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Abstract: The Topology and Orchestration Specification for Cloud Applications (TOSCA) is a standardised metamodel
that permits specifying cloud applications, and automating their deployment and management. TOSCA per-
mits describing the structure of an application as a topology graph, which can then be exploited by TOSCA-
compliant cloud platforms to automate the deployment of the components forming an application. In this
paper we formalise the conditions that must hold for checking the validity of TOSCA application topologies,
and we present an open-source prototype of validator (called SOMMELIER) that implements such conditions.

1 INTRODUCTION

Cloud computing is revolutionising IT by enabling
on-demand network access to shared pools of config-
urable computing resources. Current cloud technolo-
gies however suffer from a lack of standardisation,
with different providers offering similar resources in
a different manner (Armbrust et al., 2010). Hence,
how to deploy and flexibly manage complex compos-
ite applications over heterogeneous cloud platforms is
one of the main challenges that have emerged after the
cloud revolution (Brogi et al., 2014a).

OASIS recently released a YAML1 version (OA-
SIS, 2016) of TOSCA, the Topology and Orches-
tration Specification for Cloud Applications. The
TOSCA Simple Profile in YAML provides a YAML-
based modelling language that permits specifying
portable cloud applications, and to automate their de-
ployment and management.

TOSCA permits describing the structure of a
cloud application as a typed, directed topology graph.
The nodes in a topology graph represent application
components (e.g., a web-based frontend, a web server,
a backend database, a database management system),
and each of them can be also be associated with the re-
quirements, capabilities, and management operations
of the corresponding component. The arcs in a topol-
ogy graph instead model relationships among appli-
cation components (e.g., the frontend is deployed on
the server and connected to the database, which is in
turn hosted on the databased management system) by
associating the requirements of a node with capabili-
ties featured by other nodes.

1YAML Ain’t Markup Language (http://yaml.org).

TOSCA applications can be automatically de-
ployed on TOSCA-compliant cloud platforms (Binz
et al., 2013). The processing of a TOSCA applica-
tion is declarative, and strictly depends on the inter-
node relationships in its topology: Initially, (i) all
nodes without requirements on other nodes are de-
ployed. Then, (ii) the nodes whose requirements are
actually satisfied (by capabilities offered by the nodes
that have been deployed) are deployed, and their out-
going relationships are properly processed. Step (ii)
is repeated until all the nodes in the application topol-
ogy have been deployed (OASIS, 2013b).

Consider, for instance, the application topology in
Fig. 1. The topology nodes are a frontend, a server, a
database, and a database management systems, while
its relationships specify that the frontend must be de-
ployed on the server and connected to the database,
and that the database must be hosted on the man-
agement system. Step (i) would result in first de-
ploying the server and the management system. Step
(ii) would then result in inserting the database among
those hosted by the management system. Finally, step
(ii) would be repeated to deploy the frontend on the
server, and to set up the connection from the frontend
to the database.

The above (toy) example clearly illustrates how
the deployment of a TOSCA application strictly de-

Figure 1: Example of application topology.
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pends on the inter-node relationships in its topology.
This is even more evident if we consider that the pro-
cessing of TOSCA nodes and relationships relies on
the configuration information that they specify, and
which is contextualised with constraints on how to in-
terconnect them (OASIS, 2013b). It is hence impor-
tant to ensure — at design time — that application
topologies are valid, and in particular that the rela-
tionships interconnecting the nodes in such topologies
have been properly specified.

In this perspective, the main contributions in this
paper are twofold:

(i) We formalise the conditions that must hold
to have valid TOSCA application topologies.
More precisely, since TOSCA permits specify-
ing constraints on how to interconnect nodes
(e.g., which capabilities can satisfy a require-
ment, or which types of relationships can be
used to interconnect them), we systematically
map such constraints into conditions that must
hold to ensure the validity of a TOSCA applica-
tion topology.

(ii) We present SOMMELIER, which is a prototype
of validator for TOSCA application topologies.
SOMMELIER checks whether the topology of a
TOSCA application satisfies all interconnection
constraints, and, if this is not the case, it displays
all violations.

Notice that SOMMELIER can be fruitfully exploited
by TOSCA application developers to automatically
validate the topologies of their applications at design
time, as they currently have to do it manually.

It is also worth highlighting that SOMME-
LIER fully integrates with the OpenStack TOSCA
parser (OpenStack, 2016). As both SOMMELIER and
the OpenStack TOSCA parser are open-source, they
can lay the foundations for an open-source toolset for
supporting TOSCA application developers from the
design time till the run time (Brogi et al., 2014b).

In this perspective, the output of SOMMELIER can
be fruitfully exploited for improving the function-
alities of TOSCA editors (e.g., the graphical editor
in Alien4Cloud (Alien4Cloud, 2016)). SOMMELIER
can indeed be useful for validating TOSCA applica-
tion topologies while they are being developed.

The rest of this paper is organised as follows.
In Sect. 2 we provide the necessary background on
TOSCA, and we discuss related work. In Sect. 3 we
formalise the conditions for validating TOSCA ap-
plication topologies by systematically analysing the
component interconnection constraints that can be ex-
pressed in TOSCA. In Sect. 4 we present SOMME-
LIER, and we show how it permits validating TOSCA

application topologies. Finally, in Sect. 5 we draw
some concluding remarks.

