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Abstract: Event processing is order and time sensitive and therefore assumes temporally correct ordered event streams,
even in distributed systems, to be able to create correct results. In this work we discuss implementations of
four different out-of-order event compensation algorithms that use different kinds of dynamic time-out buffer-
ing techniques, and we compare those to a static buffering method. This is an approach which is generally
applicable and easy to integrate for existing distributed systems such as for Internet of Things applications.
For the evaluation, specific datasets were recorded, which are introduced in this paper, and which are freely
available under a Creative Commons license. Results show, that even with a restrictive buffer setting, most of
the out-of-order events can be compensated. Dynamic time-out buffering is still a trade-off between reaction
time and out-of-order event compensation, but it is useful in various applications.

1 INTRODUCTION

Distributed systems consist of spatially separated
nodes or processes which communicate with each
other via messages over computer networks. The
same applies for Internet of Things applications,
which can be considered as an inherently distributed
system generating and processing data. In event-
driven architectures this data is referred to as events
rather than as simple data points. Opher Etzion and
Peter Niblett (Etzion and Niblett, 2011) define an
event as something that has happened with an ac-
tual occurrence within a particular system or domain.
The continuous generation of events is called an event
stream or a time series of events.

In nowadays applications, such as for most Inter-
net of Things applications, it is no longer sufficient to
store data and retroactively process it, but rather pro-
cess data online and make decisions near real-time.
To be able to do so, a processing agent, such as an
event processing engine, collects the event streams
from different sources and processes them. This
raises a couple of issues, mainly introduced by var-
ious delays, e.g. when detecting events, transferring
events to its destinations, or processing events. Sup-
pose you are searching for a pattern of event A being
followed by event B, with each event coming from a
different source in a distributed system. This requires

that all delays are either zero or of constant length,
otherwise it is likely that out-of-order events occur.
These are events which arrive too late, e.g. in our
example event A occurred before event B but arrived
after event B in the event processing engine. Event
processing is order and time sensitive and therefore
assumes temporally correct ordered event streams to
be able to create correct results. Consequences are:

• Missed events: no event detected when an event
should have been detected.

• False positives: detected an event when no event
should have been detected.

• Wrong calculations: a wrong value is calculated
when using a time window.

Possible solutions to handle out-of-order events:

• Time-out buffering: events are delayed in a buffer
until they reach a preset time-out. Events arriving
after the time-out cannot be compensated. This
generates a further delay to the whole processing
chain, and it is still not guaranteed that all out-of-
order event occurrences will be compensated.

• Retrospective compensation (undo / redo): if an
out-of-order event is detected, then all affected
and previously derived events must be retracted
(undo), and the processing must be started again at
the occurrence of the detected out-of-order event
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(redo). As there are no transaction mechanisms
available in current event processing systems, the
logic for this must be implemented individually.

• Identifying gaps with sequence numbers: every
event gets a sequence number while it is gener-
ated in the event producer. This allows the event
processing agent to recognize if there is a gap in
the event stream. This method works only for one
event producer and not in a distributed system.

To enable the detection of out-of-order events in a
distributed system, it is necessary to introduce clocks
and assign timestamps to events. Handling time and
therefore clocks in a distributed system introduces
a couple of problems. It is necessary to guarantee
that all event producers use the same time. Solutions
therefore could be to synchronize the clocks (e.g.
by using the Network Time Protocol (NTP) (Mills,
2010)) of the event producers or, that all event pro-
ducers use the same clock (e.g. using the GPS time
or a time server). NTP synchronizes the clocks in a
predefined interval, but clocks may drift on their own,
and the synchronization process has some inaccura-
cies too. The second approach is not always avail-
able, has some latency and might create varying time
stamps. In general, it depends on the purpose and the
temporal granularity at which events are produced, to
be able to decide if one of the above mentioned meth-
ods is feasible. (cf. (Etzion and Niblett, 2011, pp.
291 - 295), (Della Valle et al., 2013), (Neville-Neil,
2015)).

