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Abstract: Accurate prediction of exchange rates is critical for devising robust monetary policies. Machine learning 
methods such as shallow neural networks have higher predictive accuracy than time series models when 
trained on input features carefully crafted by domain knowledge experts. This suggests that deep neural 
networks, with their ability to learn abstract features from raw data, may provide improved predictive 
accuracy with raw exchange rates as inputs. The preponderance of research focuses on developed currency 
markets. The paucity of research in emerging currency markets, and the crucial role that stable currencies 
play in such economies, motivates us to investigate the effectiveness of deep networks for exchange rate 
prediction in emerging markets. Literature suggests that the Efficient Market Hypothesis, which posits that 
asset prices reflect all relevant information, may not hold in such markets because of extraneous factors 
such as political instability and governmental interventions. This motivates our hypothesis that inclusion of 
carefully chosen macroeconomic factors as input features may improve the predictive accuracy of deep 
networks in emerging currency markets. This position paper proposes novel input features based on 
currency clusters and presents our method for investigating the hypothesis using exchange rates from 
developed as well as emerging currency markets.  

1 INTRODUCTION 

Transactions worth billions of dollars a day take 
place in the foreign exchange market, making it one 
of the largest financial markets in the world (Report 
on global foreign exchange market activity in 2013). 
Exchange rates are expressed in terms of a base-
quote currency pair that represents the number of 
units of quote currency that may be exchanged for 
each unit of the base currency. Accurate prediction 
of forex rate rates is critical for formulating robust 
monetary policies and developing effective trading 
and hedging strategies in the foreign exchange 
market (Lukas and Taylor, 2007) 

Econometric models are not effective for 
exchange rate predictions when the forecast horizon 
is less than a year (Meese and Rogoff, 1983). Time 
series models are poor at predicting the direction of 
change in rates. Shallow artificial neural networks 
and support vector machines perform marginally 
better when using carefully crafted input features; 
significant efforts by domain experts may be needed 
to obtain such features from raw input data. 

The recent success of deep neural networks in a 
variety of domains may be partially attributable to 
their ability to learn abstract features from raw data 
(LeCun et al., 2015). This suggests that deep 
networks may be effective in predicting foreign 
exchange rates based on raw time series data.  

Our first objective is to investigate whether deep 
neural networks are significantly better at foreign 
exchange rate prediction than time series models and 
shallow networks when raw exchange rate data are 
used as input features. Our preliminary results using 
exchange rates between the US dollar and three 
major currencies in mature markets–Euro, British 
Pound, and Japanese Yen–suggest that indeed deep 
convolution networks perform better than extant 
methods. 

The preponderance of research in foreign 
exchange prediction focuses on established markets. 
In response to the paucity of research in emerging 
currency markets, and in recognition of the fact that 
stable currency markets play a crucial role in 
determining the well-being of such economies, our 
second objective is to adapt deep network models 
for predicting exchange rates in emerging markets.  
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As representative emerging markets we consider 
countries in the Eastern Partnership (EaP). The 
Eastern Partnership is an initiative of the European 
Union that aims to foster improved economic 
relationship with the post-Soviet states of Armenia, 
Azerbaijan, Belarus, Georgia, Moldova, and 
Ukraine. Improved macroeconomic conditions in the 
EaP countries is a pre-condition for their economic 
integration with European Union. Research suggests 
that currency market stability is one of the most 
important indicators of sustainable development and 
growth in these economies and that accurate 
prediction of exchange rate is critical to the 
formulation of robust monetary policies. This lends 
further impetus to our study of developing improved 
models for exchange rate prediction in emerging 
markets. 

Literature suggests that the Efficient Market 
Hypothesis, which posits that asset prices reflect all 
relevant information, may not hold in emerging 
markets because of extraneous factors such as 
political instability and governmental interventions. 
This motivates our hypothesis that inclusion of 
carefully chosen macroeconomic factors as input 
features may improve the predictive accuracy of 
deep networks in emerging currency markets. An 
ancillary goal of this study is to develop a novel set 
of input features that are obtained by forming 
clusters of currency markets based on distance 
metrics derived from correlation measures.   