2 BACKGROUND AND RELATED
WORK

2.1 Background: TOSCA

TOSCA (OASIS, 2016) is an OASIS standard whose
main goals are to enable (i) the specification of
portable cloud applications and (ii) the automation
of their deployment and management. TOSCA pro-
vides a YAML-based, machine-readable modelling
language that permits describing cloud applications.
The obtained application specifications can then be
processed to automate the deployment and manage-
ment of the specified applications.

TOSCA permits specifying a cloud application
as a service template, which is in turn composed
by a topology template, and by the types needed
to build such a topology template (Fig. 2). The
topology template is a typed directed graph that
describes the topological structure of the compos-
ite cloud application. Its nodes (called node tem-
plates) model the application components, while its
edges (called relationship templates) model the
relationships occurring among such components. The
topology template may also contain typed poli-
cies, which permit specifying non-functional infor-
mation about the node templates they target.

The node templates and relationship tem-
plates are typed by means of node types and re-
lationship types, respectively. A node type de-
fines the observable properties and attributes
of a component, its possible requirements, the

Figure 2: TOSCA service template (OASIS, 2016).
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capabilities it may offer to satisfy other compo-
nents’ requirements, and the interfaces through
which it offers its management operations. Capabili-
ties are also typed (by means of capability types),
to permit specifying their properties, attributes,
and valid source types (viz., the node types that
can be satisfied by such capabilities).

A relationship type instead describes the observ-
able properties and attributes of a relationship
occurring between two application components, and
the interfaces through which it offers its manage-
ment operations. A relationship type can also put
constraints on its valid target types (viz., the ca-
pability types that can be targeted by a relationship
whose type is that under definition).

TOSCA type system supports inheritance. A node
type can be defined by extending another, thus per-
mitting the former to inherit the latter’s properties,
attributes, requirements, interfaces, and operations.
Analogously, a relationship type or a capability type
can extend another to inherit all its features.

TOSCA also prescribes the format (called CSAR
— Cloud Service ARchive) to archive application
specifications along with the installable and exe-
cutable files needed to properly instantiate the spec-
ified applications. This is because the modelling
language illustrated above only allows developers to
specify the application topology and its management
and to give it in a .tosca document. Such document
must be packaged together with the artefacts imple-
menting its components so as to make all such arte-
facts available to the execution environment2.

2.2 Related Work

Software systems are assuming a key role in everyday
life, and guaranteeing that such systems satisfy their
functional and non-functional requirements is becom-
ing imperative and increasingly difficult (Marchetti,
2014). Validation techniques are hence crucial, as
their purpose is precisely to evaluate software sys-
tems and to determine whether they satisfy specified
requirements (Geraci, 1991).

The need for validation is also recognised by
TOSCA (OASIS, 2016). Indeed, TOSCA permits
specifying constraints that must be satisfied while
interconnecting application components to form the
topology of a cloud application. However, the cur-
rent support for checking such constraints is limited,
which makes the process of validating TOSCA appli-
cations cumbersome and time-consuming.

2A more detailed, self-contained introduction to
TOSCA can be found in (Brogi et al., 2014b).

The OpenStack TOSCA Parser (OpenStack,
2016) can be used to check whether TOSCA applica-
tion specifications are syntactically correct. More pre-
cisely, the OpenStack TOSCA Parser permits check-
ing that all TOSCA elements have been specified in
the proper section (e.g., node types in the node ty-
pes section, node templates in the node templates
section, etc.), and that node templates and relation-
ship templates are specified coherently with the struc-
ture given by the corresponding types (e.g., the ca-
pabilities assigned in a node template are also de-
fined in the corresponding node type, integer prop-
erties contain integer values, etc.). However, despite
the OpenStack TOSCA Parser checks that the actual
value assigned to a template’s field is of the proper
type, it does not perform any check about the “mean-
ingfulness” of such value. For instance, it checks
whether the node field of a requirement assignment
contains the name of a node template, but it does not
check whether such node template satisfies the inter-
connection constraints specified in the corresponding
requirement definition. Our objective is instead to
permit checking such a kind of constraints.

Similar considerations apply to other TOSCA
parsers currently available, e.g., the brooklyn-tosca
parser (CloudSoft, 2016), or the TOSCA parser in
Alien4Cloud (Alien4Cloud, 2016).

TOSCA is also available in an XML-based ver-
sion (OASIS, 2013a), which still permits specify-
ing the topology of a composite cloud application,
as well as the constraints to interconnect the com-
ponents forming such topology. TOSCA XML also
permits specifying management plans, in the form of
workflows orchestrating the management operations
offered by the application components.

TOSCA XML applications can be edited with the
Winery graphical environment (Kopp et al., 2013),
and executed with the OpenTOSCA engine (Binz
et al., 2013). However, despite Winery and Open-
TOSCA are equipped with parsers checking whether
the XML sources of applications are syntactically cor-
rect, there is no support for validating the interconnec-
tions forming application topologies.

(Hirmer et al., 2014) propose an approach for
automatically completing TOSCA XML application
topologies. The approach is based on some of the
interconnection constraints that can be expressed in
TOSCA XML, which are exploited to decide which
available components can satisfy a dangling require-
ment of a component. The approach of (Hirmer
et al., 2014) is a first approach exploiting the intercon-
nection constraints that can be expressed in TOSCA
XML. The aim of (Hirmer et al., 2014) is however
different from ours, as they rely on TOSCA XML,
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and since they consider only some of the intercon-
nection constraints that can be expressed in TOSCA
XML (viz., those constraining the relationship types
and capability types that can be validly used to fulfil
a requirement). Our aim is instead to systematically
map all constraints that can be expressed in TOSCA
to formal conditions, hence enabling a full validation
of TOSCA application topologies.

