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Abstract: Big geospatial data is the emerging paradigm for the enormous amount of information 

made available by the development and widespread use of Geographical Information System 

(GIS) software. However, this new paradigm presents challenges in data management, which 

requires tools for large-scale processing, due to the great volumes of data. Spatial Cloud Computing offers 

facilities to overcome the challenges of a big data environment, providing significant computer power and 

storage. SpatialHadoop, a fully-fledged MapReduce framework with native support for spatial data, serves as 

one such tool for large-scale processing.  However, in cloud environments, the high cost of processing and 

system storage in the providers is a central challenge. To address this challenge, this paper presents a cost-

efficient method for processing geospatial data in public cloud providers. The data validation software used 

was Open Street Map (OSM). Test results show that it can optimize the use of computational resources by up 

to 263% for available SpatialHadoop datasets. 

1 INTRODUCTION 

Cloud computation is a model that 

facilitates transparent, and on-demand, access to a set 

of computational resources (for example, networks, 

servers, warehousing, applications and services), 

which can be acquired quickly, and released 

with very little managing effort, or interaction with 

the service provider. Kramer and Senner (2015) 

affirm that the cloud offers virtually unlimited 

resources in terms of processing power and 

memory. Subsequently, the amount of computational 

resources required by this vast volume of 

information, aka big data, grows in an asymptotic 

way. Therefore, each computational resource 

wasted potentially represents wasted financial 

resources – making processing in cloud environments 

costly –, since public cloud providers, like Amazon 

AWS, Microsoft Azure, Google Cloud and others, 

charge users on a pay-per-use basis. 

Big data has some specific characteristics that 

distinguish it from other datasets (Sagiroglu and 

Sinanc, 2013). These characteristics, known as the 

7Vs, are (Pramila, 2015): i) Variety – referring to the 

different types of data, with more than 80% of them 

in an unstructured form; ii) Volume – the tremendous 

amount of data generated each second; iii) Velocity – 

the speed at which new data is being produced; iv) 

Veracity – how trustworthy the data is; v) Value –the 

importance of the data to the business; vi) Variability 

- data with constantly changing meaning and vii) 

Visualization – data presented to users in readable and 

accessible way. 

Consequently, some methods were developed to 

process big data (Sagiroglu and Sinanc, 2013). 

Among them, Apache Hadoop stands out. It is a 

programming framework for distributed computing 

using the divide and conquer (or Map and Reduce) 

method to break down complex big data problems 

into small units of work and process them in parallel. 

The rise of big geospatial data creates the need for 

an environment with ample computational resources 

in order to process this amount of geographical 

information. Some applications were developed 

specifically for this big geospatial data using Hadoop 

concepts (Eldawy and Mokbel, 2015): i) “GIS Tools 

on Hadoop”, which works with the ArcGIS product; 

ii) Parallel-Secondo as a parallel spatial DBMS that 

uses Hadoop as a distributed task scheduler; iii) MD-

HBase extends HBase, a non-relational database for 

Hadoop, to support multidimensional indexes; iv) 

Hadoop-GIS extends Hive, a data warehouse 

infrastructure built on top of Hadoop with a uniform 
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grid index for range queries and self-join. Finally, 

Eldawy and Mokbel (2015) presented SpatialHadoop, 

a fully-fledged MapReduce framework, with native 

support for spatial data with better performance than 

all the other applications listed.  

One challenge in a cloud environment is to know 

the cost of processing big data in public cloud 

providers. According to Zhang et al (2010), 

cloud computing has impact where large companies, 

such as Google, Amazon and Microsoft, strive to 

provide cost-efficient cloud platforms. In this way, 

the cost to execute the applications using these public 

providers is fundamental information for executing 

applications in a cloud.  In this context, this article 

presents a method for cost-efficient processing in 

public cloud providers for big geospatial data using 

SpatialHadoop. For this, an Open Street Map (OSM) 

dataset is used with the goal of optimizing the use of 

computational resources to reduce costs.  

The remainder of the article is divided into 5 

sections. Section 2 covers concepts of Spatial Cloud 

Computing, SpatialHadoop and some related works. 

Section 3 presents the method to determine the 

number of data nodes in a cluster, based on dataset 

size. The case study is presented in Section 4, with 

information about architecture, datasets, tests and 

results. Finally, Section 5 contains the conclusion and 

some suggestions for future work. 

2 THEORICAL REFERENCE 

In this section, concepts about cloud computing will 

be presented, highlighting the characteristics for an 

environment to process big geospatial data and, also, 

about SpatialHadoop, and related works. 

