
Internet of Things Out of the Box: Using TOSCA for Automating the
Deployment of IoT Environments

Ana C. Franco da Silva1, Uwe Breitenbücher2, Pascal Hirmer1, Kálmán Képes2, Oliver Kopp1,
Frank Leymann2, Bernhard Mitschang1 and Ronald Steinke3

1Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart, Germany
2Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany

3Next Generation Network Infrastructures, Fraunhofer FOKUS, Berlin, Germany

Keywords: Internet of Things, TOSCA, Application Deployment, Device Software.

Abstract: The automated setup of Internet of Things environments is a major challenge due to the heterogeneous nature
of the involved physical components (i.e., devices, sensors, actuators). In general, IoT environments consist
of (i) physical hardware components, (ii) IoT middlewares that bind the hardware to the digital world, and
(iii) IoT applications that interact with the physical devices through the middlewares (e.g., for monitoring).
Setting up each of these requires sophisticated means for software deployment. In this paper, we enable such a
means by introducing an approach for automated deployment of entire IoT environments using the Topology
and Orchestration Specification for Cloud Applications standard. Based on topology models, all components
involved in the IoT environment (devices, IoT middlewares, applications) can be set up automatically. Moreover,
to enable interchangeability of IoT middlewares, we show how they can be used as a service to deploy them
individually and on-demand for separate use cases. This enables provisioning whole IoT environments out-of-
the-box. To evaluate the approach, we present three case studies giving insights in the technical details.

1 INTRODUCTION

The Internet of Things (IoT) paradigm has received
great attention in the last years. It relies on the in-
terconnection and cooperation of so-called smart de-
vices, attached with sensors and actuators, that are
able to sense the state of an environment and to adapt
it through their actuators (Atzori et al., 2010; Gubbi
et al., 2013). Such smart devices provide the founda-
tion for the existence of a multitude of so-called IoT
applications. An example of such an IoT application
is a smart home, which is able to automatically regu-
late its temperature based on sensor data. Using such
IoT applications requires setting up the whole IoT en-
vironment consisting of smart devices, middlewares
to bind the devices to IoT applications, and the IoT
applications themselves. However, the setup of such
IoT environments comes with major challenges. First,
physical hardware components (i.e., devices, sensors,
actuators) are highly heterogeneous since they em-
ploy different technologies, protocols, and data mod-
els. Second, heterogeneity emerges among the many
existing IoT middlewares, which are employed to bind
the physical hardware to higher-level IoT applications,

abstracting the complexity of the devices (Mineraud
et al., 2016). Third, although the connection between
an IoT application and the IoT middleware is typically
hard wired, an IoT application might require different
middlewares to fulfill its goals due to different use
cases and business constraints. Therefore, an impor-
tant aspect for the setup of IoT environment is also
the interchangeability of different IoT middlewares. A
high interchangeability enables building more flexible
IoT applications, tailor-made for specific use cases.
Furthermore, it is important that the setup of IoT envi-
ronments is done in an automated manner because a
manual setup is time-consuming and error-prone due
to the high complexity and dynamic in the IoT.

In this paper, we show how the Topology and
Orchestration Specification for Cloud Applications
(TOSCA) standard (OASIS, 2013) can be used to fully
automate the setup of entire IoT environments includ-
ing (i) physical hardware components, (ii) IoT middle-
wares that bind the hardware to the digital world, and
(iii) IoT applications that interact with the physical
devices through the middlewares. Using our approach,
we can set up entire IoT environments out-of-the-box,
i.e., once the IoT environment is modeled in TOSCA,

330
Silva, A., Breitenbücher, U., Hirmer, P., Képes, K., Kopp, O., Leymann, F., Mitschang, B. and Steinke, R.
Internet of Things Out of the Box: Using TOSCA for Automating the Deployment of IoT Environments.
DOI: 10.5220/0006243303580367
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 330-339
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



(DBMS)

(CloudProviderVM)

(OperatingSystem)

(WebServer)

(CloudProviderVM)

(Web Shop) (Database)
WAR

start, stop

deployWAR

installPkg

execScript

createVM

terminate

Implemented by Implementation Artifact

Deployment Artifact

Provision 
VM & OS

Deploy
Web Shop

Create 
Database

Install Web 
Server

Provision 
VM & OS

Install
DBMS

hostedOnconnectsTo

(OperatingSystem)

Figure 1: left: example of a TOSCA build plan, right: the corresponding TOSCA Topology Template to set up a web shop.

this model can be reused to set up the IoT environ-
ment without further configuration or modifications in
the model. In particular, we present how the generic
TOSCA concepts can be used for modeling IoT sce-
narios, their technologies and how heterogeneous IoT
middleware systems can be deployed, wired, and ex-
changed by a standard-based TOSCA runtime environ-
ment. Moreover, the paper shows how IoT middleware
can be used as a service and how it can be deployed
individually and on-demand for separate use cases. We
additionally present three case studies giving insights
in the technical details of our approach.