On the other hand, it is possible to validate man-
agement plans in TOSCA XML. Management proto-
cols (Brogi et al., 2015; Brogi et al., 2016) permit
specifying the management behaviour of the compo-
nents forming an application, which can then be com-
bined (according to the application topology) to ob-
tain the management behaviour of the whole appli-
cation. Such a behaviour permits automating various
useful analyses (e.g., determining the validity and ef-
fects of a management plan, or which plans reach a
given goal). However, despite topologies are crucial
to determine the management behaviour of applica-
tions, they are assumed to be valid, because of the
lack of support for validating application topologies.

In summary, despite TOSCA is designed to per-
mit specifying constraints on how to interconnect
application components to form application topolo-
gies, the support for checking such constraints is cur-
rently lacking. Existing parsers can be used to check
whether TOSCA applications are syntactically cor-
rect, but currently there are no tools that permit val-
idating TOSCA application topologies. Our objec-
tive is to address this lack, by systematically mapping
the interconnection constraints that can be expressed
in TOSCA to formal conditions, and by exploiting
such conditions to devise a first support for validat-
ing TOSCA application topologies.

Finally, it is worth mentioning that our approach
shares its baselines with most of existing approaches
for checking the validity of component-based systems
at design time, e.g., (Speck et al., 2002; Caporuscio
et al., 2004; Wu et al., 2003), or for automatically
obtaining valid component-based systems, e.g., (Au-
tili et al., 2007; Pelliccione et al., 2008). Given a
specification of a component-based system (a TOSCA
application specification, in our case), we try to en-
force that all interconnections between components
are properly settled (which in our case means to check
whether the topology of an application satisfies all the
specified interconnection constraints). The main dif-
ference between such approaches and ours is given
by the context: (Speck et al., 2002; Caporuscio et al.,
2004; Wu et al., 2003; Autili et al., 2007; Pelliccione
et al., 2008) focus on systems that have to offer a cer-
tain functionality by validly composing the function-
alities offered by their components. We instead focus

on ensuring that the dependencies between the com-
ponents forming a TOSCA application are properly
specified, as such information is the basis for orches-
trating the management of a TOSCA application.

3 VALIDATING TOPOLOGIES

The objective of this paper is to permit validating the
topology of a TOSCA application (viz., its topolo-
gy template). As shown in Sect. 2.1, the topolo-
gy template is a typed directed graph whose nodes
model the application components, and whose edges
model the relationships occurring between such com-
ponents. Each relationship specifies that a require-
ment of the source node must be actually satisfied by
(a capability of) the target node.

As we anticipated in Sect. 1, in order to vali-
date the topology of a TOSCA application, we must
check whether all inter-component relationships have
been properly specified. For each relationship, we
must validate all the TOSCA elements concerning its
source, the relationship itself, and its target. In this
respect, please note that the source of a relationship
is always a requirement of a node, that a relationship
is actually a relationship template, and that the target
of a relationship is either a node or a capability of a
node (OASIS, 2016).

We hereafter systematically map3 the interconnec-
tion constraints expressed while defining TOSCA re-
quirements, relationships, and capabilities to formal
conditions. We separately discuss the conditions to
validate the interconnection constraints specified in
the sources of relationships (Sect. 3.1), in relation-
ships (Sect. 3.2), and in the targets of relationships
(Sect. 3.3). We then combine all such conditions to
define the notion of validity for a TOSCA application
topology (Sect. 3.4).

3.1 Validating Sources of Relationships

We hereby illustrate how to validate the source of
each relationship appearing in an application topol-
ogy. As the source of a relationship is always a node’s
requirement (OASIS, 2016), we must check that each
relationship outgoing from a requirement is compati-
ble with the requirement definition itself.

3After sistematically reading the whole TOSCA specifi-
cation (OASIS, 2016), we have extracted the portions that
permit specifying interconnection constraints. We hereafter
recall such portions, and we show how to directly map them
to formal conditions that must hold to have valid TOSCA
application topologies.
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req name: cap type name

(a)

req name:
capabi l i ty : cap type name
node: node type name
re lat ionship : re l type name
occurrences: [ min occ , max occ ]

(b)
Figure 3: (a) Simple and (b) extended grammars for require-
ment definitions (OASIS, 2016).

In the following, we recall how to declare a re-
quirement in TOSCA, and what is its meaning accord-
ing to the TOSCA specification. We then single out
the checks that must be performed to ensure that no
relationship is violating the constraints given by a re-
quirement declaration.

3.1.1 How to define a Requirement in TOSCA

We hereby recall how to define a requirement in a
TOSCA node type, and how to instantiate a require-
ment in a TOSCA node template.

A node type ntype defines the set of named require-
ments that can be exposed by a node template of such
type. Each requirement definition can be given within
the requirements section of ntype according to the
(a) simple or (b) extended grammars in Figure 3. In
both cases, a developer can define the requirement
name (req name), and she can provide constraints for
its satisfaction.