To illustrate the importance of temporally correct
event streams, we have the following scenario from
the domain of connected cars in mind. Suppose there
is a multi-lane road with two cars each driving side
by side in the same direction. The cars scan the road
in front of them and report important observations to
the cars behind them over a wireless ad hoc network.
The right lane car at the head of the convoy detects
a person on the road 200 meters in front of it. At a
speed of 80 km/h this will not require any immediate
action, but this occurrence should be reported to the
other cars by alerting them: Event 1 (car 1, right lane,
person on the lane, 200m). The leading car on the left
lane receives this event and reports that its lane is free
for the next 300 meters: Event 2 (car 2, left lane, lane
is clear, 300m). The person moves on, causing the
cars to report following events: Event 3 (car 1, right
lane, person on the lane, 175m), and another report
by the car on the left lane: Event 4 (car 2, left lane,
lane is clear, 300m). The person reaches the left lane:
Event 5 (car 2, left lane, person on the lane, 150m).
Now, the right lane is free: Event 6 (car 1, right lane,
lane is clear, 300m).

The vehicles following car 1 and car 2 must ensure

to process those events timely and in the correct tem-
poral order to react fast and adequately. If the events
are in correct temporal order, they can infer following
information: The right lane is clear for the next 300
meters, while on the left lane there is a person in a
distance of 150 meters, and there is a person moving
from right to left. This example illustrates a use case
where the order of events is of significant importance
and where a minimum delay is required for further ac-
tions. This use case also has multiple event producers
which work independently of each other.

In this work we want to find answers to follow-
ing questions: Is there a dynamic buffering method
which is preferred over a static buffer? Is a dynamic
buffering method applicable in an Internet of Things
application? The expectations for an ideal buffer are
high. The buffer should be as small as possible and as
large as necessary so that all incoming events can be
fully re-ordered. The buffer should adapt itself to en-
vironmental changes, such as varying network delays
or other influences. Subsequently, we discuss the im-
plementation of four different out-of-order compensa-
tion algorithms, which use different kinds of dynamic
time-out buffering techniques and compare those to
an algorithm using a static buffering method. This is
a generally applicable and easy to integrate approach
for existing distributed applications. For the evalu-
ation, specific datasets were recorded which are in-
troduced in this paper, and which are freely available
under a Creative Commons license.

The next section gives an overview of existing and
related work in the field of out-of-order event pro-
cessing and compensation. The content of the dataset
for evaluating out-of-order event compensation algo-
rithms is discussed in Section 3. Section 4 describes
the out-of-order compensation algorithms. The re-
sults of the evaluation are discussed in detail in Sec-
tion 5 and, finally, Section 6 concludes this work.

2 RELATED WORK

The authors in (Mutschler and Philippsen, 2013a)
present a system for reliable, low-latency, and dis-
tributed out-of-order event processing for use cases
with high data rates of events. They use a K-slack
buffer approach where the buffer length (K) is contin-
uously recalculated and adjusted. Events are delayed
for K time units at most, and within this timeframe
events can be reordered. The result is a correctly or-
dered event stream with minimal delay. This system
does not use a local or global clock but instead de-
rives the current time by incoming events. This ap-
proach has given us a basis to design some of our al-
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gorithms, but with improvements on the buffer size
calculation. In (Mutschler and Philippsen, 2013b),
the same authors extend their work on Low-Latency
constraint systems, and the look at the question of
how out-of-order events can be compensated by us-
ing the different delays between hosts in distributed
systems, thereby choosing the best route compensat-
ing for the delays to guarantee the correct event order.

The work of (Li et al., 2007) introduces a new
method to handle out-of-order events. It explains how
the proposed algorithm uses Active Instance Stacks
(AIS) (Wu et al., 2006) in cases where new out-of-
order events have been received by the system. The
AIS is a data structure which not only stores the cur-
rent instance status, but also the previous one. The al-
gorithm stores prevent AISs until the amount of cur-
rent event time unit, window length and K length is
less than the highest time unit received. If this hap-
pens, the system will be able to safely purge this
event. In our work, we don’t just store the pre-
vious event but also a limited time window which
improves the buffer size precision. In (Chen and
Dömer, 2013), the authors explain an algorithm to use
with out-of-order Parallel Discrete Event Simulation
(PDES). This algorithm uses predictive tables to avoid
conflicts between segments and predict next steps in
simulations. These predictions help the out-of-order
PDES to minimize the false conflicts. Finally, they
compare the optimized simulation in different situa-
tions to affirm that the simulations increase the speed
over 1.8x.