2.1 Spatial Cloud Computing 

Although computing hardware technologies, 

including a central processing unit (CPU), network, 

storage, RAM, and graphics processing unit (GPU), 

have advanced greatly in past decades, many 

computing requirements for addressing scientific and 

application challenges, such as those for big 

geospatial data processing, exceed existing 

computing capabilities (Yang et al., 2011).  

These challenges require a computing 

infrastructure that can: i) support data discovery, 

access, use and processing well, relieving scientists 

and engineers of IT tasks so they can focus on 

scientific discoveries; ii) provide real-time IT 

resources to enable real-time applications, such as 

emergency response; iii) deal with access spikes; and 

iv) provide extremely reliable and scalable service for 

massive numbers of concurrent users to advance 

public knowledge (Eldawy et al., 2015). 

Cloud computing offers facilities to overcome the 

challenges of a big data environment, providing 

substantial computer power and vast storage. In the 

most common definition of cloud computing, NIST 

(2011) indicates five essential characteristics, 

namely, on demand self-service, broad network 

access, resource pooling, rapid elasticity, and 

measured service. 

However, other characteristics are relevant to 

defining spatial cloud computing environments. 

Akdogan et al. (2014) proposed a cost-efficient 

partitioning of spatial data in clouds. This partitioning 

method considers location-based services and 

optimizes the storage of spatial-temporal data to be 

able to turn-off idle servers and reduce costs. 

Yang et al. (2011) defines Spatial Cloud 

Computing as the cloud computing paradigm that is 

driven by geospatial sciences, and optimized by 

spatiotemporal principles for enabling geospatial 

science discoveries and cloud computing within a 

distributed computing environment. This is expected 

to supply the computational needs for geospatial data 

intensity, computing intensity, concurrent access 

intensity and spatiotemporal intensity. 

According to NIST (2011), there are four 

deployment models for clouds, namely private, 

community, public and hybrid. Specifically, to public 

clouds, the authors define how the cloud 

infrastructure is provisioned for open use by the 

general public. In this model of cloud deployment, 

services are charged for using a pay-per-use method 

at some level of abstraction appropriate to the type of 

service (e.g. storage, processing or bandwidth). When 

working with big geospatial data, the volume of data 

and the power of processing are always high and, 

subsequently, expensive.  

According to the “Gartner Magic Quadrant for 

Cloud Infrastructure as a Service”, Amazon AWS is 

the leading public cloud provider (Leong et al., 2016). 

It offers “Elastic Map Reduce” (EMR) that uses 

Hadoop fundamentals and is integrated with others 

services available from providers, such as storage, 

data mining, log file analysis, machine learning, 

scientific simulation, and data warehousing. The case 

study related in this paper were done in an Amazon 

AWS environment. 

2.2 SpatialHadoop 

In past years, many applications have been producing 

an immense volume of data, but most of these data 
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are in an unstructured format. Hadoop emerged in this 

scenario. It is an open-source project from Apache 

community, which processes big data. It is comprised 

of a file system called Hadoop Distributed File 

System (HDFS) that provides an infrastructure to 

analyse and process high volume data through the 

MapReduce paradigm, using the benefits of 

distributed processing.  

However, Hadoop does have some limitations in 

processing big geospatial data related to the indexing 

of HDFS files (Eldawy and Mokbel, 2015). To bypass 

these limitations, SpatialHadoop was developed as a 

fully-fledged MapReduce framework with native 

support for spatial data. It was built on Hadoop base 

code, adding spatial constructs and the awareness of 

spatial data inside the core functionality of traditional 

Hadoop. 

SpatialHadoop comprises four main layers 

(Figure 1), namely, language, operations, 

MapReduce and storage. All of them execute in a 

cluster environment with one master node that breaks 

a MapReduce job into smaller tasks, carried out by 

slave nodes.  

 

Figure 1: SpatialHadoop high-level architecture. 

The Application layer is out from the 

SpatialHadoop core, but is fundamental to interact 

with users. Among these applications, are: 

CG_Hadoop, proposed by Eldawy et al.  (2013), is a 

suite of scalable and efficient MapReduce algorithms 

for various fundamental computational geometry 

operations, such as, polygon union, skyline, convex 

hull, farthest pair, and closest pair; MNTG, a web-

based road network traffic generator, created by 

Mokbel et al. (2014); TAREEG, a MapReduce-based 

web service, that uses SpatialHadoop fundamentals 

for extracting spatial data from Open Street Map, 

proposed by Alarabi et al. (2014); SHAHED, that 

uses SpatialHadoop to query and visualize spatio-

temporal satellite data, proposed by Eldawy et al. 