The roadmap for the remainder of this position 
paper is as follows: Section 2 formally defines the 
exchange rate prediction problem. Section 3 briefly 
discusses the related literature. Section 4 describes 
our proposed methodology. Section 5 concludes 
with some observations. 

2 THE PREDICTION PROBLEM 

We use a standard formulation of the exchange rate 
prediction problem where our goal is to predict the 
direction of change: Let ݕ௧ and ݕ௧ା௞ denote the 
values of an exchange rate between a pair of 
currencies in periods ݐ and ݐ + ݇, respectively, for 
some ݇ > 0. Define the direction of change ݖ௞(ݐ) =1 if the rate increases in ݇ periods, i.e. if ݕ௧ା௞ ௧ݕ− > 0; otherwise, ݖ௞(ݐ) = 0. Our objective is to 
learn a function ௞݂: ℝ௣ → ሼ0,1ሽ such that ௞݂൫ݕ௧, ,௧ିଵݕ … , ௧ି௣ାଵ൯ݕ =  We train models to .(ݐ)௞ݖ
predict the direction of change. Let ̂ݖ௞(ݐ) =መ݂௞൫ݕ௧, ,௧ିଵݕ … ,  ௧ି௣ାଵ൯ be the predicted direction ofݕ
change ݇ periods forward, where መ݂௞ is a function 

learnt by a model. A ݇ period forward prediction 
model model is evaluated by its classification 
accuracy on out-of-sample observations, where 
classification accuracy is defined as the percentage 
of test cases for which the predicted direction of 
change  ̂ݖ௞(ݐ) equals the true direction of change ݖ௞(ݐ).  
3 RELATED WORK 

Exchange rate prediction methods may be 
categorized into econometric methods, time series 
models, and machine learning techniques. We re-
view these approaches briefly and then discuss deep 
neural networks. 

3.1 Econometric Models 

Econometric models predict exchange rate based on 
economic factors. The Mundell-Fleming model 
(1962), Dornbusch’s (1976) asset-market approach 
to exchange-rates, and New Keynesian models are 
examples of such models and a good survey of such 
models can be found in Engel (2013). These models 
are widely used by central bankers around the world. 
However, research indicates that these models are 
not effective when the prediction horizon is less than 
a year (Neely and Sarno, 2002). 

Meese and Rogoff (1983) demonstrated that such 
models fail to outperform a random walk in out of 
sample predictions and their findings are still widely 
accepted. 

3.2 Time Series Models 

An excellent survey of time series forecasting 
models can be found in Box et al. (2015). 
Autoregressive Integrated Moving Average 
(ARIMA) models and Exponential Smoothing (ETS) 
models are the most commonly used time series 
models for foreign exchange rate prediction. 
ARIMA models can deal with non-stationary data by 
differencing transformations and subsume 
autoregressive models and moving average models 
as special cases. ETS models are non-stationary and 
can capture trends and seasonality.  Time series 
models may provide satisfactory point estimates for 
exchange rates, but the direction of change implied 
by these estimates are often poor indicators of the 
true direction.  
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3.3 Artificial Neural Networks 

Artificial neural network (ANN) with a single 
hidden layer often outperform time series models in 
providing point estimates for exchange rates as 
demonstrated in Dunis (2015) Thinyane and Millin 
(2011), Nag (2002), and Galeshchuk (2016). 
However, the direction of change implied by these 
point estimates are often unacceptably inaccurate. 
This renders these method less useful as a basis for 
formulating monetary policies. This further 
motivates us to investigate the ability of deep 
networks to predict the direction of change in forex 
rates. 