The remainder of this paper is as follows: Sect. 2
introduces the background of our approach. Sect. 3
presents how to set up entire IoT environments out-
of-the-box using TOSCA. In Sect. 4, we evaluate our
approach based on three case studies. Finally, Sect. 5
describes related work and Sect. 6 gives a summary of
the paper and an outlook on future work.

2 BACKGROUND

Cloud computing is a recently emerged paradigm for
hosting and delivering services over the Internet (Ley-
mann et al., 2016; Zhang et al., 2010), which has been
increasingly employed together with the IoT paradigm
in order to provide IoT environments with properties
such as scalability and interoperability. Cloud com-
puting can enable a rapid setup and integration of new

physical components and IoT applications, while main-
taining low-costs for the deployment of entire IoT en-
vironments (Botta et al., 2016).

The OASIS standard TOSCA enables model-
ing, provisioning, and management of cloud applica-
tions (Binz et al., 2014). As indicated by its name, the
Topology and Orchestration Specification for Cloud
Applications consists of two parts: (i) the topology
and (ii) the orchestration of cloud applications. The
topology describes the structure of the application, i.e.,
its software, platform, and infrastructure components.
Consequently, TOSCA unifies the paradigms software-
as-a-service, platform-as-a-service, and infrastructure-
as-a-service. In these topologies – called Topology
Templates in TOSCA – software components (e.g.,
databases, application servers) are represented as so-
called Node Templates, and their connections, e.g.,
that one component is hosted on another component,
as Relationship Templates. Each template has a type.
Three Relationship Types are used in our approach: (i)
the Relationship Type hostedOn, (ii) the Relationship
Type connectsTo, describing a communication channel
between two software components, e.g., to access a
database, and (iii) the Relationship Type dependsOn,
describing that one software component depends on
another one (e.g., software packages, libraries), mean-
ing that it cannot be operated without it. Node and
Relationship Templates can be attached with proper-
ties (e.g., user credentials). Implementation Artifacts
(IA) and Deployment Artifacts (DA) can be linked to
Node Types and Relationship Types. Implementation

Internet of Things Out of the Box: Using TOSCA for Automating the Deployment of IoT Environments

331



Operating System
(e.g., Ubuntu)

Cloud Provider
(e.g., vSphere)

Raspberry Pi

Device Software
(e.g., Python Script)

Software 
Dependency

Operating System
(e.g., Raspbian)

Smart Device
(e.g., Raspberry Pi)

Device
Software 

(DA)

Operating System
(e.g., Ubuntu)

Cloud Provider
(e.g., vSphere)

IoT Middleware
(e.g., Message Broker)

IoT Application
(e.g. dashboard)

Software 
Dependency

IoT Application Stack IoT Middleware Stack Smart Device Stack

hostedOn dependsOnconnectsTo

Figure 2: Abstract topology model for IoT environments.

Artifacts contain the logic, e.g., a piece of code, to
configure, install, start, or uninstall a component. De-
ployment Artifacts in contrast represent binary files,
such as installers, images or JAR files, that are required
to properly provision a component.

The orchestration part of TOSCA describes all ac-
tions necessary to provision, manage, and deprovi-
sion a cloud application based on its topology model.
TOSCA supports two approaches for application provi-
sioning: (i) an imperative approach, and (ii) a declara-
tive approach. The imperative approach requires defin-
ing so-called Build Plans, which describe the con-
crete order of steps that need to be conducted to set
up the components. The declarative approach only
requires defining the topology model. The correspond-
ing TOSCA runtime consequently provisions the ap-
plication by itself. However, in this manner, only com-
ponents can be set up that are known to the runtime
environment (Breitenbücher et al., 2015). The TOSCA
runtime OpenTOSCA (Binz et al., 2013) – used for our
prototypical implementation – combines the declara-
tive and imperative approaches through the generation
of Build Plans (Breitenbücher et al., 2014). Figure 1
depicts an exemplary TOSCA Topology Template and
its corresponding Build Plan.

Device software is defined as the logic responsi-
ble for extracting data from sensors and sending it
to IoT middlewares, and for invoking attached actua-
tors (Guth et al., 2016). Usually, this device software
is implemented using lightweight scripts (e.g., Python-

based) due to the devices’ limited resources. These
scripts are able to read sensor values and invoke ac-
tuators through the hardware interface (e.g., GPIO).
The device software represents the bridge between
the hardware components and the IoT middlewares.
Through the middleware, IoT applications can receive
sensor data as well as send control commands to actua-
tors. Hence, the middleware serves as abstraction layer
between the IoT applications and the device software.