(2015). 

The language used by SpatialHadoop is Pigeon, a 

simple high-level SQL-like language, extended from 

Pig Latin. It is compliant with the Open Geospatial 

Consortium’s (OGC) simple feature access standard, 

which is supported in both open source and 

commercial spatial Data Base Management System 

(DBMS). Pigeon supports OGC standard data types 

including point, linestring and polygon, as well as 

OGC standard functions for spatial data. 

The operations layer encapsulates the 

implementation of various spatial operations with 

spatial indexes and the new components in the 

MapReduce layer. According to Aji et al. (2013), the 

operations layer comprises: basic operations, range 

query, k-nearest neighbor (knn) and spatial join; 

CG_Hadoop, a suite of scalable and efficient 

MapReduce algorithms for various fundamental 

computational geometry problems, namely, polygon 

union, skyline, convex hull, farthest pair, and closest 

pair (Eldawy et al., 2013); and spatial data mining, 

operations developed using spatial data mining 

techniques. 

Similar to Hadoop, the MapReduce layer in 

SpatialHadoop (Figure 2) is the query processing 

layer that runs MapReduce programs (Eldawy and 

Mokbel, 2015). However, contrary to Hadoop where 

the input files are non-indexed heap files, 

SpatialHadoop supports spatially-indexed input files. 

SpatialHadoop enriches traditional Hadoop systems 

with two main components: SpatialFileSplitter, an 

extended splitter that exploits the global index in 

input files to perform early pruning of file blocks not 

contributing to answer, and SpatialRecordReader, 

which reads a split originating from spatially indexed 

input files and exploits the local indexes to efficiently 

process it. 

 

Figure 2a: MapReduce in traditional Hadoop (Eldawy and 

Mokbel, 2015). 

 

Figure 2b: MapReduce in SpatialHadoop (Eldawy and 

Mokbel, 2015). 
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The Storage Layer creates two index layers, 

global and local. The global index is applicable on a 

cluster’s master node, while local indexes organize 

data in each slave node. The SpatialHadoop supports 

the main spatial index structures (Eldawy and 

Mokbel, 2015): grid file (Figure 3a), a simple flat 

index that partitions the data according to a grid, such 

that, records overlapping each grid cell are stored in 

one file block as a single partition; R-tree (Figure 3b), 

in this indexing technique records are not replicated 

which causes partitions to overlap; R+-tree (Figure 

3c), a variation of the R-tree where nodes at each level 

are kept disjoint, while records overlapping multiple 

nodes are replicated to each node to ensure efficient 

query answering.  

Eldawy et al. (2013) developed four more 

indexing techniques for SpatialHadoop, namely, Z-

curve, Hilbert curve, Quad tree, and K-d tree, but 

these techniques are not as widely used as the others. 

 

Figure 3a: Grid file indexing (Eldawy and Mokbel, 2015). 

 

Figure 3b: R-tree indexing (Eldawy and Mokbel, 2015). 

 

Figure 3c: R+-tree indexing (best viewed in color) (Eldawy 

and Mokbel, 2015). 

 

2.3 Related Work 

SpatialHadoop was presented in 2013 by Eldawy and 

Mokbel (2013) as the first fully-fledged MapReduce 

framework with native support for spatial data. In this 

article, the authors used a demonstration scenario 

created on an Amazon AWS, with 20 node cluster to 

compare SpatialHadoop and traditional Hadoop in 

three operations, namely, range query, knn and spatial 

join. In this paper, as in others, such as, Mokbel et al. 

(2014), Alarabi et al. (2014), Eldawy et al. (2015) and 

Eldawy et al. (2016), a static computational 

environment was used to validate tests. The increase 

of data nodes was done in a controlled way, without 

automation. 

A modular software architecture for processing 

big geospatial data in the cloud was presented by 

Kramer and Senner (2015). Since the proposed 

framework does not distinguish whether the cloud 

environment is private or public, a third-party tool – 

Ansible – was used to execute provisioning scripts 

Finally, in 2016, Das et al. (2016) proposed a 

geospatial query resolution framework using an 

orchestration engine for clouds. However, the cloud 

environment used was private, and no dynamic 

allocation of computational resources was performed. 

