairs of tuples. At each new query 
result, similarity values are retrieved from SI or 
inserted into SI. Doing this, we can reduce the cost of 
calculating tuple similarity values at query time, 
which significantly reduces the time needed for the 
overall ER process (see Section 5). The Similarity 
Index is defined as follows. 

Definition 4 The Similarity Index (SI) is defined 
by a list of pairs, SI = [(key1, Lis1), (key2, Lis2), …, 
(keyn, Lisn)], where keyi is a blocking key value and 
Lisi is defined by a list of pairs, Lisi = [(s1.Id, t1.Id), 
(s2.Id, t2.Id), …, {(sm.Id, tm.Id)], where sk.Id denotes 
the data source identifier and tk.Id is the tuple 
identifier that share the same blocking key value. 
Each pair (sk.Id, tk.Id) is related to a list of triples, Simk 

= [(s1.Id, t1.Id, simValue1), (s2.Id, t2.Id, simValue2),…, 
(sp.Id, tp.Id, simValuep)], where simValuel is the 
similarity value between  the tuple tk.Id from sk.Id and 
the tuple t1.Id from sl.Id.  

 

Figure 4: The SI created from the tuples of Figure 2. 

Figure 4 shows the SI corresponding to the tuples 
of Figure 2. Each blocking key corresponds to an 
entry in the similarity index, which index a list of 
similarities values between pair of tuples together 
with their corresponding data source identifier (sk.Id). 
For example, the similarity value between the tuple 
id1 from so1 and the tuple id1 from so2, that have the 
same blocking key (als), is 0.9. Also the similarity 
value between the tuple id1 from so1 and the tuple id4 
from so2, with the same blocking key (als), is 0.8. The 
similarity function used in the example was 
Levenshtein (Christen, 2012) over the attribute name.  

During the Analysis of Previous Indexes, a search 
is performed on the SI in order to find similarity 
values that were previously indexed. For each pair of 
tuples ti and tj from qd.r, a blocking key is generated. 
After that, the process access the previous SI to 
retrieve the similarity value between ti and tj. If there 
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is a corresponding entry in the SI for the key value, 
ti.Id and tj.Id were previously indexed, i.e, the 
similarity value between ti and tj is already in SI. 
Then, the corresponding similarity value is retrieved. 
When the similarity between a pair of tuples was not 
previously indexed, then the tuples should be 
compared in order to obtain the similarity value 
between them. 

4 EXPERIMENTAL 
EVALUATION 

In this section, we present the results of an 
experimental evaluation performed on real-world 
datasets. The results show that our dynamic indexing 
proposal is likely to succeed in an incremental ER 
process. Additionally, we show that the incremental 
ER has a better performance than traditional ER, 
without compromising the quality of results. 

4.1 Experiment Setup 

Dataset: The experiments used the CDDB (CDDB, 
2016) dataset, which is composed by tuples 
describing CDs. This dataset includes 9763 tuples 
randomly extracted from freeDB (FreeDB, 2016), 
with 298 duplicates. These duplicates are in a gold 
standard file that shows all duplicate pair of tuples. 

We created a set of random samples of tuples from 
CDDB to simulate a set of query results. The samples 
size varies according to the purpose of each 
experiment. The tuples were indexed using the 
Double-Metaphone function (Christen, 2012) and the 
Levenshtein string similarity function (Christen, 
2012) was used for pairwise similarity computation. 
It is important to note that we ignored edges with a 
similarity value below 0.9. This value was chosen 
experimentally. The threshold is increased by 0.01 in 
every iteration, from 0.7 value of threshold up to 1.0. 

Implementation: To determine the effectiveness 
of our dynamic indexing proposal, we implemented 
the following batch algorithms and its respective 
incremental clustering algorithms: 

 

 Hill – Climbing (HC) (Guo et al., 2010): An ideal 
clustering should have a high cohesion within 
each cluster and a low correlation between 
different clusters. Several objective functions 
have been proposed for clustering (Tan et al., 
2006). The choice of this function is orthogonal to 
our technique; here we adopt the cohesion, where 
the high values of cohesion are better than low 
values. 

 Single-Link (SL) (Bhattacharya and Getoor, 
2007a): adopts a hierarchical clustering approach, 
where in each step of the clustering process, the 
clusters whose two closest members have the 
smallest distance are merged. 

We have chosen these algorithms because they 
were previously used for ER and are evaluated as 
good algorithms for scenarios with a large volume of 
data (Tan et al., 2006; Gruenheid et al., 2014). The 
algorithms were implemented in Java and the 
experiments were performed on a Windows machine 
with Intel Core i5 (2.2GHz). 