The (a) simple grammar requires to indicate the
name (cap type name) of a valid capability type
that can fulfil the requirement under definition. The
(b) extended grammar also permit indicating three op-
tional constraints.

• node permits indicating the name (node ty-
pe name) of a valid node type that contains a
capability definition that can be used to fulfil the
requirement under definition.

• relationship permits providing the name of a
relationship type that can be validly used to build
a relationship template when fulfilling the require-
ment.

• occurrences permits instructing the minimum
(min occ) and maximum (max occ) occur-
rences of the requirement under definition in a
node template of the corresponding node type4.

4Since the focus of this paper is on validating inter-
component dependencies in TOSCA application topologies,
and since occurrences is not giving any constraint con-
cerning inter-component dependencies, we shall not for-

req name: node temp name

(a)

req name:
node: node temp name | node type name
re lat ionship : rel temp name | re l type name
capabi l i ty : cap name | cap type name
n o d e f i l t e r : n o d e f i l t e r d e f i n i t i o n

(b)
Figure 4: (a) Simple and (b) extended grammars for require-
ment assignments (OASIS, 2016).

By default, min occ and max occ are both set
to 1.

A node template ntemp instantiates a node type
ntype in a TOSCA application topology, and it permits
declaring the requirements actually exposed by the
application component corresponding to such node
template. Such requirements can be given through so-
called requirement assignments within the require-
ments section of ntemp. Each requirement assignment
instantiates a corresponding5 requirement definition
in ntype. The (a) simple and (b) extended grammars for
requirement assignments are displayed in Figure 4.

The (a) simple grammar permits indicating only
the name (node temp name) of the concrete node
template that is actually satisfying the requirement
under assignment. This notation is only valid if
the corresponding requirement definition (in the node
type of the node template that is being specified) indi-
cates at least a valid capability type that can be found
in the target node template.

The (b) extended grammar can be used if the re-
quirement assignment has to provide more informa-
tion than just the name of the target node template.

• node is used to identify the target node of a re-
lationship. It can be used to provide either the
name of the node template that is actually ful-
filling the requirement under assignment, or the
name of a node type that a TOSCA-compliant
cloud provider will use to select a type-compatible
node template to fulfil the requirement at run-
time.

• relationship is an optional reserved keyword
that can be used to provide either the name of a
relationship template (to relate the source node to
the — capability in the — target node when fulfill-
ing the requirement), or the name of a relationship
type (that will be used by a TOSCA-compliant

malise the trivial condition to validate occurrences.
5A node template’s requirement assignment corresponds

to a node type’s requirement definitions if they have the
same name req name.
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cloud provider to select a type-compatible rela-
tionship template to relate the source and target
nodes at run-time).

• node filter permits defining additional con-
straints that TOSCA-compliant cloud providers
will use to select a type-compatible target node
that can fulfil the requirement under assignment
at run-time.

3.1.2 How to validate a TOSCA Requirement

We hereby single out the conditions that must hold to
validate sources of relationships at design-time6. In
doing so, we exploit the following shorthand notation.

Notation. In the following, we write:

• name(·) and type(·) to denote the name and type
associated to a TOSCA element, respectively,

• t ′ ≥ t to denote that t ′ extends7 or is equal to t,
• e.f to denote the field f of the TOSCA element e

(which is ⊥ if f is not defined in e), and
• R(·) and C(·) to denote the requirements and ca-

pabilities assigned by a node template or defined
in a node type.

Given a TOSCA application topology, the sources
of its inter-component relationships are valid if each
of its node templates satisfies all the aforementioned
conditions.

Condition 1. Let ntemp be a node template of type
ntype. Then:

∀ra ∈ R(ntemp),∃rd ∈ R(ntype) :
1) name(ra) = name(rd) ∧
2) rd.node 6=⊥⇒ type(ra.node)≥ rd.node ∧
3) ra.capability 6=⊥⇒

type(ra.capability)≥ rd.capability ∧
4) ra.capability=⊥⇒
∃c ∈ C(ra.node) : type(c)≥ rd.capability ∧

5) rd.relationship 6=⊥∧ ra.relationship 6=⊥⇒
type(ra.relationship)≥ rd.relationship

6We hence exclude all constraints that permit defining
how to automatically complete the topology of a TOSCA
application (by selecting type-compatible node templates
and relationship templates to satisfy pending require-
ments — e.g., node: node type name, relation-
ship: rel type name, and capability: cap ty-
pe name in Figure 4.(b)). Our validation approach can
however be useful for double-checking automatically com-
pleted TOSCA application topologies (as well as for help-
ing the automatic completion itself).

7Given that t and t ′ are TOSCA types, t ′ extends t if t ′ is
(directly or indirectly) derived from t.

Firstly, we must check that, for each requirement
assigned ra in a node template ntemp (of type ntype),
there exists a corresponding requirement definition rd
in ntype (Condition 1..1).

We can then check that no requirement assignment
ra is violating the constraints indicated by the corre-
sponding requirement definition rd:

• The (optional) field node of a requirement defi-
nition rd permits indicating the name of a valid
node type that can be used to fulfil a requirement.
Hence, if node is specified in rd, the type of the
node template targeted by each corresponding re-
quirement assignment ra has to extend or to be
equal to that indicated in node (Condition 1..2.)