None of these works presents a method to 

optimize the use of computational resources, and 

reduce financial costs on public cloud providers when 

using SpatialHadoop to process big geospatial data. 

This paper presents a case study about a cost-

efficient method to process geospatial data on public 

cloud providers, optimizing the number of data nodes 

in a SpatialHadoop cluster according to dataset size. 

3 CLUSTER SIZING 

A common uncertainty for Hadoop environment 

administrators is how to define the cluster size 

infrastructure. In a static environment, like a private 

cloud, most of the time the computational resources 

are limited and big geospatial data grows faster, 

requiring ever more resources. On the other hand, in 

public cloud providers, the computational resources 

are unlimited, but they come with fees, so it is very 

important to define a cost-effective environment. 

A twenty-node cluster can be necessary to process 

SpatialHadoop queries and operations on a 100Gb 

dataset, but is overprovisioned to work on a dataset of 

only 5Gb. To solve this problem, a formula to 

calculate the quantity of data nodes based on dataset 

size is fundamental. Adapting the proposal by 

Hadoop Online Tutorial (2016), the following 
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formula can be used to determine the ideal number of 

data nodes in a SpatialHadoop environment on public 

cloud providers: 
 

 

(1) 

 

DN represents the total data nodes needed; T is the 

total amount of data and d is the disk size in each 

node.  

It is necessary to calculate T because the total 

amount of data used in a SpatialHadoop application 

is not only the volume of the dataset. To calculate T, 

the following formula can be used: 
 

 

(2) 

 

C represents the compression rate of the dataset, 

required, because SpatialHadoop can work with 

compressed files. When no compression is used, the 

value must be 1. R is the number of replicas of data in 

HDFS and S represents the size of the dataset. The 

notation i refers to the intermediate working space 

dedicated to temporarily storing results of Map Tasks. 

Finally, w represents the percentage of space left 

(wasted) to HDFS file system.  

To demonstrate the use of these formulas, let us 

consider a real Open Street Map dataset of 96Gb of 

total size (2.7 billion records) available to download 

at http://spatialhadoop.cs.umn.edu/datasets. Without 

compression (C = 1), without replication (R = 1), 

considering i = 25% and w = 20%, the value obtained 

for T is 106.67. Considering that each data node has a 

disk with 32Gb (d = 32) it is possible to conclude that 

the ideal number of data nodes (DN) is 4. 

4 CASE STUDY 

To support the method proposed in this paper, a study 

case using Open Street Map datasets was executed, in 

a cloud environment, built in Amazon AWS provider. 

The following sections detail the system architecture, 

the datasets used, the tests and the results. 

4.1 System Architecture 

An architecture composed of three layers, namely 

Web Interface, Storage and SpatialHadoop (Figure 

4), was created to support the tests environment and 

the proposed method. 

 
 

Figure 4: System Architecture Overview. 

The Web Interface Layer is a user-friendly 

interface to receive inputs and to show results. In this 

layer, the user selects an available dataset (or uploads 

one if it is new) using the “Dataset Catalogue”. The 

workflow to be executed is loaded or created through 

the “Workflow Catalogue”. A workflow contains 

information about queries and operations to be 

executed and file index type (Grid, R-Tree or R+-

Tree). Results are available in “Results Catalogue”. 

The Storage Layer stores all datasets available, the 

workflows used, and the results saved after 

application execution.  

The SpatialHadoop Layer is the core layer. It is 

responsible for provisioning the SpatialHadoop 

cluster with one master node and n data nodes. The 

quantity of data nodes is defined based on dataset 

size, as shown in Section 3. After provisioning the 

cluster, this layer indexes the dataset (based on user 

choice in the Web Interface layer), processes queries 

and operations, and saves the results file back in the 

Storage Layer. 

4.2 Open Street Maps Datasets 

The OpenStreetMap (OSM) is a project for 

geographic information that has a world map built by 

volunteers. The project is open data and can be used 

for any purpose. 

The OSM files are available on Planet.osm web 

site (http://wiki.openstreetmap.org/wiki/Planet.osm) 

and the files used in this research are accessible on 

SpatialHadoop Datasets website 

(http://spatialhadoop.cs.umn.edu/datasets). The file 

format is XML and can be downloaded in a 

compacted way for convenience. 

