DISCO: A Dynamic Self-configuring Discovery Service for Semantic

Keywords:

Abstract:

Web Services

Islam Elgedawy

Computer Engineering Department, Middle East Technical University,
Northern Cyprus Campus, Kalkanli, Guzelyurt, Mersin 10, Turkey

Service Discovery, Self-configuring Services, DISCO, JAMEJAM, Service Knowledge Management.

The service discovery process involves many complex tasks such as service identification, composition, se-
lection, and adaptation. Currently, there exist many discovery schemes that separately handle such discovery
tasks. When a company needs to build a discovery service, it manually selects the suitable discovery schemes,
encapsulates them as services, then invokes them as a composite web service. However, when different dis-
covery tasks/schemes are needed, such composite discovery service needs to be manually reconfigured, and
different versions of the discovery service are created and managed. To overcome such problems, we propose
to build a dynamic self-configuring discovery service (i.e., DISCO), that takes the required discovery policy
from users, then automatically finds the suitable discovery schemes in a context-sensitive manner, and finally
arranges them as a collection of executable BPEL processes. This is done by adopting different types of knowl-
edge regarding the services’ aspects, discovery schemes, and the adopted software ontologies. Such different
knowledge types are captured and managed by the previously proposed JAMEJAM framework. Experimental
results show that DISCO successfully managed to reconfigure itself for different discovery policies.

1 INTRODUCTION

One way to develop modern business applications
in an agile, and efficient manner is by adopting
the service computing paradigm, in which business
processes are realized by invoking different inter-
nal/external services. Such services are not neces-
sary known to businesses during the construction of
the business processes. Hence, businesses use discov-
ery services to help them to find the suitable business
services. A discovery service is a web service that
implements and executes the service discovery pro-
cess, which is the process for finding services without
a priori knowledge of their existences. The output of a
discovery service is a list of atomic and/or composite
services that fulfill users’ goals.

The service discovery process is not trivial, as it
requires solutions for many complex problems such
as service semantic description, service identifica-
tion, service composition, automated SLA verifica-
tion (a.k.a., service selection), service evaluation, ser-
vice adaptation and presentation. Hence, the discov-
ery process could be seen as a multi-stage sequen-
tial process, where the output of a given stage is
the input for the following stage, as shown in Fig-

Elgedawy, I.
DISCO: A Dynamic Self-configuring Discovery Service for Semantic Web Services.
DOI: 10.5220/0006234703350342

Service Providers
Y AYAAY
[0e\(e0a)\/0e
\))

AN

s l et
e V&
Answers as Service Description
Customized

Atomic and Queries
Composite
Services

Aspect-Oriented And
Generic Search

Service Identification

Identified Atomic and
Component Services

-

Service Adaptation

and Presentation
Identified Components

Identified Atomic and
VN Component Services

Service Registries

Service Composition

Matching Atomic and . .
Composite Services SEiES Evalition
and Analysis Possible Composition Plans

Valid Composition Plans and’
Candidate Atomic Services
Possible Composition Plans and

Candidate Atomic Services

SLA Verification

Figure 1: The Service Discovery Process.

ure 1. The figure shows that the service discovery
process starts from the service description task, in
which service providers describe their services in a
machine-understandable format. Such services’ de-
scriptions are later published in different service reg-
istries (i.e., external and/or internal) for advertising

307

In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 307-314

ISBN: 978-989-758-243-1

Copyright © 2017 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

purposes. When users submit their queries to the cho-
sen discovery service, the service identification task
starts by examining different service registries to find
suitable matching candidates. Once candidate ser-
vices are identified, they are analysed and evaluated
to select the best fitting services. Such service analy-
sis task involves more complex tasks such as service
composition and automated SLA verification. Finally,
winning service candidates should go through adapta-
tion and customisation step to ensure the satisfaction
of users’ interfacing and presentation requirements.