Measures: We measured the efficiency and 
quality of the results from the incremental ER process 
using the proposed indexes. For efficiency, we 
repeated the experiments 100 times and reported the 
average execution time. For quality, we reported the 
F-measure (Christen, 2012), given that we have the 
gold standard. To calculate the F-measure, it is 
necessary to calculate Precision and Recall measures. 
The precision measure indicates, among the pairs of 
records that are clustered together, how many of them 
are correct; the recall measures, among the pairs of 
records that refer to the same real-world entity, how 
many of them are clustered together; and the F-

measure is computed as 
ଶ	∙		௣௥௘௖௜௦௜௢௡		∙	௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟
.  

Objective: The goal of the experiments is two-
fold. First, we want to show that the proposed indexes 
are suitable for a dynamic environment because of 
performance improvement. Second, we will show 
that results of the incremental Entity Resolution using 
the proposed indexes have the quality similar to 
traditional Entity Resolution with batch algorithms. 

4.2 Experiment to Measure Efficiency 

To measure the efficiency, we created a set of random 
samples from CDDB to simulate a set of query 
results. For example, in Figure 5, we start with 70% 
of tuples from the query result indexed and the other 
30% are new tuples, i.e., tuples not previously 
indexed. The percentage of duplicated tuples is 
decreased from 70% to 10%. For each sample, we 
repeated the experiment 100 times. The result was the 
average of values in all executions. The same 
interpretation should be used to Figure 6 - Figure 8. 
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Figure 5: Time execution for naive SI using HC Algorithm. 

 

Figure 6: Time execution for modified SI using HC 
Algorithm. 

It is important to highlight that the random 
samples allow the configuration of the indexes to be 
different for each execution, representing samples of 
tuples with different characteristics. For example, 
scenarios with sparse indexes or dense indexes. 

We considered four cases in each experiment 
(Figure 5 – Figure 8): (i) Traditional: uses a batch 
algorithm. (ii) Best-Case: uses an incremental 
algorithm, assuming that all tuples from the query 
result were indexed. (iii) Average-Case: uses an 
incremental algorithm, assuming that a percentage of 
tuples from the query result were indexed and another 
percentage is new. (iv) Worst-Case: assumes that all 
tuples from the query result are new and they were 
not indexed. 

Additionally, we considered two scenarios: i) 
Naive SI: all the similarity values calculated during 
the ER process are indexed in the SI, independently 
of a threshold (Figure 5 and Figure 7). ii) Modified 
SI: only the similarity values above a threshold are 
indexed in the SI (Figure 6 and Figure 8). Each 
scenario was executed with Hill-Climbing (Figure 5 
and Figure 6) and Single-Link (Figure 7 and Figure 
8) algorithms. 

We observed that the size of the SI influences the 

performance of the ER process. Because of naive SI 
cost, we concluded that a modified SI is more 
efficient than naive SI for the incremental ER over 
query results. The incremental ER using modified SI 
shows a better performance than traditional ER. 

We observed in the Average-Case, with Hill-
Climbing algorithm, that in the best case the 
incremental ER over query results is approximately 
31.4% more efficient than traditional ER. The lower 
gain was approximately 5.2%. The time in Figure 6 
decreases as more indexes are reused, reducing the 
number of comparisons between pairs of tuples at 
query time. 

 

Figure 7: Time execution for naive SI using SL Algorithm. 

 

Figure 8: Time execution for modified SI using SL 
algorithm. 

Also, we observed in the Average-Case, with 
Single-Link algorithm, the same behavior that Hill-
Climbing algorithm. In the best case the incremental 
ER over query results is approximately 36.2% more 
efficient than traditional ER. The lower gain was 
approximately 7.2%. 

Additionally, to evaluate the time of access on 
main memory and the scalability of the proposed 
indexes, we generate a dataset, which has 130k tuples, 
by Febrl tool (Christen, 2008). We analyzed the 
average access time, considering a search for a 
random value in the indexes. In this case, the search 
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was performed in indexes of different sizes and the 
value to be searched could be in any position or be 
non-existent. 

For this experiment, random samples were 
extracted from the Febrl dataset. These samples were 
clustered by single-link algorithm. The generated 
clusters were inserted in the CI and the similarity 
value between pairs of tuples were inserted in the SI. 
The indexes size was increased by approximately 
10k, from 1k up to 100k. For each index size, we 
repeated the experiment 500 times. 