3 IoT OUT OF THE BOX USING
TOSCA

In this section, we present our approach for automated
setup of entire IoT environments including the device
software, the IoT middleware, and the IoT application.
To explain our approach, we use an IoT scenario com-
posed of: (i) a dashboard as the IoT application, which
monitors the environment with all its smart devices,
sensors, and actuators, (ii) a message broker as the IoT
integration middleware, and (iii) a Raspberry Pi as a
smart device. Figure 2 depicts the TOSCA topology
model of this scenario. The topology for our scenario
contains three different stacks, whereas each stack rep-
resents a different part of the IoT environment. The
stacks are: (i) the IoT application stack, (ii) the IoT
middleware stack, and (iii) the smart device stack. The
setup of these stacks is very similar. At the bottom,

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

332



the hardware resources are modeled. These resources
include physical hardware devices, such as a Rasp-
berry Pis, personal computers, and virtual machines
provided by a cloud provider. On the level above,
the corresponding operating system is modeled and
connected via a hostedOn relation. This means, that
the operating system is hosted on the corresponding
resource. On the top level of a stack, the actual com-
ponents are modeled, i.e., the device software, which
is responsible for reading sensor values and invoking
actuators, the IoT middleware, which serves as bridge
between devices and IoT applications, and, finally, the
IoT application itself. Dependencies of Node Tem-
plates, such as required libraries, packages, or other
software can also be modeled in TOSCA using the
dependsOn relation. The logic to set up the software
represented by the Node Templates is attached using
Implementation Artifacts. Furthermore, monolithic
elements, such as installers or scripts, are attached
as Deployment Artifacts. After the topology of this
IoT scenario is modeled, it can be used as input for
a TOSCA runtime engine. The engine consequently
sets up the IoT environment automatically. As a result,
the Raspberry Pi, which is connected to sensors and
actuators, is able to publish sensor values to the IoT
middleware, which allows the dashboard application
to access the data and to invoke the actuators.

In the following, we describe the modeling of the
devices, the middlewares, and the IoT applications in
detail. We assume the generic imperative provisioning
approach, meaning that an explicit Build Plan needs to
be provided to set the components up (cf. Section 2).

3.1 Modeling Devices and Device
Software

This section describes how to model smart devices,
their corresponding device software, and all corre-
sponding dependencies using TOSCA topology mod-
els. As described above and depicted in Figure 2 on
the right, the stack to deploy an smart device typically
consists of three Node Templates, which correspond
to three layers: the hardware resources (i.e., the smart
device), the operating system, and the device software.
To be able to model this stack in the topology model,
the corresponding TOSCA Node Types need to be pro-
vided. The Node Type for the device’s Node Template,
modeled on the bottom layer of the stack, requires a set
of properties. These properties comprise, e.g., the type
of the device, its MAC address, and hardware capabili-
ties such as the computing resources, available main
memory, and so on. Implementation Artifacts and
Deployment Artifacts are not required to create this
Node Type because it represents the actual hardware.

All involved software will be set up on the operating
system and not on the device itself.

The Node Type for the operating system is more
complex, because, additionally to a set of properties,
it requires Implementation Artifacts and Deployment
Artifacts. The properties comprise the type of the op-
erating system, the IP address that was assigned in
the network to access it, provided interfaces and ports
(e.g., SSH), and capabilities regarding supported soft-
ware (e.g., 32 bit software). Furthermore, the installer
and all corresponding dependencies for the operating
system need to be attached as Deployment Artifacts
and Implementation Artifacts that invoke the installer
and configure the operating system.

Finally, the Node Type for the device software is
attached with a Deployment Artifact containing the
logic to connect to the sensors and actuators as well
as to the middleware, e.g., a script. Furthermore, a
certain amount of properties needs to be provided that
is required by this Deployment Artifact. For example,
these properties comprise the pin set of sensors and
actuators, or in which interval sensor values are gath-
ered. Furthermore, an Implementation Artifact needs
to be provided that starts the Deployment Artifact as a
service of the operating system. Often, the device soft-
ware additionally requires specific libraries, packages,
or software, to be executable. These dependencies can
also be modeled as Node Templates and need to be
connected to the device software Node Template using
the dependsOn Relationship Template (cf. Figure 2).
This Relationship Template guarantees that all existing
dependencies are set up first to avoid errors on exe-
cution of the device software. The Node Types of all
dependencies need to be created accordingly with all
their properties, IAs, and DAs.

Once all Node Types are provided, the above de-
scribed topology stack can be modeled, e.g., through
graphical modeling using the tool Winery (Kopp et al.,
2013). Once the topology is handed over to the
TOSCA runtime for execution, the operating system
can be automatically installed, the device software is
deployed on it and is being started.

3.2 Modeling IoT Middleware

In this section, we describe how to model IoT middle-
ware using TOSCA. The middleware can be modeled
in two different manners depending on whether it is
provided as a service, e.g., by a cloud provider, or
whether it is set up on an own infrastructure.