The datasets considered in our case study are 

presented in Table 1. The Lakes’ dataset contains 

boundaries of lakes in the world in a 2.7 GB 
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compacted file with about 8.4M records. A larger 

dataset contains the boundaries of all buildings 

around the world – 6 GB in compacted size, and 

comprising 115M records. These files were 

previously uploaded to Amazon S3, and are available 

publicly on the URIs https://s3.amazonaws.com 

/spatial-hadoop/input/lakes.bz2 and https://s3 

.amazonaws.com/spatial-hadoop/input/buildings. 

bz2, respectively. 

Table 1: Datasets and their features. 

Dataset Size Compacted Records 

Lakes 9.0 GB 2.7 GB 
8.4 

million 

Buildings 26.0 GB 6 GB 
115 

million 

4.3 Tests and Results 

A SpatialHadoop environment was built using 

Amazon AWS EMR to test the proposed method. 

Although all three layers of the system architecture – 

Web Interface, Storage and SpatialHadoop – were 

allocated on a cloud provider, the focus of this test 

scenario – performance and cost – was specifically 

carried out on the SpatialHadoop layer.   

Figure 5 shows the Amazon Web Interface. For 

our tests we used the Amazon interface to configure 

parameters and execute the scripts.  

 

Figure 5: Amazon Configuration Interface. 

Table 2 presents the instances configurations used 

to run the tests on Amazon AWS. The master node is 

responsible for the cluster management and requires 

more memory than datanodes. For the case study, the 

master node has 15 GiB memory and 2 SSDs with 80 

GiB each. The price per hour for this configuration is 

US$ 0.42. The data nodes are responsible for the 

spatial data processing. They have 7.5 GiB memory 

and 2 SSDs with 40 GiB each. The price per hour for 

each node is US$ 0.21. 

Table 2: Instances Configurations on Amazon AWS. 

Function vCPU Memory 
Disk 

(SSD) 

Price 

(US$) 

Master 8 15 2x 80 Gb 
0.42 / 

hour 

Data 

Node 
4 7.5 2x 40 Gb 

0.21 / 

hour 
 

The clusters created for tests comprise one master 

node and the quantity of data nodes based on the 

formula shown in Section 3. With C = 1, R = 3, i = 

25% and w = 20%, 1 data node was required for the 

small dataset and 2 data nodes for the big one. 

Once parameters were defined in the Web 

Interface Layer and the dataset was stored in the 

Storage Layer, the SpatialHadoop Layer was 

configured to execute the steps (scripts). Each step 

was configured with the Amazon Web Interface 

(Figure 6). We defined the script and received the 

results. 

 

Figure 6: Steps on Amazon Web Interface. 

The steps executed were: 

• Provisioning Cluster: a defined request is sent to 

the cloud provider with the number and type of master 

node and data nodes. The command used in Amazon 

AWS Command Line Interface (CLI) is: 
 

aws emr create-cluster  \ 

--applications Name=Hadoop \ 

--bootstrap-actions 

'[{"Path":"s3://scripts-nuvem/install-

shadoop-uber.sh","Name":"Instalar 

SpatialHadoop"}]' \ --ec2-attributes 

'{"KeyName":"acesso-aws", 

"InstanceProfile":"EMR_EC2_DefaultRole"

,"SubnetId":"subnet-55f01169", 

"EmrManagedSlaveSecurityGroup":"sg-xx", 

"EmrManagedMasterSecurityGroup":"sg-

xx"}' --service-role EMR_DefaultRole \ 

--enable-debugging \ --release- label 

emr-5.1.0 --log-uri 's3n://aws-logs-2-

us-east- 1/elasticmapreduce/' \--name 
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'geo-cluster' \--instance-groups 

'[{"InstanceCount":1,"InstanceGroupType

":"CORE","InstanceType":"c4.xlarge","Na

me":"Core instance group - 

2"},{"InstanceCount":1,"InstanceGroupTy

pe":"MASTER","InstanceType":"c4.2xlarge

","Name":"Master instance group - 

1"}]'  \ --region us-east-1 

 

• Transfer Dataset: copies an existing dataset 

from Storage Layer to Data nodes. 