3.4 Deep Neural Networks 

Deep learning techniques originally introduced by 
Ivakhnenko (1971) and then Hinton (2002, 2006) 
has been successfully applied in a variety of 
domains including face detection (Osadchy et al., 
2013), speech recognition (Sukittanon et al., 2004), 
object recognition (Schmidhuber, 2005), document 
categorization (Hinton and Salakhutdinov, 2006), 
and natural language processing (Lee et al., 2009). 
Deep learning networks have also been used for time 
series predictions (Busseti et al., 2012; Langkvist et 
al., 2014) and for financial predictions (Ribeiro and 
Noel, 2011; Chao et al. 2011; Yeh et al., 2014; Lai et 
al.). Restricted Boltzmann machines and auto-
encoders machines have been used for 
dimensionality reduction and unsupervised pre-
training. Applications are discussed in Larochelle et 
al. (2009), Masci et al. (2011), and Vincent et al. 
(2007). 

Deep convolution networks (DN) are attractive 
for high dimensional prediction and classification 
problems (LeCun et al 2015). DNs are suitable for 
exchange rate prediction for two main reasons: First, 
high level features abstracted by the network may 
serve as noise filters and dimensionality reduction 
techniques may help abstract input features. 
Secondly, the temporally-local correlation between 
consecutive observations may be exploited to reduce 
the number of parameters to be estimated in the 
network by connecting only a small number of 
adjacent inputs to each unit in a hidden layer. 

Our work is motivated by results from 
experiments to compare the accuracy of deep 
networks with baseline models (ARIMA, ETS, and 
ANN) to predict the direction of changes of 
exchange rates for EUR/USD, GBP/USD, and 
USD/JPY (Galeshchuk and Mukherjee, 2017). 
Results demonstrate that trained deep networks 

achieve better out-of-sample prediction accuracy 
than baseline methods. 

Units in a DN receive inputs from small 
contiguous receptive fields that collectively cover 
the entire set of input features. This allows units to 
act as local filters and to exploit local correlation 
between contiguous inputs. Units share weights and 
bias parameters to create a feature map and this not 
only results in a significant reduction in the number 
of parameters to be estimated but also facilitates 
detection of features irrespectively of their actual 
position in the input field. The reduction in the 
number of parameters may be very significant as the 
number layers in the network and the number of 
units in each layer increases. 

Recurrent neural networks are an effective class 
of neural network designed to handle sequence 
dependence. Stacked Long Short-Term Memory 
(LSTM) is a type of recurrent neural network used in 
deep learning which makes effective use of model 
parameters, converges quickly, and outperforms 
deep feed forward neural networks. That is why, it is 
often used for time-series predictions. Being adapted 
for dimensionality reduction and unsupervised pre-
training tasks, LSTMs have been successfully used 
for unsupervised extraction of abstract input features 
for prediction problems. The approach has also 
proved effective in financial predictions. 

4 METHODOLOGY 

In this section we describe the data sets to be used in 
this study, discuss additional features to be used for 
prediction in emerging markets, present baseline 
models including shallow neural networks, and 
describe our deep convolution networks. 

4.1 Data Sets 

For developed currency markets, we use the daily 
closing rates between three currency pairs: Euro and 
US Dollar (EUR/USD), British Pound and US 
Dollar (GBP/USD), and US Dollar and Japanese 
Yen (USD/JPY) to train and test our models. The 
rates may be downloaded from: http://www.global-
view.com/forex-trading-tools/forex-history/. Data 
for the years 2000 to 2015 are considered. For 
emerging currency markets we use the exchange 
rates of EaP countries to US Dollar: AZN/USD, 
AMD/USD, BYR/USD, MDL/USD, UAH/USD, 
GEL/USD. For each data set we train models for 
daily, monthly, and quarterly predictions. 
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4.2 Input Macroeconomic Features  

In order to provide better exchange-rates prediction 
on the macroeconomic level, researchers develop 
monetary models of exchange rates based on 
fundamental economic data. We will include the 
indicators of real sector (GDP growth, 
unemployment, wages), current and capital account 
(current account balance, openness as ratio of total 
import and export to GDP), public and private 
foreign debt, capital flows, and ratio of international 
reserves to 3 months import, international variables 
(interest rates and price ratios). Some additional 
factors that may need to be considered include: 
money growth, fiscal growth, and a measure for the 
degree of political instability and market 
liberalization. 