The more complicated way is setting up the IoT
middleware on an own infrastructure because it re-
quires modeling the infrastructure and platform com-
ponents (e.g., virtual machines, web servers). As de-

Internet of Things Out of the Box: Using TOSCA for Automating the Deployment of IoT Environments

333



picted in Figure 2 in the middle, the required stack
to set up the middleware consists of three Node Tem-
plates. Similar to the modeling of smart devices, these
Node Templates represent the hardware resources, the
operating system, and the IoT middleware itself. How-
ever, there are differences because the underlying run-
time can be very heterogeneous and is not dependent
on a certain kind of device. More precisely, all kinds
of hardware can be used to set up the IoT middle-
ware. This hardware comprises for example, virtual
machines hosted by a cloud provider, non-virtualized
web servers, personal computers, or even smart de-
vices. The great advantage of TOSCA is that these
runtimes can be easily interchanged for different sce-
narios. For example, a cloud provider can be chosen
based on different criteria such as costs, or how se-
cure data is stored. Because of the high heterogeneity
of the underlying hardware, the creation of the corre-
sponding Node Types differs greatly. Because of that,
we describe the creation of an exemplary Node Type
which represents a virtual machine hosted on a cloud
provider. This Node Type requires multiple properties
defining the type of the virtual machine, and the virtual
resources, such as CPUs, main memory, or disc space.

On top of this virtual machine, the operating sys-
tem is hosted. As described in Sect. 3.1, the operating
system Node Type is provided with the mentioned
properties, IAs, and DAs. This Node Type is quite sim-
ilar to the operating system Node Type used to model
the smart devices and, thus, is not described again.

The IoT middleware itself is also represented by a
Node Template, which is connected to the operating
system via the hostedOn Relationship Template. IoT
middlewares are also very heterogeneous, however, all
corresponding Node Types require properties for their
configuration, IAs that contain the logic to set up, and
DAs, e.g., for the installers. An exemplary modeling
of different IoT middlewares is described in Section 4.

If the IoT middleware is not hosted on an own
infrastructure but is provided as an external service
(e.g., hosted by an external cloud provider), the model
differs greatly. In this case, the IoT middleware stack
only consists of the IoT middleware Node Template,
because its infrastructure is hosted externally. This
means that only a single Node Type needs to be created,
which can be kept very simple because no IAs and
DAs are necessary due to the service being set up on a
remote host. Usually, certain properties are required,
such as credentials to authenticate at the cloud provider
and specific properties required by the IoT middleware
service, e.g., the payment plan to be used.

3.3 Modeling IoT Applications

In this section, we describe how IoT applications
can be modeled using TOSCA. The Node Types for
the underlying resource and the operating system of
the stack are the same as the ones used for the IoT
middleware. Consequently, they do not need to be
described. Of course, the IoT application could also
be hosted by an external service provider. In this
case, modeling the infrastructure is not necessary,
as described before. The Node Type for the IoT
application itself highly depends on the kind of
application. At least the IAs and DAs to set it up
are required. Furthermore, depending on the appli-
cation, a specific set of properties needs to be provided.

Once all three stacks are modeled as described
in the previous sections, and as depicted in Figure 2,
the whole IoT environment can be set up by using
the resulting topology as input for a corresponding
TOSCA engine. In the following, we will validate the
described approach based on two case studies.

4 VALIDATION: THREE CASE
STUDIES

In recent years, a large amount of IoT middle-
wares (Corici et al., 2012; Ramparany et al., 2014;
Alaya et al., 2014; Mineraud et al., 2016) have
emerged such as Eclipse Mosquitto1, FIWARE2, and
OpenMTC3. However, these middlewares do not offer
a homogeneous way of communication among smart
devices and applications. Different protocols, such as
MQTT, HTTP, and CoAP, are employed, as well as dif-
ferent interaction paradigms, such as publish/subscribe
and request/response interaction models. In this sec-
tion, we validate our approach by modeling and de-
ploying an IoT environment based on three different
IoT middlewares: (i) Eclipse Mosquitto, (ii) FIWARE
Orion Context Broker, and (iii) the OpenMTC plat-
form. In the following, we assume that the physi-
cal deployment of the involved devices has already
taken place.