Another domain in which the out-of-order com-
pensation is a sensitive issue is in audio and video ap-
plications. Addressing that, the paper (Arthur et al.,
2004) explains how the Transmission Control Proto-
col (TCP) degrades its performance in situations of
high packet reordering. The TCP uses sequence IDs
to re-order data packets on layer 4 (Transport Layer)
of the OSI model. This works reliably for network
data packets per network connection, meaning the re-
ordering is done for one source. In comparison to our
work, we do the re-ordering on layer 7 (Application
Layer) for several sources in a distributed system such
as an Internet of Things application.

3 DATASETS

3.1 Introduction

In this section we introduce the datasets we have
recorded with the purpose of evaluating out-of-order
event compensation algorithms. These are synthet-
ically generated datasets using standard commercial

devices, networks, and protocols commonly used in
Internet of Things applications aiming to resemble
real world use cases. Several sessions were carried
out to cover the influence of different parameters of
payload and network types. All datasets were made
open source and they are available to download on
our GitHub site1.

The datasets were designed to resemble the be-
havior and architecture of an Internet of Things use
case, where many nodes are connected over a net-
work. Each node continuously sends text-based mes-
sages to a common destination in a predefined interval
over HTTP. The event producers are various kinds of
Android smartphones, running a customized applica-
tion which is optimized for efficient event generation.
Two Windows PCs were also used as event producers
for the WLAN datasets running the same code base.
Details of the hardware and software configuration
of the used devices are provided in the tables 1 and
2. The sessions were recorded using either the inter-
nal wireless network after the IEEE 802.11 standard
(WLAN), or the public cell phone network (UMTS)
of different providers.

Whenever a temporally correct ordered time-
series event stream in a distributed system is required,
all nodes must be synchronized. A common approach
is to synchronize the clocks of all nodes and assign
timestamps to the events. The Network Time Protocol
(NTP) (Mills, 2010) was evaluated for this purpose.
A NTP client is already included in Android, but we
have no influence on the synchronization without root
permissions, which makes this variant useless for our
approach. A simpler variant is the Simple Network
Time Protocol (SNTP), but evaluations revealed that
this variant is too imprecise for our use case. An-
other interesting method could have been the usage of
vector clocks (Mattern, 1989). This algorithm does
not need any centralized time server, since it uses lo-
cal synchronized time to know when an event is an
out-of-order event. Unfortunately, it adds too much
complexity, as many sensors are involved in the sys-
tem, due to the exponential growth of messages when
an event is corrected. For this reason, we have im-
plemented our own solution where clients request the
server time via HTTP and then calculate the time dif-
ference to their internal clock. In more detail, to get
a properly synchronized clock, we queried the server
ten times and then calculated the median offset to the
server time. This synchronization mechanism uses a
similar methodology to the one used by the Precision
Time Protocol (PTP) (IEE, 2008). The synchroniza-
tion process is executed before the start of each ses-
sion.

1https://github.com/JR-DIGITAL/ooo-dataset
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Figure 1 shows the whole process starting from
the client’s detection of an event until it receives the
response from the server. The following timestamps
are involved:

• Detection time (dt): the time when the client de-
tects an event.

• Client send time (cst): the time when the message
leaves the client.

• Server receive time (srect): the time when the
server receives the event.

• Server response time (srest): the time when the
internal processing of the server is finished and
sends its response to the client.

• Client receive time (crt): the time when the client
receives the response from the server.

The following relevant durations can be derived
from these timestamps:

• Message preparation time: the duration between
the client’s detection of an event and its sending
of the message to the server (cst−dt).

• Server processing time: the duration the server
needs to process the message (srest− srect).

• Transmission time: (tt) the duration between
the event is detected until it reaches the server
(srect−dt).

• Network round-trip time: (RT T ) the duration
where the message is on the network (srect −
cst)+(crt− srest).

• Full processing time: this includes the preparation
time of the message, network round-trip time and
server processing time (crt−dt).

Figure 1: Chronological sequence from detecting an event
until the response is received by the client.