• A requirement definition rd indicates (either in-
line or with the keyword capability) the name
of a valid capability type that can fulfil the re-
quirement. This is ensured if each correspond-
ing requirement assignment ra directly targets a
capability whose type extends or is equal to that
indicated in the requirement definition (Condi-
tion 1..3). Alternatively, if a requirement assign-
ment ra is only indicating the target node template
(but not pointing to any of its capabilities), we
must check whether such node template is offer-
ing at least one type-compatible capability (Con-
dition 1..4).

• Finally, the (optional) field relationship of a
requirement definition rd permits indicating the
name of a relationship type that can be validly
used to build a relationship template when ful-
filling the requirement. Hence, if relationship
is specified in rd, the type of a relationship tem-
plate outgoing from a corresponding requirement
assignment ra (if any) extends or is equal to that
indicated in relationship (Condition 1..5).

3.2 Validating Relationships

We hereby illustrate how to validate the relationships
occurring between the nodes appearing in an applica-
tion topology. As such relationships are expressed by
typed relationship templates (OASIS, 2016), we must
check that each relationship template is instantiated
without violating any of the constraints given in the
corresponding relationship type.

In the following, we recall how to declare a re-
lationship type in TOSCA, and which is its meaning
according to the TOSCA specification. We then illus-
trate the conditions that must hold to ensure that no
relationship template is violating the constraints given
by the corresponding relationship type.
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3.2.1 How to define a Relationship in TOSCA

A relationship template instantiate a relationship type
to specify the actual occurrence of a manageable re-
lationship between two node templates in an applica-
tion topology. A relationship type can be defined with
the grammar in Figure 5, which permits specifying
the name (rel type name) of a relationship type,
as well as the features and constraints characterising
such relationship type.

rel type name :
derived from: paren t re l t ype name
version: version number
description : r e l d e s c r i p t i o n
properties : p r o p e r t y d e f i n i t i o n s
at t r ibutes : a t t r i b u t e d e f i n i t i o n s
inter faces : i n t e r f a c e d e f i n i t i o n s
va l id target types : [ cap type names ]

Figure 5: Grammar for relationship types (OASIS, 2016).

• The (optional) field derived from permits indi-
cating the name (parent rel type name) of
the parent relationship type8. The relationship
type under definition inherits all the features the
parent relationship type, and it can override some
of them (OASIS, 2013b).
For instance, if the relationship type under defi-
nition does not specify a new list of valid tar-
get types, then it takes that of the parent rela-
tionship type. Otherwise, the parent’s list of va-
lid target types is overridden by that specified
in the relationship type under definition.

• version and description are optional fields
that permit versioning and describing (in natural
language) a relationship type.

• The (optional) fields properties and
attributes permit describing the structure
of the desired and actual state of a relationship,
respectively. Concrete state values will be then
given in the relationship templates instantiating
the relationship type under definition.

• interfaces is a (optional) field that permits
declaring the management operations that can be
offered by relationship templates whose relation-
ship type is that under definition.

• valid target types is a (optional) list of one
or more names (cap type names) of capabil-
ity types that are valid targets for the relationship
under definition.

8All TOSCA relationship types should be derived (di-
rectly or indirectly) from the tosca.relationships.Root
relationship type (OASIS, 2016).

3.2.2 How to validate a TOSCA Relationship

Since a relationship template instantiates a relation-
ship type in an application topology, it has to not vi-
olate the constraints given when defining the corre-
sponding relationship type.

Notice that the only constraints that can be given
while defining a relationship type are those concern-
ing its valid target types. The latter can either be
specified inline or inherited from the parent type.
Notation. In the following, we write T(·) to denote
the set of capability types that are valid targets for a
relationship type. Given a relationship type reltype:
• If reltype.valid target types 6= ⊥, then
T(reltype) is the set containing all elements
in reltype.valid target types,

• otherwise, if reltype.derived from 6= ⊥, then
T(reltype) = T(reltype.derived from),

• otherwise, T(reltype) is the set containing all ca-
pability types (meaning that all capability types
are valid targets for reltype).

Given a TOSCA application topology, its relationship
templates are valid if they satisfy the following con-
dition.
Condition 2. Let reltemp be a relationship template of
type reltype. If there exists a requirement assignment
ra that is source of reltemp, then:

1) ra.capability 6=⊥⇒
∃ctype ∈ T(reltype) : type(ra.capability)≥ ctype ∧

2) ra.capability=⊥⇒
∃ca ∈ C(ra.node) :
∃ctype ∈ T(reltype) : type(ca)≥ ctype

Namely, if a relationship template reltemp is target-
ing a specific capability9, then the type of such capa-
bility has to be compatible with at least one of those
indicated in valid target types (Condition 2..1).

If the source of a relationship template reltemp is
instead only indicating the target node template (but
not pointing to any of its capabilities), we must check
whether such node template is offering at least one
type-compatible capability (Condition 2..2).

3.3 Validating Targets of Relationships

While the source of a relationship is always a require-
ment, the target of a relationship can be either a capa-
bility or a node template. In the latter case, the node

9Please recall that a relationship is outgoing from a re-
quirement assignment ra. The latter can either indicate the
specific capability satisfying ra, or a node template offering
(at least) a capability satisfying ra (see Figure 4).
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template must offer at least a capability capable of sat-
isfying the source requirement (OASIS, 2016).