Improved exchange rate prediction models are 
particularly challenging to develop in volatile 
emerging markets with political instability as is the 
case in EaP economies. The EU is the main 
economic partners of EaP states. Financial markets 
of EaP countries and Russia are still highly coupled 
through trade and political relationships in post-
soviet period. The high co-volatility of these markets 
requires us to identify distinct patterns of linkages 
among European, EaP, and Russian markets. 
Furthermore, contagious effect of crises is observed 
widely as local currency deterioration worsens 
macroeconomic indicators in trading partners.  

The core currencies in EU-EaP-Russia area will 
be modelled as a network. The correlation between 
these exchange rates will be computed for a selected 
time horizon. We will use a 3 month horizon since 
international trading the payments are made up to 90 
days. Then, each correlation coefficient in the 
correlation matrix of the N markets will be mapped 
to a metric distance between pairs of indices to form 
an N×N distance matrix with values ranging 
between 0 and 1. This distance matrix will be used 
to construct a minimal spanning tree (MST) in a 
fully connected graph where the vertices represent 
the currencies and the arc lengths inversely 
proportion to the strength of the correlations 
between the currencies. Clusters will be formed by 
removing the longest edges of the MST. Strongly 
correlated currencies are connected by short links 
and belong to the same cluster; unrelated currencies 
connected by longer links belong to different 
clusters. This will provide insights regarding the 
pattern of currency crises spread in the EaP 
economies and permit us to investigate 
synchronization among the currency markets in the 
EaP area. 

4.3 Baseline Models 

We use a random walk model, two time series 
models (ARIMA and ETS), and a single layered 
neural network as baseline models. The time series 
models provide point estimates ݕො௧ା௞ for the rates. 
We predict output class ̂ݖ௞(ݐ) = 1 if  ݕො௧ା௞ >  ௧, andݕ
0 otherwise. The predicted direction of change ̂ݖ௞(ݐ) 
is compared with the actual direction of change ݖ௞(ݐ). Results for ARIMA and ETS are obtained 
using the auto.arima model and the ets model from 
the R library forecast with default parameters 
(Hyndman and Khandakar 2008). 

A neural network model with a single hidden 
layer will also be used in our study as a baseline 
model. The units have sigmoid transfer functions 
and use gradient descent and backpropagation for 
training. The model is trained on vectors with ݌ 
features ൫ݕ௧, ,௧ିଵݕ … ,  ௧ା௞ asݕ ௧ି௣ାଵ൯ as inputs andݕ
output to predict a point estimate ݕො௧ା௞ for the ݇ 
period forward rate. As in the case of the time series 
models, we predict the output class ̂ݖ௞(ݐ) = 1 if  ݕො௧ା௞ >  ௧, and 0 otherwise to compare the actualݕ
and predicted directions of change. Results are 
obtained using the R package nnet. Models 
parameters are tuned through cross-validation by 
performing a grid search over the parameter ranges 
using the tune function from the R package e1071. 
For details of these packages, see https://cran.r-
project.org/web/packages/nnet/nnet.pdf and: https:// 
cran.r-project.org/web/packages/e1071/e1071.pdf). 

4.4 Deep Convolution Network 

The deep convolution network has ݈ layers of hidden 
units separating the input layer from the output unit. 
We use ௝ܾ௜ to denote the internal bias of the ݆th unit in 

the ݅th layer and ௝ܹ௞௜  to represent the weight of the 
connection to that unit from the ݇th unit in the (݅ − 1)th layer.  For an input vector ࢞,  the output of ݆th unit in the ݅th layer is computed as ℎ௝௜(࢞) ൫ܷܮܴ݁= ௝ܽ௜൯, where ௝ܽ௜ = ௝ܾ௜ + ∑ ௝ܹ௞௜ ℎ௞௜ିଵ௞ (ܽ)ܷܮܴ݁ and  ,(࢞) = max	(0, ܽ) is the rectified linear unit 
function. The output uses a softmax transfer 
function. Adam optimizer (Kingma et al 2015) is 
used to minimize a cross-entropy loss function.  The 
open source library TensorFlow  is used to create the 
DN models (https://www.tensorflow.org/).  