While recording a dataset, each client created its
own log file on the local device which contains all lo-
cally generated timestamps and settings. The server
logged all incoming message with additional times-
tamps into the server-side log file. After the recording

was finished, all log files were collected and merged
into one log file. This merged log file represents one
dataset and contains all necessary information to fully
reproduce all out-of-order events that have occurred.
A dataset contains following attributes:

• Device ID: a unique ID to identify each client.

• Sequence ID: (sid) an ascending serial number
which is unique for each message per client.

• Detection Time: (dt)

• Client send time: (cst)

• Client receive time: (crt)

• Server receive time: (srect)

• Server response time: (srest)

• Server processing time

• Message size: the size of the whole message in-
cluding payload and headers.

• Session Name: a name to identify the session

• Network type: UMTS or WiFi

• Time of the last time synchronization: time when
the client executed the clock synchronization.

• Synchronization time offset (ms): clock synchro-
nization offset between server’s clock and client’s
clock.

• Additional payload: the additional added pay-
load.

The datasets allow us to use two different ways
to identify an event as an out-of-order event. The
first is by using the sequence ID, which allows to
identify out-of-order events per each client. Assume
we have an event stream of e1,e2, ...,en which is or-
dered ascending by the sequence ID ei.sid < ei+1.sid,
(1 ≤ i < n). In this case we can identify an out-of-
order event e j if there is an event ei with 1≤ i < j≤ n
and ei.sid > e j.sid. Another approach, which is more
relevant in a distributed system, is to use the detec-
tion time dt. Therefore we assume an event stream
e1,e2, ...,en, (1 ≤ i < n) which is ordered ascending
by the detection time ei.dt ≤ ei+1.dt. An out-of-order
event e j can be identified if there is an event ei with
1≤ i < j ≤ n and ei.dt > e j.dt.

3.2 Analysis

An overview of all recorded datasets is given in ta-
ble 3 and 4. The datasets were recorded in nine ses-
sions, with each session lasting 600 seconds. The
datasets D-1 to D-5 have been done over the pub-
lic cell phone network (UMTS) of different providers
with 7–9 clients. In these datasets, the clients sent

A Dataset and a Comparison of Out-of-Order Event Compensation Algorithms

39



an event to the server in an interval of 500ms. In each
session we used a different predefined net payload be-
tween 0 bytes and 10KiB. This results in a bandwidth
for each client between 0.5KiB/s and 21.3KiB/s, and
a bandwidth on the server between 4.1KiB/s and
150KiB/s. The out-of-order events detected by using
the detection time ranges between 16.13% and 34.2%
of total events for each dataset.

The records S-7 to S-10 used our local WLAN
during working hours. The interval time between
events was set to 200ms. This results in a band-
width for the clients between 7KiB/s and 53KiB/s,
and for the server between 69KiB/s and 534 KiB/s.
Detected out-of-order events range between 19.91%
and 28.57% of total events for each dataset.

The amount of out-of-orders events for the WLAN
records (S-8 to S-10) is always higher than for the
UMTS data records (D1 to D5), this might be be-
cause of the lower interval of 200ms for the WLAN
dataset. The median and mean of the full processing
time (crt−dt) for the UMTS datasets is always higher
than the median and mean for the WLAN dataset.

4 ALGORITHMS

Four different algorithms for out-of-order event com-
pensation have been implemented in Java. All of them
use the detection time (dt) to identify out-of-order
events, as this is a suitable solution for distributed sys-
tems. The dynamic buffer algorithms continuously
recalculate the buffer size based on the transmission
times of the incoming events. Incoming event events
are kept in the buffer until dt+bu f f ertime is reached
and are emitted after this period. If the buffer time
is too small to correctly re-order an event, then it is
marked as not compensated and will be emitted im-
mediately. The aim for a dynamic buffer is to adapt
its buffer size according to the current environmental
situation e.g. the varying network delays. This allows
to keep the buffer time as small as possible while re-
ordering all incoming events. Subsequently we dis-
cuss the buffer size calculation of each proposed al-
gorithm.

4.1 Static Buffer Algorithm (SBA)

This algorithm uses a static, predefined buffer time.
The Static Buffer Algorithm is included for compari-
son purposes to be able to evaluate the differences to
other algorithms.