Eclipse Mosquitto is an open-source message
broker implementing the OASIS standard MQTT4,
a lightweight publish/subscribe messaging protocol.
Mosquitto is a topic-based message broker to which
subscribers register their interest by subscribing to spe-
cific topics in order to get notified when publishers
send messages to these topics. The Orion Context

1 https://www.mosquitto.org/ 2 https://www.fiware.org/
3 http://www.open-mtc.org/ 4 http://www.mqtt.org/

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

334



Temperature-
Subscriber

(HomeAssistant)

MessageBroker
(Mosquitto_3.1)

Temperature-
Publisher

(PythonApp)

Temperature-
Topic
(Topic)

Python1
(Python_2.7)

Python2
(Python_2.7)

Raspberry Pi
Device

(RaspberryPi3)

Device-OS
(RaspbianJessie)

Broker-OS
(Ubuntu14.04VM)

Hypervisor2
(OpenStack)

hostedOn dependsOnconnectsTo

DA

App-OS
(Ubuntu14.04VM)

Hypervisor1
(VSphere_5.5)

DA

Figure 3: TOSCA topology model of an IoT Application and Eclipse Mosquitto.

Broker5 is an implementation of the Publish/Subscribe
Context Broker Generic Enabler developed as part
of the FIWARE platform. Through its REST API,
the Orion Context Broker allows the registration of
so-called context elements, which can be updated by
context producers. Furthermore, context consumers
can either query these context elements or subscribe
to them in order to be notified when they are up-
dated. The OpenMTC platform is an implementation
of the OneM2M standard6, which intends to support
machine-to-machine (M2M) communication for appli-
cations in a simplified way. It provides a REST API
and uses the CRUD principle for the resources. It has
a generic request/response model that can be mapped
on different transport protocols, e.g., HTTP, CoAP and
MQTT. The provided functionality includes registra-
tion of applications, discovery of resources, subscrip-
tion to new data, simplified addressing of resources,
scheduled communication and more.

In the following, we present the topology model
for the IoT environment based on Eclipse Mosquitto.
After that, we show the minimal changes necessary in
the topology to exchange the middleware, i.e., to use
the Orion Context Broker and the OpenMTC platform
instead of Mosquitto.

5 https://www.github.com/telefonicaid/fiware-orion/
6 http://www.onem2m.org/

4.1 Topology Model based on Eclipse
Mosquitto

Figure 3 depicts the TOSCA topology model, contain-
ing the necessary components and relationships for our
IoT scenario based on Eclipse Mosquitto. The stack
in the middle provides the infrastructure for Eclipse
Mosquitto, i.e., the Node Types OpenStack and
Ubuntu14.04VM. The Mosquitto_3.1 Node Type
contains shell scripts that can be executed in Linux
as Implementation Artifacts. They are responsible
for installing, configuring and starting a Mosquitto in-
stance onto the Ubuntu Virtual Machine hosting it. As
property, the Topic Node Type has the topic name to
which the device software publishes sensor data and to
which the IoT application subscribes. The configura-
tion of topics differs in the many existing middlewares.
In our approach, this issue is addressed by attaching
the middleware-specific logic as an Implementation
Artifact to the Topic Node Template. Mosquitto, how-
ever, does not require the topics to be pre-configured,
i.e., topics are dynamically created by publishing. For
this reason, the Topic Node Template in this case does
not contain an Implementation Artifact and only has a
single property.

The stack on the right models the infrastructure
for a python-based application. The RaspberryPi3
Node Type represents a physical Raspberry Pi 3, to
which sensors and actuators are attached. The Rasp-
bianJessie Node Type corresponds to the Raspbian

Internet of Things Out of the Box: Using TOSCA for Automating the Deployment of IoT Environments

335



Python1
(Python_2.7)

MessageBroker
(FIWARE-Orion_1.2)

MongoDB
(MongoDB-Server)

Hypervisor2
(OpenStack)

Broker-OS
(Ubuntu14.04VM)

Python2
(Python_2.7)

Raspberry Pi
Device

(RaspberryPi3)

Device-OS
(RaspbianJessie)

Temperature-
Subscriber

(HomeAssistant)

Temperature-
Publisher

(PythonApp)

Temperature-
Topic
(Topic)

IA

App-OS
(Ubuntu14.04VM)

Hypervisor1
(VSphere_5.5)

hostedOn dependsOnconnectsTo

DA DA

Figure 4: TOSCA topology model of an IoT Application and FIWARE Orion Context Broker.

operating system installed on the Raspberry Pi. The
PythonApp Node Type models a generic Python-
based application with its implementation, a Python
script, attached as Deployment Artifact. This script
periodically reads values of a temperature sensor and
sends them to Mosquitto by using the open-source
MQTT client library Eclipse Paho7. To connect to
Mosquitto, the MQTT client needs (i) the IP address
of the Virtual Machine hosting Mosquitto, and (ii) the
topic name to which sensor data should be published.
This information is provided as a configuration file,
which is generated by the Implementation Artifact of
the connectsTo relationship and copied to the Rasp-
berry Pi during the deployment.