In the following we recall how to specify a capa-
bility in TOSCA, and which is its meaning according
to the TOSCA specification. We then illustrate the
conditions that must hold to ensure that no relation-
ship is violating the constraints given by its target.

3.3.1 How to define a Capability in TOSCA

A capability type is a reusable entity that describes a
kind of capability that a node type can declare to ex-
pose (OASIS, 2016). A capability type can be defined
according to the grammar in Figure 6, which permits
specifying the name (cap type name) of a capabil-
ity type, as well as with the features and constraints
characterising such capability type.

cap type name:
derived from: parent cap type name
version: version number
description : c a p a b i l i t y d e s c r i p t i o n
properties : p r o p e r t y d e f i n i t i o n s
at t r ibutes : a t t r i b u t e d e f i n i t i o n s
valid source types : [ node type names ]

Figure 6: Grammar for capability types (OASIS, 2016).

• The (optional) field derived from permits indi-
cating the name (parent cap type name) of
the parent capability type10. The capability type
under definition inherits all the features the par-
ent capability type, and it can override some of
them (OASIS, 2013b).
For instance, if the capability type under defini-
tion does not specify a new list of valid sour-
ce types, then it takes that of the parent capabil-
ity type. Otherwise, the parent’s list of valid so-
urce types is overridden by that specified in the
capability type under definition.

• version and description are optional fields
that permit versioning and describing (in natural
language) a capability type.

• The (optional) fields properties and
attributes permit describing the structure
of the desired and actual state of a capability,
respectively. Concrete state values will be
then given by the node templates instantiating
capabilities whose type is that under definition.

• valid source types is a (optional) list of one or
more names (node type names) of node types

10All TOSCA capability types should be derived (directly
or indirectly) from the tosca.capability.Root capabil-
ity type (OASIS, 2016).

cap name: cap type name

(a)

cap name:
type: cap type name
description : c a p a b i l i t y d e s c r i p t i o n
properties : p r o p e r t y d e f i n i t i o n s
at t r ibutes : a t t r i b u t e d e f i n i t i o n s
valid source types : [ node type names ]

(b)
Figure 7: (a) Simple and (b) extended grammars for capa-
bility definitions (OASIS, 2016).

cap name:
properties : proper ty ass ignments
at t r ibutes : a t t r i bu te ass ignmen ts

Figure 8: Grammar for capability assignments (OASIS,
2016).

that are valid sources for relationships whose tar-
get capability is of the type under definition.

Capability types are then referred by node types
to define the set of named capabilities that can be ex-
posed by a node template of such type. Each capabil-
ity definition can be given within the capabilities
section of a node type ntype according to the (a) simple
or (b) extended grammars in Figure 7. In both cases, a
developer can define the capability name (cap name),
and she can specify the type (cap type name) of
the capability under definition. With the extended
grammar, a developer can also specify the (optional)
fields description, properties, attributes, and
valid source types (whose meaning is analogous
to that of their homonym fields in the grammar for
specifying capability types — see Figure 6).

A node template ntemp instantiates a node type
ntype in a TOSCA application topology, as well as all
the capabilities it defines. A node template can also
assign concrete values to the properties and attributes
of such capabilities, to provide additional information
concerning their desired and actual state, respectively.
Such assignments can be given through so-called ca-
pability assignments within the capabilities sec-
tion of ntemp (Figure 8).

3.3.2 How to validate a TOSCA Capability

While defining a capability in TOSCA, the only con-
straints that can be given are those concerning the
valid source types. Such constraints can be
specified within the specification of a capability type,
or within the capability definitions of a node type. The
constraints given while defining a capability type can
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Table 1: Conditions to validate inter-component relationships in TOSCA application topologies.

Validating
sources
of relationships
(Condition 1.)

Let ntemp be a node template of type ntype. Then, ∀ra ∈ R(ntemp),∃rd ∈ R(ntype):
(1.1) name(ra) = name(rd) ∧
(1.2) rd.node 6=⊥⇒ type(ra.node)≥ rd.node ∧
(1.3) ra.capability 6=⊥⇒ type(ra.capability)≥ rd.capability ∧
(1.4) ra.capability=⊥⇒ ∃c ∈ C(ra.node) : type(c)≥ rd.capability ∧
(1.5) rd.relationship 6=⊥ ∧ ra.relationship 6=⊥⇒

type(ra.relationship)≥ rd.relationship
Validating
relationships
(Condition 2.)

Let reltemp be a relationship template, and let reltype be its relationship type. If there
exists a requirement assignment ra that is source of reltemp, then:
(2.1) ra.capability 6=⊥⇒ ∃ctype ∈ T(reltype) : type(ra.capability)≥ ctype ∧
(2.2) ra.capability=⊥⇒ ∃ca ∈ C(ra.node),ctype ∈ T(reltype) : type(ca)≥ ctype

Validating targets
of relationships
(Condition 3.)

Let ca be a capability assignment, whose corresponding type and definition are ctype
and cd. For each node template ntemp having a requirement assignment ra such that
ra.capability= ca:
(3.1) ∃ntype ∈ S(ctype) : type(ntemp)≥ ntype ∧
(3.2) ∃ntype ∈ S(cd) : type(ntemp)≥ ntype

either be specified inline or they can be inherited from
the parent capability type.