4.2 Buffer Estimation based on Single
Transmission Time (BETT)

A dynamic value of the buffer time is nec-
essary to achieve a better performance even
when there are several changes on the network.
Therefore, this algorithm uses the transmis-
sion time (tt) of the latest event to adapt the
buffer size. If tt + o f f set is smaller than the
currentBu f f erTime, then the buffer time will be in-
creased: newBu f f erTime = (currentBu f f erTime ∗
increaseFactor) + o f f set. If tt + o f f set is big-
ger than the currentBu f f erTime + threshold,
then the buffer size will be decreased as fol-
lows: newBu f f erTime = currentBu f f erTime ∗
decreaseFactor. The increaseFactor and
decreaseFactor define to which extent the buffer size
will be changed.

4.3 Buffer Estimation based on
Transmission Time Average
(BETTA)

This algorithm also uses the transmission time (tt) to
calculate the buffer time, but in contrast to BETT it
keeps n transmission times in a temporal window of
predefined length in milliseconds. This enables us
to get a baseline measure of the overall transmission
time. The arithmetic mean of this window is calcu-
lated and an offset is added:

bu f f erTime =
1
n

n

∑
i=1

tti +o f f set (1)

4.4 Buffer Estimation based on
Transmission Time Weighted
Average (BETTWA)

This algorithm also uses a temporal window of prede-
fined length in milliseconds containing n transmission
times to calculate a baseline of the overall network
delay. In this case we use a weighted mean with ex-
ponentially decreasing weights and add an offset.

bu f f erTime =
∑n

i=1(tti ∗wi)

∑n
i=1 wi

+o f f set (2)

wi =

(
n− i

n

)2

(3)
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Table 1: Overview of the used client devices’ hardware, hardware configuration and operating system.

Client ID Dataset Client ID Device Type OS Version Architecture Cores
1 dev 1 Huawei MediaPad 7 Zoll Android 4.0.3 SDK:15 armv7l 2
2 dev 2 Nexus S Android 4.1.2 SDK:16 armv7l 1
3 dev 3 PC Client Windows 7 amd64 4
4 dev 4 PC Client Windows 7 x86 2
5 dev 5 Motorola Android 4.1.2 SDK:16 i686 2
6 dev 6 Nexus 7 Tablet Android 4.4.4 SDK:19 armv7l 4
7 dev 7 Galaxy Nexus Android 4.3 SDK:18 armv7l 2
8 dev 8 Moto X Android 4.4.2 SDK:19 armv7l 2
9 dev 9 Samsung Galaxy Tab 2 Android 4.2.2 SDK:17 armv7l 2

10 dev 10 Samsung Galaxy Tab Android 4.0.4 SDK:15 armv7l 2
11 dev 11 Galaxy Nexus Android 4.4.4 SDK:19 armv7l 2
12 dev 12 LG-D802 Android 4.4.2 SDK:19 armv7l 4
13 dev 13 Nexus 5 Android 4.4.4 SDK:19 armv7l 4
14 dev 14 Samsung, GT-I9300 Android 4.3 SDK:18 armv7l 4
15 dev 15 Galaxy Nexus Android 4.4.4 SDK:19 armv7l 2
16 dev 16 Samsung, GT-I8190 Android 4.1.2 SDK:16 armv7l 2

Table 2: Overview of the used client devices’ brand, manufacturer and Java virtual machine.
Client ID Device Brand and Manufacturer Java Virtual Machine