4.5 Stacked Long Short-term Memory 

We intend to use Stacked Long Short-Term Memory 
(LSTM) deep network with mechanisms for 

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

684



exchange-rate prediction in this experiment. LSTM 
network is a type of recurrent neural network used in 
deep learning because very large architectures can 
be successfully trained.  

The output value of recurrent neural network 
(Galeshchuk, 2014) can be formulated as: ݕ = ∑)ଷܨ ௧௡௧ୀଵ݌௧ݒ − ܾ௧), ℎ௧ = (෍	ଶܨ ௜ܹ௝௠

௜ୀଵ ௜ݔ +෍ݒ௞௝ᇱ௡
௞ୀଵ ݐ)௞݌ − 1) ݐ)ݕ	3ܹ+ − 1) − ܾଶ௝) 

where ܨଷ,ܨଶ are logistic activation functions, ݊	is the 
number of neurons in the hidden layer, ݒ௧	is the 
weight coefficient from ݆-neuron of the hidden layer 
to the output neuron, ݌௧		is the output value of ݆-
neuron of the hidden layer, ܾଷ	is the threshold of the 
output neuron, ݉	is the number of neurons in the 
input layer, ݓ௜௝are the weight coefficients from the 
i -input neuron to ݆-neuron of the hidden layer, ݔ௜	are the input values, ܾଶ௙	are the thresholds of the 
neurons of the hidden layer, ݒ௞ᇱ 	is the synapse from ݇ context neuron of the hidden layer to the ݆-neuron 
of the same (hidden) layer, ݌௞(ݐ − 1)	is the output 
value of ݇ context neuron of hidden layer in the 
previous moment of time	ݐ −  is the synapse	3ݓ	,1
from context output neuron to the ݆-neuron of the 
hidden layer, ݐ)ݕ − 1)is the value of context output 
neuron in the previous moment of time 1t  

For the version of LSTM used, ܨ	is implemented 
by the following composite function (see Graves at 
al., 2013): ݅௧ = )	ߪ ௫ܹ௜ݔ௧ + ௛ܹ௜ℎ௧ିଵ + ௖ܹ௜ܿ௧ିଵ + ܾ௜)	௧݂ = )	ߪ ௫ܹ௙ݔ௧ + ௛ܹ௙ℎ௧ିଵ + ௖ܹ௙ܿ௧ିଵ + ܾ௙)	ܥ௧ = ௧݂ܥ௧ିଵ + ݅௧tanh	( ௫ܹ௖ݔ௧ + ௛ܹ௖ℎ௧ିଵ + ܾ௖) ݋௧ = )	ߪ ௫ܹ௢ݔ௧ + ௛ܹ௢ℎ௧ିଵ + ௖ܹ௢ܿ௧ + ܾ௢) ℎ௧ =  (ܿ௧)	௧tanh݋
where ߪ is the logistic sigmoid function, and ݅, ݂, ,݋ ܿ 
are respectively the input gate, forget gate, output 
gate and cell activation vectors, all of which are the 
same size as the hidden vector ℎ. 

5 CONCLUSIONS 

This position paper outlines our approach for 
developing improved models for exchange rate 
prediction using deep neural networks. The ability of 
deep networks to learn abstract features from raw 
data motivates this approach. Preliminary results 
confirm that our deep network produces 
significantly higher predictive accuracy than the 
baseline models for developed currency markets. We 

now plan to adapt this model for exchange rate 
prediction in emerging currency markets by 
including macroeconomic factors as input features. 
A novel set of input features based on currency 
clusters may help improve predictive accuracy of 
such models. This study will be among the first to 
integrate information about market liberalization and 
political stability with macroeconomic indicators 
and time-series data on exchange rate and 
transaction volume. Inclusion of these factors as 
predictors should improve predictive accuracy for 
exchange rate, especially in emerging markets. 
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