Notation. In the following, we write S(·) to denote
the set of node types that are valid sources for a capa-
bility type. Given a capability type ctype:

• If ctype.valid source types 6= ⊥, then
S(ctype) is the set containing all elements in
ctype.valid source types,

• otherwise, if ctype.derived from 6= ⊥, then
S(ctype) = S(ctype.derived from),

• otherwise, S(ctype) is the set containing all node
types (meaning that all node types are valid tar-
gets for ctype).

Given a capability assignment ca, in a TOSCA
application topology there might be multiple node
templates (having requirement assignments) that are
sources of relationship templates targeting ca. All
such node templates must not violate any of the con-
straints imposed by ca:

• Neither those indicated by its capability type ctype
(Condition 3..1),

• nor those specified within the corresponding ca-
pability definition cd (Condition 3..2).

Condition 3. Let ca be a capability assignment,
whose corresponding type and definition are ctype and
cd. For each node template ntemp having a require-
ment assignment ra such that ra.capability= ca:

1) ∃ntype ∈ S(ctype) : type(ntemp)≥ ntype ∧
2) ∃ntype ∈ S(cd) : type(ntemp)≥ ntype

3.4 Valid TOSCA Application
Topologies

In Sects. 3.1, 3.2, and 3.3 we have illustrated the con-
ditions that permit validating sources, instances, and
targets of TOSCA relationships, respectively. The fol-
lowing definition gathers all such conditions to permit
validating all inter-component relationships appear-
ing in a TOSCA application topology.

Definition 1. A TOSCA application topology is valid
if all its node templates and relationship templates
satisfy Conditions 1., 2., and 3..
For the convenience of readers, Conditions 1., 2., and
3. are recapped in Table 1.

Figure 9: Open-source toolchain for validating TOSCA ap-
plication topologies.
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4 THE SOMMELIER PROTOTYPE

We hereby illustrate SOMMELIER, an open-source11

prototype for validating TOSCA application topolo-
gies (as we discussed in the previous section). The
prototype of SOMMELIER is implemented in Python,
and it is fully integrated with the OpenStack TOSCA
parser (OpenStack, 2016).

Figure 9 illustrates how SOMMELIER performs
the validation of a TOSCA application topology:

1 SOMMELIER inputs a CSAR package or a .tosca
document containing the TOSCA application
topology to be validated.
As the current prototype of SOMMELIER is a
command-line tool, the CSAR or .tosca files can
be passed to SOMMELIER with a dedicated com-
mand line option.

2 The input is forwarded by SOMMELIER to the
OpenStack Parser.

3 The OpenStack Parser checks whether the
TOSCA application is syntactically correct, i.e. it
checks whether all TOSCA elements have been
specified in the proper section (e.g., node types
in the node types section) and that each tem-
plate respects the structure given by the corre-
sponding type (e.g., the capabilities assigned in a
node template are also defined in the correspond-
ing node type). If this is the case, the OpenStack
Parser generates a representation of the TOSCA
application in Python, according to its object-
model (OpenStack, 2016).

4 The Python objects representing the TOSCA ap-
plication are returned to SOMMELIER.

5 SOMMELIER validates the topology of the
TOSCA application by checking whether all (the
Python objects representing) its nodes and rela-
tionships satisfy all conditions12 in Table 1.
SOMMELIER then generates a Python dictionary13

whose abstract structure is illustrated in Figure 10.
Namely, SOMMELIER associates each require-
ment of each node template with a list contain-
ing all validation errors affecting the relationship
outgoing from such requirement. Each error is in
turn represented as a list, whose first element is a

11The source code of SOMMELIER is publicly available
on GitHub at https://github.com/di-unipi-socc/Sommelier.

12SOMMELIER is distributed along with unit tests il-
lustrating that it is capable of recognising the viola-
tion of all such conditions. The unit tests are pub-
licly available within the tests folder in the SOMME-
LIER Github repository (i.e., at https://github.com/di-unipi-
socc/Sommelier/tree/master/tests).

13https://docs.python.org/3/tutorial/datastructures.html.

{
node template1 name : {

req1 name : [
[ e r r o r 1 c o d e , e r r o r 1 i n f o ] ,
[ e r r o r 2 c o d e , e r r o r 2 i n f o ] ,
. . .

]
req2 name : [ . . . ] ,
. . .
} ,
node template2 name : { . . . } ,
. . .
}

Figure 10: Structure of the Python dictionary containing the
results of the validation.

$ python sommel ie r . py −−t e m p l a t e− f i l e =
. . / t o s c a−p a r s e r / t o s c a p a r s e r / t e s t s / d a t a
/ t o p o l o g y t e m p l a t e / t o s c a e l k . yaml

The a p p l i c a t i o n t o p o l o g y i s v a l i d .

(a)

$ python sommel ie r . py −−t e m p l a t e− f i l e =
. . / t o s c a−p a r s e r / t o s c a p a r s e r / t e s t s / d a t a
/ t o p o l o g y t e m p l a t e / t r a n s a c t i o n s s u b s y s
tems . yaml

NODE TEMPLATE: app
REQUIREMENT: host
1 . 2 − NODE TYPE NOT COHERENT: The type
"tosca.nodes.WebServer" of t h e t a r g e t
node "websrv" i s n o t v a l i d ( a s i t d i f f
e r s from t h a t i n d i c a t e d i n t h e r e q u i r e
ment d e f i n i t i o n ) .