1 Brand: Huawei, Model: HUAWEI MediaPad, Manufacturer: HUAWEI Dalvik version: 1.6.0
2 Brand: google, Model: Nexus S, Manufacturer: samsung Dalvik version: 1.6.0
3 Dell Laptop, Core I7 Java HotSpot(TM) 64-Bit Server VM version: 24.65-b04 (1.7.0 65)
4 Dell Laptop, Core 2 Duo Java HotSpot(TM) Client VM version: 24.65-b04 (1.7.0 65)
5 Brand: motorola, Model: XT890, Manufacturer: motorola Dalvik version: 1.6.0
6 Brand: google, Model: Nexus 7, Manufacturer: asus Dalvik version: 1.6.0
7 Brand: google, Model: Galaxy Nexus, Manufacturer: samsung Dalvik version: 1.6.0
8 Brand: motorola, Model: XT1052, Manufacturer: motorola Dalvik version: 1.6.0
9 Brand: samsung, Model: GT-P5110, Manufacturer: samsung Dalvik version: 1.6.0
10 Brand: samsung, Model: GT-P7500, Manufacturer: samsung Dalvik version: 1.6.0
11 Brand: google, Model: Galaxy Nexus, Manufacturer: samsung Dalvik version: 1.6.0
12 Brand: lge, Model: LG-D802, Manufacturer: LGE Dalvik version: 1.6.0
13 Brand: google, Model: Nexus 5, Manufacturer: LGE Dalvik version: 1.6.0
14 Brand: samsung, Model: GT-I9300, Manufacturer: samsung Dalvik version: 1.6.0
15 Brand: google, Model: Galaxy Nexus, Manufacturer: samsung Dalvik version: 1.6.0
16 Brand: samsung, Model: GT-I8190, Manufacturer: samsung Dalvik version: 1.6.0

Table 3: An overview of the recorded datasets describing the number of clients, used network, the payload, and the resulting
data rates.

ID Clients Network Interval (ms) Net Payload (Bytes) Gross Payload (Bytes) Events Server KiB/sec Clients KiB/sec
D-1 8 UMTS 500 0 265 9600 4.1 0.5
D-2 9 UMTS 500 512 1409 10800 24.8 2.8
D-3 8 UMTS 500 1024 1365 9600 21.3 2.7
D-4 7 UMTS 500 2048 2426 8400 33.2 4.7
D-5 7 UMTS 500 10240 10929 8400 149.4 21.3
S-7 10 WLAN 200 512 1409 30000 68.8 6.9
S-8 10 WLAN 200 1024 1365 30000 66.7 6.7
S-9 10 WLAN 200 2048 2426 29915 118.1 11.8
S-10 10 WLAN 200 10240 10929 29999 533.6 53.4

Table 4: The analysis of the recorded datasets describing the number of out-of-order events and a summary of the processing
times.

OoO Events Full Processing Time
ID Clients Network Number Percentage Min Q1 Median Mean Q3 Max Std Dev
D-1 8 UMTS 1548 16.13% 59 139 162 181.1 190 4738 103.9
D-2 9 UMTS 3693 34.19% 81 137 167 185.8 205 3680 115.6
D-3 8 UMTS 3283 34.20% 74 132 157 182.7 187 5616 183.8
D-4 7 UMTS 2321 27.63% 77 145 165 193.4 203 3300 116.5
D-5 7 UMTS 1591 18.94% 154 250 271 288.9 304 1911 83.7
S-7 10 WLAN 7795 25.98% 11 24 32 46.5 50 1522 49.9
S-8 10 WLAN 5974 19.91% 15 27 37 48.4 50 872 47.1
S-9 10 WLAN 7955 26.59% 15 29 39 52.6 54 3385 94.1
S-10 10 WLAN 8572 28.57% 46 75 92 103.7 114 1379 51.3
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4.5 Buffer Estimation based on
Transmission Time Difference
(BETTD)

In the best case, such a buffer has to compensate only
the variation of changes in the environment over time.
Assuming that all delays were of constant length,
there would be no out-of-order event. However, those
delays are not guaranteed, especially in wireless net-
works or in networks with a shared medium. There-
fore we calculate the maximum difference of trans-
mission times over a temporal window of predefined
length and add an offset.

bu f f erTime = (max(tt)−min(tt))+o f f set (4)

5 EVALUATION AND RESULTS

For the evaluation we used by way of example the
datasets D-5 and S-10, covering both network types
(UMTS and WLAN). The datasets are the ones with
the highest payload, and additionally, the dataset S-
10 has the highest absolute number of out-of-order
events. Moreover, they are evenly distributed over the
whole period of the recording in both datasets. We
determined suitable settings for the algorithms in var-
ious test runs and for the evaluation we used the same
settings on both datasets.