• Index Dataset: applies the user-defined index 

type to dataset. The AWS CLI command to index a 

dataset using Grid is: 
 

aws emr add-steps --cluster-id j-xx \ 

--steps '[{"Args":["index","s3://dados-

spatial/sports.bz2", "s3://dados-

spatial/sports.index","shape:osm","sind

ex:grid", "-overwrite"], 

"Type":"CUSTOM_JAR", "ActionOnFailure": 

"CONTINUE","Jar":"/usr/lib/hadoop/spati

alhadoop-2.4-uber.jar", 

"Properties":"","Name":"Index"}]' 

 

• Queries and Operations: executes the user-

defined queries and operations. The following AWS 

CLI command was used to execute a KNN query: 
 

aws emr add-steps --cluster-id j-xx \ 

--steps '[{"Args":["knn","s3://dados-

spatial/sports.index", "s3://dados-

spatial/sports-knn.txt", "point:-

15.763372,-47.8700677", "k:1000", 

"shape:osm", "-overwrite"], 

"Type":"CUSTOM_JAR","ActionOnFailure":"

CONTINUE", "Jar":"/usr/lib/hadoop/ 

spatialhadoop-2.4-uber.jar", 

"Properties":"","Name":"KNN"}]' 

 

• Save Results: saves the result file – usually a text 

file – on Storage Layer to be accessed by user. 

• Turn-off Cluster: to avoid waste of 

computational resources and financial costs, all the 

cluster (master node and data nodes) are turned off 

unless some stickiness parameter was defined by the 

user. 

Table 3 presents the runtime of each task in a test 

environment. The values represent an average of 3 

executions for each dataset. The queries – KNN and 

Range Query – and the indexing type Grid were 

chosen randomly, and could be changed by any query 

or operation and indexing type. 

The indexing task is very important to ensure the 

SpatialHadoop high performance. Note that the index 

process takes up most of the time, but subsequently 

the queries are done very quickly.  

Table 3: Time measured in each task. 

Task Small Dataset 

(seconds) 

Large Dataset 

(seconds) 

Provisioning Cluster 300 420 

Transfer Dataset 60 120 

Index Dataset 600 3540 

KNN 10 8 

Range Query 8 6 

Save Results 2 2 

Turn-off Cluster 100 164 

TOTAL Time 1080 4260 
 

Given the cost of the cluster to support the Small 

Dataset (1 master node and 1 data node) as US$ 

0.63/hour, the total cost to process these two queries 

was US$ 0.19. For the cluster to support the large 

dataset (comprising 1 master node and 2 data nodes), 

the cost per hour is US$ 0.84, and the cost of 

processing these queries is US$ 0,99.  

If this cluster was created without considering the 

dataset’s size – and other parameters defined in the 

formula – it would be necessary to consider the 

largest dataset available to ensure that any query or 

operation could be executed in this cluster. 

Considering all datasets available to download on the 

SpatialHadoop webpage, the largest dataset – an 

OSM file with 137Gb of size and 717M records about 

road networks represented as individual road 

segments – would require a cluster comprising 1 

master node and 6 data nodes. The total cost of this 

cluster would be US$ 1.68 per hour and running the 

small dataset (18 minutes) would cost US$ 0.50, 

costing 263% more than was really needed. 

Analysing all datasets available in SpatialHadoop 

webpage, and considering the scenario and 

parameters defined in our test environment (C = 1,  R 

= 3, i = 25% and w = 20%), only 7 out of a total of 33 

datasets need more than 1 data node to be executed. 

On the other extreme, only 1 dataset needs a 6-node 

cluster. Processing any other datasets will waste 

computational resources if the proposed formula is 

not applied. 

5 CONCLUSION AND FUTURE 

WORKS 

The enormous volume of geographic data, produced 

daily, through voluntary geographic information 

systems, satellite imaging, and other systems, is 

classified as Bigdata, or more specifically, 

GeoBigdata. To process this geo big data, spatial 

cloud computing, comprising several frameworks, 

has been presented as a viable tool. In the framework 
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that concerns our work, SpatialHadoop has the 

infrastructure to process geographic databases, and 

many tools have been developed for operations, joins, 

and indexing in geodatabases. 

Cloud computing provides infrastructure to 

process big geospatial data that needs high 

performance but requires a computational 

infrastructure that can be expensive, when working 

on public cloud providers. With this, it is necessary to 

use a cost-efficient method to avoid wasting 

computational resources and increases in financial 

costs. 

The method proposed in this paper and 

demonstrated by the case study presented, achieves 

the goal of supporting a SpatialHadoop environment 

on public cloud providers, while avoiding the waste 

of computational resources. The formula to define the 

number of data nodes was validated in the case study 

and about 263% of the cost was econimized. 

As future works we suggest optimizations on 

performance that can be obtained using task nodes – 

for job processing only - and data nodes together. In 

this way, it is possible to apply scalability in 

SpatialHadoop applications based on user-defined 

threads, mainly in indexing task, that demands 

powerful computing. Others applications can also be 

tested, like SpatialSpark and ISP-MC. 
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