(b)
Figure 11: Example of runs of SOMMELIER.

numeric code (e.g., 1.2 if the requirement is vio-
lating Condition 1..2), and whose remaining ele-
ments may be used to provide further information
about the error (e.g., the type and name of the tar-
get node, which is not satisfying Condition 1..2).

6 The results of the validation are displayed by
SOMMELIER. The current prototype of SOM-
MELIER either states that the service template’s
topology is valid, or it lists all the detected vali-
dation errors (by also explaining why such errors
occurred).

Example. We now illustrate how to use SOMMELIER
to validate existing TOSCA application topologies.
As SOMMELIER is a command-line tool, running an
instance of SOMMELIER just requires to type the fol-
lowing command in a command shell:
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$ python sommelier.py
−−template−file=template−file−path

(where template−file−path is the absolute path
where the TOSCA file to be validated is stored).

Concrete examples of run of SOMMELIER are
shown in Figure 11.

In the figure, the application specification that
are passed to SOMMELIER are taken among those
available in the GitHub repository of the OpenStack
TOSCA parser. Figure 11.(a) shows that the TOSCA
application topology specified in tosca elk.yaml14 is
valid.

Figure 11.(b) instead shows that the TOSCA
application topology specified in transactionsubsys-
tem.yaml15 is not valid, because the relationship out-
going from requirement host of the node template app
is violating Condition 1..2 (since it targets the node
template websrv, whose type is not compatible with
those indicated in the requirement definition corre-
sponding to host). Such a kind of inconsistencies
would be really hard to be manually detected, with-
out the availability of a tool like SOMMELIER.

5 CONCLUDING REMARKS

TOSCA provides a standardised language that per-
mits specifying portable cloud applications, and to au-
tomate their deployment and management. As the au-
tomated deployment of TOSCA applications is based
on their topologies (OASIS, 2013b), it is fundamental
to ensure that such topologies are valid.

TOSCA permits specifying the constraints that
must be satisfied while interconnecting application
components to form the topology of a cloud applica-
tion. In this paper:

(i) We have systematically mapped such con-
straints to formal conditions that must hold to
ensure the validity of a TOSCA application
topology. The obtained conditions are recapped
in Table 1.

14The tosca elk.yaml file has been devel-
oped within the OpenStack TOSCA parser
community, and it is publicly available at
https://raw.githubusercontent.com/openstack/tosca-
parser/master/toscaparser/tests/data/tosca elk.yaml (last
accessed on November 13th, 2016).

15The transactionsubsystem.yaml file has
been developed within the OpenStack TOSCA
parser community, and it is publicly available at
https://raw.githubusercontent.com/openstack/tosca-
parser/master/toscaparser/tests/data/topology template/
transactionsubsystem.yaml (last accessed on November
13th, 2016).

(ii) We have also presented SOMMELIER, an open-
source prototype of validator for TOSCA appli-
cation topologies.

SOMMELIER implements all the aforementioned val-
idation conditions (as one can readily check by run-
ning the unit tests available in its repository). SOM-
MELIER can hence be fruitfully exploited by TOSCA
application developers to automatically validate the
topologies of their applications.

SOMMELIER is fully integrated with the Open-
Stack TOSCA parser (OpenStack, 2016). As they are
both open-source, they can lay the foundations for an
open-source toolset for supporting TOSCA applica-
tion developers. This is in line with the research direc-
tions indicated in (Brogi et al., 2014b), and in partic-
ular with the development of tools to support TOSCA
developers from the design time till the run time.

It is worth noting that SOMMELIER can be
fruitfully exploited for improving the functionalities
of existing graphical editors (such as that in the
Alien4Cloud platform (Alien4Cloud, 2016), for in-
stance). SOMMELIER can indeed be useful for vali-
dating TOSCA application topologies while they are
being developed. Its output could also be exploited
for suggesting how to fix errors (e.g., which capabil-
ity can actually satisfy a misplaced requirement) or to
drive the development itself (e.g., warning the user if
she is connecting a requirement to a wrong capability
— or impeding her to do so). As part of our future
work, we plan to integrate SOMMELIER with a graph-
ical editor, with the long-term objective of providing
a full-fledged support for the development of TOSCA
applications (Brogi et al., 2014b).

It is also worth highlighting that the elements that
can be expressed in TOSCA YAML (OASIS, 2016)
are a subset of those that can be defined in TOSCA
XML (OASIS, 2013a), as the former is a simplified
profile of the latter. We plan to investigate whether
the validation conditions contained in this paper are
enough to validate also the topologies of TOSCA
XML applications, and to (extend and) adapt them to
work with TOSCA XML, if necessary. This would
permit providing the OpenTOSCA open-source envi-
ronment (Kopp et al., 2013; Binz et al., 2013) also
with validation capabilities. It would also permit re-
fining the automated topology completion approach
by Hirmer et al. (Hirmer et al., 2014), by ensuring the
validity of obtained topologies.

Finally, as TOSCA permits describing not only
the technological requirements of application com-
ponents, but also their non-functional requirements
(e.g., scalability constraints, in terms of minimum and
maximum amount of occurrences of a node replica,
or QoS requirements specified in policies applied to
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nodes), TOSCA applications should also be validated
also from a non-functional perspective. We plan to
systematically map the non-functional constraints of
that can be expressed in TOSCA to formal conditions
that will permit carrying out such a validation.
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