Following settings where used for the algorithms:

• Static Buffer Algorithm (SBA)
buffer time: 700ms

• Estimation based on single Transmission Time
(BETT)
initial buffer time: 500ms; threshold to decrease
the buffer 100ms; increase factor: 2; decrease fac-
tor: 0.99; offset time: 500ms

• Buffer Estimation based on Transmission Time
Average (BETTA) and Buffer Estimation based on
Transmission Time Weighted Average (BETTWA)
temporal window to calculate the average: 20
seconds; initial buffer time: 700ms; offset time:
700ms

• Buffer Estimation based on Transmission Time
Difference (BETTD)
temporal window to calculate the difference: 300
seconds; initial buffer time: 750ms; offset time:
350ms

The static buffer algorithm (SBA) is the baseline
for all other algorithms which do not dynamically
adapt their buffer size. This algorithm uses a fixed
buffer size of 700ms. On dataset S-10 there are four

events out of 8572 out-of-order events which could
not be brought into correct order due to a too small
buffer size, and on dataset D-5 there were 17 events
out of 1591 out-of-order events which could not be
re-ordered (see also table 5).

The algorithm “buffer estimation based on sin-
gle transmission time (BETT)” uses the transmission
time of the latest event to calculate the optimal buffer
size. It performed well on dataset D-5 where it could
compensate all out-of-order events, but on dataset S-
10 it produced the worst results. The reason could be
that the variance of the transmission times in dataset
S-10 is much lower than for D-5 which also results
in a lower overall buffer size when applying this al-
gorithm on dataset S-10. The behavior of the buffer
over time is illustrated in figure 2 (a) for dataset D-5
and in figure 2 (b) for dataset S-10.

Calculating the buffer size for BETTA and
BETTWA works in a very similar manner, and the
results reflect this similarity. On dataset S-10 both
algorithms produced fairly good results but failed on
dataset D-5 because these algorithms do not adapt to
sudden changes of transmission times (see also figure
2 (c)). Additionally, the mean buffer size on S-10 is
the highest for this dataset. The transmission time’s
mean over a time window provides a good overall
measure of the current state of the network. Both al-
gorithms also suffer from a cold start problem, be-
cause at the beginning there is not enough data to cal-
culate a reliable mean. To provide useful results, these
algorithms need a fairly high offset.

To calculate the buffer size, the BETTD algorithm
uses the difference between the minimal and maxi-
mal transmission times over a time window, as, ide-
ally, all you have to compensate is the variance of the
transmission time. This algorithm needs a fairly big
temporal window of 300 seconds to work reliably and
hence suffers especially from the cold start problem.
As illustrated in figure 2 (d), it shows good adapta-
tion to transmission time changes. It has the ability to
adapt to sudden changes and therefore only needs - in
comparison to other algorithms - a fairly small offset
of 350ms.

We deliberately set the offset for all algorithms
as low as possible to make the limitations of each
algorithm clear. Hence, the key for re-ordering all
out-of-order events in all possible situations is to give
the algorithms enough offset, but this results in high
buffering times which might be unwanted. Accord-
ing to this aspect, the algorithm BETTD provided the
best overall results, as it needs a smaller offset value
than all other algorithms. For situations, where the re-
action time is more important than compensating all
out-of-order events, the BETTA algorithm might be
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Table 5: Evaluation results of the buffer algorithms: a summary of the buffer size (ms) and the number of compensated
out-of-order events.

Buffer Size (ms) Out-of-Order Events
Algorithm Dataset Min Q1 Median Mean Q3 Max Std Dev. Compensated Not-Compensated

SBA D-5 700 700 700 700.0 700 700 0 1574 17 (1,07%)
BETT D-5 641 671 684 701.2 702 2048 111 1591 0 (0,00%)

BETTA D-5 700 788 791 793.9 794 1569 29 1582 9 (0,57%)
BETTWA D-5 700 785 790 793.1 794 1554 34 1583 8 (0,50%)
BETTD D-5 595 635 661 772.3 675 1982 350 1588 3 (0,19%)

SBA S-10 700 700 700 700.0 700 700 0 8568 4 (0,05%)
BETT S-10 583 608 611 628.5 620 1697 55 8565 7 (0,08%)