Finally, the stack on the left provides the in-
frastructure, i.e., the Node Types VSphere_5.5 and
Ubuntu14.04VM, for the open-source, Python-based
IoT Application HomeAssistant8. The HomeAssis-
tant Node Type contains shell scripts as Implemen-
tation Artifacts for installing, configuring and start-
ing a HomeAssistant instance in the Ubuntu Virtual
Machine hosting it. The HomeAssistant instance sub-
scribes to Mosquitto in order to receive the temperature
values and shows them in its graphical dashboard. For
that, it needs to know the IP address of the Virtual
7 https://www.eclipse.org/paho/
8 https://www.home-assistant.io/

Machine hosting Mosquitto and the topic name to sub-
scribe to. During the deployment, this information is
added to the HomeAssistant configuration file, which
is attached to a HomeAssistant Node Template as a
Deployment Artifact.

4.2 Topology Model based on FIWARE
Orion Context Broker

Figure 4 depicts the TOSCA topology model of our
IoT scenario based on the FIWARE Orion Context
Broker. The highlighted components correspond to the
changes in the topology model in Figure 3. Only the
Mosquitto_3.1 Node Template needs to be exchanged
by the FIWARE-Orion_1.2 Node Type, and its de-
pendency, the MongoDB-Server Node Type. The
FIWARE-Orion_1.2 Node Type contains the shell
scripts as Implementation Artifacts responsible for in-
stalling, configuring and starting the Orion Context
Broker. In contrast to Mosquitto, Orion requires the
configuration of topics. For that, we attach an Imple-
mentation Artifact to the Topic Node Template, which
contains Orion-specific logic for the configuration of
topics. Finally, since Orion does not use MQTT but in-
stead provides a REST API to publish and query sensor
values, the Deployment Artifacts of the PythonApp
and HomeAssistant Node Templates are required to

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

336



Middleware
(OpenMTC)

Python1
(Python_2.7)

Python2
(Python_2.7)

Raspberry Pi
Device

(RaspberryPi3)

Device-OS
(RaspbianJessie)

Temperature-
Subscriber

(HomeAssistant)

Temperature-
Publisher

(PythonApp)

Temperature-
Topic
(Topic)

IA

App-OS
(Ubuntu14.04VM)

Hypervisor1
(VSphere_5.5)

hostedOn dependsOnconnectsTo

DA DA

Figure 5: TOSCA topology model of an IoT Application and the OpenMTC platform as a service.

be exchanged.

4.3 Topology Model based on the
OpenMTC Platform

Besides deploying an IoT middleware on an own in-
frastructure (cf. Sect. 4.1 and 4.2), it is possible to
model a middleware, which is available on an external
infrastructure (e.g., an external cloud), as a service.
Figure 5 depicts the TOSCA topology model, contain-
ing the necessary components and relationships for our
IoT scenario based on the OpenMTC platform, which
is modeled as a service. The highlighted components
correspond to the changes in the topology model in
Figure 3. Only the Mosquitto_3.1 Node Template
needs to be exchanged by the OpenMTC Node Tem-
plate. In this case, we do not need to provide the infras-
tructure Node Types for OpenMTC. The OpenMTC
Node Type solely contains the properties indicating the
IP address of the service’s host and the required cre-
dentials. An IA containing OpenMTC-specific logic
for the configuration of topic is attached to the Topic
Node Template. Finally, the Deployment Artifacts of
the PythonApp and HomeAssistant Node Templates
are also exchanged to be able to publish and query
sensor values.

We create the described Node Types and model the
TOSCA topologies of Figs. 3 to 5 using the graph-
ical modeling tool Winery. These topologies are
handed over to the TOSCA runtime environment Open-

TOSCA, which automatically sets up the modeled IoT
environments out of the box, i.e., once we have these
topologies, they can be reused to set up these environ-
ments without further configuration or modifications
in the models.

5 RELATED WORK

This section describes the related work regarding soft-
ware provisioning. Li et al. (2013) propose to employ
the TOSCA standard to specify the basic components
of IoT applications (e.g., gateways, controllers, etc.)
and their configuration, in order to automate IoT ap-
plication deployment in heterogeneous environments.
Extensions of this work were presented by Vögler
et al. (2015, 2016). The authors propose the deploy-
ment framework LEONORE for the deployment and
execution of custom application logic directly on IoT
gateways. However, for the framework to know the
available IoT gateways for the provisioning, the IoT
gateways must have a pre-installed local provision-
ing agent. This agent registers itself to the frame-
work by providing its unique identifier and profile data
of the gateway (e.g., MAC-address, instruction set,
memory consumption). In contrast, our approach does
not require any pre-installed components on the IoT-
gateways (i.e., on the devices) beside the operating
system because all the other necessary components are
set up automatically.