Figure 9: CI access time. 

Figure 10: SI access time. 

For the CI, for each sample generated and 
processed, we searched randomly a tuple from Febrl 
dataset. Figure 9 shows an average of times measured 
in each case. It is important to note that the variation 
of CI access time in relation to the indexed data 
volume is small. However, in the first case (1k tuples) 
we observed a time out of line. This happened 
because the random tuples chosen to be searched in 
the CI were almost never found, since the Febrl 
dataset has 130K tuples and only approximately 0.7% 
were indexed. This scenario can represent a real 
scenario, where we do not have much information 
about the data. 

For the SI, for each sample generated and 
processed, we extracted randomly a pair of tuples and 
searched its similarity value in the SI. Figure10 shows 
the time average measured in each case. 

It is important to note that, in the same way as in 

the CI, the variation of SI access time in relation to 
the indexed data volume is small and in the first case 
(1k tuples) we observed a time out of line. This case 
represented often executions the worst-case, where 
the similarity value is not retrieved. 

4.3 Experiment to Measure Quality 

For measuring the quality of the results of the ER 
process, we calculated the average of F-measure over 
a set of runs of the previous experiments. We 
considered two cases: i) The quality of the result 
when batch algorithms (Hill-Climbing and Single-
Link) were used, without indexes. ii) The quality of 
the result when an incremental algorithm (Hill-
Climbing and Single-Link adapted) was used together 
with the proposed indexes. We measured the result of 
average execution 100 times. For each execution, we 
considered the same configuration of previous 
experiments. Initially, a query result has 70% of tuple 
indexed, then 60%, and so on. 

Figure 11: F-measure of HC algorithm. 

Figure 12: F-measure of SL algorithm. 

We evaluated the F-measure of ER with Hill –
Climbing (Figure11) and Single – Link (Figure12) 
algorithms. In both cases, we observed that the F-
measure with incremental algorithm is very close to 
the ER with batch algorithm. In the Hill-Climbing 
algorithm, we observed that the highest difference 
between the ER F-measure with batch and 
incremental algorithm was 0.105 and the smallest 
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difference was 0.016. In the Single-Link algorithm 
(Figure 12), we did not observe relevant difference 
among the quality results. 

5 RELATED WORK 

Recent researches have focused on the use of queries, 
indexing techniques or both to reduce the volume of 
data to be processed (Bhattacharya and Getoor, 2007; 
Altwaijry et al., 2013; Christen, 2012a; Ramadan et 
al., 2015; Vieira, 2016). Different indexing 
techniques are summarized in (Christen, 2012a). 
However, most of these techniques are focused on 
traditional ER process, with batch algorithms and just 
few researches focus on incremental ER (Gruenheid 
et al., 2014; Whang et al., 2013; Altowin et al., 2014; 
Whang and Garcia-Molina, 2014).  

 In (Bhattacharya and Getoor, 2007; Altwaijry et 
al., 2013), a query-time ER is proposed, but the 
indexing to reuse previous classifications was not 
considered. In (Whang et al., 2013; Gruenheid et al., 
2014), an incremental ER approach is proposed, but 
the indexing is static and the ER is not query-driven. 

 In (Ramadan et al., 2015) dynamic indexes are 
proposed. Both papers focused on information 
retrieval and not on data integration process 
(Christen, 2012). Besides that, just attribute and 
similarity values are indexed and not clusters of 
tuples that  refer to the same real-world entity.  

Our indexes are different in three aspects. First, 
our focus is the data integration process and an 
incremental ER over query results. Second, our 
proposal is to index tuple identifiers, and not attribute 
values. In scenarios with a large volume of data, using 
multiple attributes for similarity index functions can 
be very costly and time-consuming (Christen, 2012; 
Ribeiro et al, 2016). Third, we propose to index 
similarity values and previous ER of tuples from 
multiple data sources. 

6 CONCLUSIONS 

In this paper, two indexes for incremental ER over 
query results were presented, Cluster Index and 
Similarity Index. The quality and the efficiency of the 
ER process were evaluated, as well as the impact of 
the Similarity Index size on the incremental ER 
process was investigated. We showed, on a real 
dataset, that our indexes are suitable for the 
incremental ER process. The incremental ER had the 
same quality of traditional processes, without 
indexes, but was more efficient. As future work, we 

intend to analyze the indexes with other datasets, as 
well as to evaluate other ER incremental algorithms. 
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