BETTA S-10 736 741 743 744.5 746 782 5 8571 1 (0,01%)
BETTWA S-10 735 741 742 744.1 746 794 7 8570 2 (0,02%)
BETTD S-10 390 863 892 943.8 951 1597 165 8570 2 (0,02%)

Figure 2: The buffer size (y-axis) of the used buffer algorithm (blue line) and the transmission time (y-axis) of events over
the session time (x-axis). Each dot represents the transmission time of an event and not compensated out-of-order events are
highlighted in red. (a) algorithm BETT on dataset D-5, (b) algorithm BETT on dataset S-10, (c) algorithm BETTA on dataset
D-5, (d) algorithm BETTD on dataset D-5.

the choice. This algorithm is stable over a long time,
neglects single outliers but still adapts to changes.

The evaluation showed that the datasets D-5 and
S-10 have different requirements to the adaptation of
the buffer time. They reveal different parameters (e.g.
the variance of transmission times) but no parame-
ter could be found which allows for the prediction of
sudden outliers. The criteria when a dynamic buffer
would be preferred over a static buffer are that the
overall delay is smaller, while re-ordering more out-
of-order events and that it is able to quickly adapt

its buffer size to even sudden environmental changes,
e.g. varying network delays. The higher the variation
of the network or other influences in the environment
is, the more necessary it is to use an algorithm which
dynamically adapts its buffer size, as a forecast of the
buffer size for a static buffer might be difficult and not
always applicable. The use of buffering algorithms
is still a trade-off between reaction time and out-of-
order event compensation, but it is useful in various
applications.
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6 CONCLUSIONS

In this work we gave an introduction to the area of
processing event streams in distributed systems. As
event processing is order and time sensitive, we ex-
plained what problems arise when processing event
streams that include out-of-order events, and outlined
possible solutions.

We presented an evaluation of different time-out
buffering algorithms, which are general applicable,
easy to integrate in existing architectures and particu-
larly interesting for Internet of Things applications.
To be able to evaluate those algorithms we had to
record datasets first, as we did not find a freely avail-
able dataset with the desired features. The recording
of these datasets was carried out in several sessions on
WLAN and UMTS, with varying payload, and vari-
ous mobile devices. We publish these datasets under
a Creative Commons license to allow other develop-
ers to evaluate their approaches.

The implemented dynamic buffering algorithms
are able to adapt their buffer size to environmental
changes, such as varying network delays or other in-
fluences. Those algorithms proved to produce better
results than a static buffer. The buffering algorithm
“buffer estimation based on transmission time differ-
ence (BETTD)” produced the best overall results as it
adapts to changes quickly and does not need much ad-
ditional offset. Another useful implementation might
be the variant “buffer estimation based on transmis-
sion time average (BETTA)”. This algorithm is sta-
ble over a long time, neglects single outliers but still
adapts to changes.

Time-out buffering is still a trade-off between re-
action time and out-of-order event compensation. Ul-
timately, it depends on the application how much de-
lay and how much out-of-order events are desired.
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APPENDIX

This section gives additional insight to the recorded
dataset. The following figures illustrate the transmis-
sion times for each event and highlight out-of-order
events. As described in section 3, the transmission
time is the duration between the event is detected un-
til it reaches the server (srect−dt).
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Figure 3: Each dot represents the transmission time of an
event of the dataset S-7, out-of-order events are highlighted
in red.

Figure 4: Each dot represents the transmission time of an
event of the dataset S-8, out-of-order events are highlighted
in red.

Figure 5: Each dot represents the transmission time of an
event of the dataset S-9, out-of-order events are highlighted
in red.

Figure 6: Each dot represents the transmission time of an
event of the dataset S-10, out-of-order events are high-
lighted in red.

Figure 7: Each dot represents the transmission time of an
event of the dataset D-1, out-of-order events are highlighted
in red.

Figure 8: Each dot represents the transmission time of an
event of the dataset D-2, out-of-order events are highlighted
in red.
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Figure 9: Each dot represents the transmission time of an
event of the dataset D-3, out-of-order events are highlighted
in red.

Figure 10: Each dot represents the transmission time of an
event of the dataset D-4, out-of-order events are highlighted
in red.

Figure 11: Each dot represents the transmission time of an
event of the dataset D-5, out-of-order events are highlighted
in red.
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