Internet of Things Out of the Box: Using TOSCA for Automating the Deployment of IoT Environments

337



Hur et al. (2015) propose a Semantic Service De-
scription (SSD) ontology and a system architecture to
automatically deploy smart devices to heterogeneous
IoT integration middlewares, aiming to solve interoper-
ability problems between them. Our paper also aims to
solve these problems, however we propose a standard-
based approach to automatically deploy smart devices
to the IoT integration middlewares, and to deploy these
middlewares as well.

Hirmer et al. (2016b,1016c) introduce an approach
for automated binding of smart devices using a middle-
ware called Resource Management Platform (RMP).
The RMP enables an easy registration of smart devices
and their binding through adapters. An adapter is a
piece of code containing the logic to read sensor val-
ues of smart devices, send the sensor values to the
RMP, and to invoke the devices’ actuators. For the
binding, adapter scripts are automatically deployed
onto the devices or – if the device does not provide the
necessary resources – on remote runtimes, e.g., web
servers. An extension of the RMP, which uses TOSCA
to deploy the adapters, is described by Hirmer et al.
(2016a). In contrast to our work, Hirmer et al. con-
centrate on the binding of hardware devices whereas
our approach focuses on the whole IoT environment
including the middleware and the IoT applications
themselves. Furthermore, in the approach by Hirmer
et al., the deployment of the adapters is conducted
based on predefined packages that already contain pre-
modeled TOSCA Topology Templates. In this work,
we show how these models can be created tailor-made
for each use case scenario.

Clearly it is possible to employ other approaches
(e.g., Ansible, Vagrant, Docker) instead of TOSCA for
the automated deployment of IoT applications. How-
ever, in contrast to these approaches, TOSCA enables
a generic approach based on topology models and a
corresponding graphical notation (Breitenbücher et al.,
2012). These topology models are highly adaptable
in a way that software components can be easily in-
terchanged. In other approaches, this requires a large
adaptation effort, e.g., when editing Vagrant scripts. In
addition, through the concepts of Node and Relation-
ship Types, TOSCA offers a high reusability for the
deployment of software.

We (Franco da Silva et al., 2016) implemented
a prototype that realizes the first case scenario – a
topology model based on Eclipse Mosquitto – and
can be seen as a proof-of-concept for the approach
introduced in this paper.

6 SUMMARY AND FUTURE
WORK

In this paper, we present an approach that employs the
Topology and Orchestration Specification for Cloud
Applications (TOSCA) standard to set up entire IoT
environments automatically. Using our approach, it
is possible to set up entire Internet of Things envi-
ronments out-of-the-box, i.e., once the IoT environ-
ment is modeled using TOSCA, this model can be
reused without further configuration or modifications
in the model. Furthermore, we give an overview of
the generic TOSCA concepts, and how they can be
used to model concrete IoT scenarios based on differ-
ent technologies. We also show how heterogeneous
IoT middleware systems can be deployed, wired, and
exchanged by a standard-based TOSCA runtime envi-
ronment. Moreover, the paper describes how an IoT
middleware can be used as a service available on an
external infrastructure, and how it can be deployed
individually and on-demand for separate use cases. Fi-
nally, we present technical details of our approach by
providing three detailed case studies based on the IoT
middlewares Eclipse Mosquitto, FIWARE Orion Con-
text Broker and OpenMTC platform. As future work,
we aim to develop more TOSCA Node Types related
to IoT environments, in order to support the automated
deployment of a wider range of IoT scenarios.

ACKNOWLEDGMENTS

This work was funded by the BMWi project Smart-
Orchestra (01MD16001F).

REFERENCES

Alaya, M. B., Banouar, Y., Monteil, T., Chassot, C., and
Drira, K. (2014). OM2M: Extensible ETSI-compliant
M2M service platform with self-configuration capabil-
ity. Procedia Computer Science, 32:1079–1086.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet
of things: A survey. Computer networks, 54(15):2787–
2805.

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann,
F., Nowak, A., and Wagner, S. (2013). OpenTOSCA
– A Runtime for TOSCA-based Cloud Applications.
In 11th International Conference on Service-Oriented
Computing, LNCS. Springer.

Binz, T., Breitenbücher, U., Kopp, O., and Leymann, F.
(2014). TOSCA: Portable Automated Deployment and
Management of Cloud Applications, pages 527–549.
Advanced Web Services. Springer.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

338



Botta, A., de Donato, W., Persico, V., and Pescapé, A.
(2016). Integration of Cloud computing and Internet
of Things: A survey. Future Generation Computer
Systems, 56:684–700.

Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann,
F., and Wettinger, J. (2014). Combining Declarative
and Imperative Cloud Application Provisioning based
on TOSCA. In Proceedings of the IEEE International
Conference on Cloud Engineering, pages 87–96. IEEE.

Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., and
Schumm, D. (2012). Vino4TOSCA: A Visual Notation
for Application Topologies Based on TOSCA, pages
416–424. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., and
Wettinger, J. (2015). A Modelling Concept to Inte-
grate Declarative and Imperative Cloud Application
Provisioning Technologies. In Proceedings of the 5th

International Conference on Cloud Computing and
Services Science, pages 487–496. SciTePress.

Corici, M., Coskun, H., Elmangoush, A., Kurniawan, A.,
Mao, T., Magedanz, T., and Wahle, S. (2012). Open-
MTC: Prototyping Machine Type communication in
carrier grade operator networks. In 2012 IEEE Globe-
com Workshops, pages 1735–1740. IEEE.

Franco da Silva, A. C., Breitenbücher, U., Képes, K., Kopp,
O., and Leymann, F. (2016). OpenTOSCA for IoT:
Automating the Deployment of IoT Applications based
on the Mosquitto Message Broker. In Proceedings
of the 6th International Conference on the Internet of
Things (IoT), pages 181–182, Stuttgart. ACM.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M.
(2013). Internet of Things (IoT): A vision, architectural
elements, and future directions. Future Generation
Computer Systems, 29(7):1645–1660.

Guth, J., Breitenbücher, U., Falkenthal, M., Leymann, F.,
and Reinfurt, L. (2016). Comparison of IoT Platform
Architectures: A Field Study based on a Reference
Architecture. In CLOSER.

Hirmer, P., Franco da Silva, A. C., Wieland, M., Breiten-
bücher, U., Kálmán, K., and Mitschang, B. (2016a).
Automating the Provisioning and Configuration of De-
vices in the Internet of Things. Complex Systems Infor-
matics and Modeling Quarterly. to appear.

Hirmer, P., Wieland, M., Breitenbücher, U., and Mitschang,
B. (2016b). Automated Sensor Registration, Binding
and Sensor Data Provisioning. In Proceedings of 28th

International Conference on Advanced Information
Systems Engineering, volume 1612 of CEUR Workshop
Proceedings, pages 81–88. CEUR-WS.org.

Hirmer, P., Wieland, M., Breitenbücher, U., and Mitschang,
B. (2016c). Dynamic Ontology-based Sensor Binding.
In Proceedings of 20th East European Conference on
Advances in Databases and Information Systems, vol-
ume 9809 of Information Systems and Applications,
incl. Internet/Web, and HCI, pages 323–337. Springer.

Hur, K., Chun, S., Jin, X., and Lee, K.-H. (2015). Towards
a semantic model for automated deployment of iot
services across platforms. In Proceedings of the 2015
IEEE World Congress on Services, SERVICES ’15,
pages 17–20. IEEE.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann, F.
(2013). Winery - A Modeling Tool for TOSCA-based
Cloud Applications. In Proceedings of 11th Interna-
tional Conference on Service-Oriented Computing, vol-
ume 8274 of LNCS, pages 700–704. Springer Berlin
Heidelberg.

Leymann, F., Fehling, C., Wagner, S., and Wettinger, J.
(2016). Native Cloud Applications: Why Virtual Ma-
chines, Images and Containers Miss the Point! In
Proceedings of the 6th International Conference on
Cloud Computing and Service Science, pages 7–15.
SciTePress.

Li, F., Vögler, M., Claeßens, M., and Dustdar, S. (2013).
Towards Automated IoT Application Deployment by
a Cloud-Based Approach. In Proceedings of the
2013 IEEE 6th International Conference on Service-
Oriented Computing and Applications, SOCA ’13,
pages 61–68. IEEE.

Mineraud, J., Mazhelis, O., Su, X., and Tarkoma, S. (2016).
A gap analysis of Internet-of-Things platforms. Com-
puter Communications, 89 - 90:5–16.

OASIS (2013). Topology and Orchestration Specification
for Cloud Applications (TOSCA) Version 1.0.

Ramparany, F., Galan Marquez, F., Soriano, J., and Elsaleh,
T. (2014). Handling smart environment devices, data
and services at the semantic level with the FI-WARE
core platform. In 2014 IEEE International Conference
on Big Data, pages 14–20. IEEE.

Vögler, M., Schleicher, J. M., Inzinger, C., and Dustdar, S.
(2016). A Scalable Framework for Provisioning Large-
Scale IoT Deployments. ACM Transactions on Internet
Technology (TOIT), 16(2):11:1–11:20.

Vögler, M., Schleicher, J. M., Inzinger, C., Nastic, S., Se-
hic, S., and Dustdar, S. (2015). LEONORE–Large-
Scale Provisioning of Resource-Constrained IoT De-
ployments. In Proceedings of the 2015 IEEE Sympo-
sium on Service-Oriented System Engineering, pages
78–87. IEEE.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud com-
puting: state-of-the-art and research challenges. Jour-
nal of Internet Services and Applications, 1(1):7–18.

Internet of Things Out of the Box: Using TOSCA for Automating the Deployment of IoT Environments

339