The service discovery problem attracted many re-
searchers for a long time (see Section 3). However,
due to its complexity, researchers focused their work
to address few discovery stages at a time, but there
is no holistic approach that addresses all the stages
of the discovery process at once. Currently, one ap-
proach to overcome such limitation, is to realize the
discovery process as a composite web service, where
its components are platform-services used to handle
the required discovery tasks. Such platform-services
are statically chosen at design time. This is done by
choosing one of the existing discovery approaches for
a given stage, implement it, then encapsulate it as
a platform-service. For example, a company could
choose an approach for service identification, an-
other one for service composition, and another one
for adaptation, then encapsulate these approaches as
three platform-services, then compose the discovery
service from them. We denote such approach as the
static discovery process. As we can see, in the static
discovery process approach, the composite discov-
ery service is tightly-coupled to the platform-services
chosen at design time. That any business require-
ments’ change will lead to the reconfiguration of the
created composite discovery service, which could be
a time consuming process if it is done manually. Fur-
thermore, this could be limiting to the company users,
as users might be interested to try different discovery
approaches, or just need to have one or two stages of
the discovery process. In such cases, different ver-
sions of the composite discovery service will be cre-
ated, which adds more service management headache.
We believe the current static discovery process is lim-
iting and hinders business agility and ignores users
and services’ diversity.

To overcome such problems, we propose DISCO,
a dynamic self-configuring service for semantic web
services. DISCO can automatically change the dis-
covery process stages and their realizing platform-
services based on the users’ queries and con-
texts. It takes the required discovery policy from
users, then automatically finds the suitable discov-
ery schemes (i.e., matching, evaluation, and adapta-

308

tion approaches) in a context-sensitive manner, and
finally arranges them as a collection of executable
BPEL processes. This is done by adopting different
types of knowledge regarding the services’ aspects,
discovery schemes, and the adopted software ontolo-
gies. Such different knowledge types are captured
and managed by the previously proposed JAMEJAM
framework (Elgedawy, 2016)). Experimental results
show that DISCO can dynamically reconfigure itself
according to the given discovery policies. It is im-
portant to note that DISCO is not a new discovery
scheme, but it is a self-configuring service that real-
izes the discovery process in context-based manner
using “existing” discovery schemes , details are given
in Section 4.

The rest of the paper is organized as follows.
Section 2 provides an overview over the JAMEJAM
framework. Section 3 discusses related work. Sec-
tion 4 provides the required design assumptions to
create DISCO. Section 5 discusses the required types
of knowledge and proposes the required meta model
for describing discovery schemes. Section 6 discusses
the required format for DISCO query and shows how
discovery schemes are matched in a context-based
manner. Section 7 provides the adopted verification
experiments, and finally Section 8 concludes the pa-
per and discusses directions for future work.

2 BACKGROUND: JAMEJAM
FRAMEWORK OVERVIEW

JAMEJAM framework depicted in Figure 2 enables
users/ companies to manage and incrementally build
different types of knowledge regarding the services,
the application domains, and the matching schemes
required for the discovery process automation. Fig-
ure 2 shows that JAMEJAM mainly consists of four
main subsystems: the aspects knowledge manage-
ment subsystem, the services knowledge management
subsystem, the matching schemes knowledge man-
agement subsystem, and the service discovery subsys-
tem. JAMEJAM subsystems also need a vertical layer
of auxiliary services that help them to accomplish
their tasks. JAMEJAM subsystems could be summa-
rized as follows: 1) Aspects Knowledge Manage-
ment Subsystem: It is the subsystem responsible for
managing aspects knowledge, and its corresponding
repository. An aspect knowledge is the facts, infor-
mation, and skills acquired through experience, ed-
ucation, theory and practice regarding such aspect.
JAMEJAM captures such knowledge via aspects’ on-
tologies. Every aspect registered with JAMEJAM
must have a descriptor that provides some meta-data

DISCO: A Dynamic Self-configuring Discovery Service for Semantic Web Services

User

ist of C

(—Context, Policy, %
—
JAMEJAM Framework Auxiliary
Services
Service Discovery
Management Suggested Aspects and SLA Constraints
Indexing
Query Service Identification Service Evaluation Service Presentation Services
Management Management Management Management
4
Query Aspect-Oriented Service Service Functional Customized Services Clustering
Module Identification Module Composition Module Ranking Module Services
Aspect ;i - . CSEG
Query History Recomronder Aspects Aggregation SLA Verification Component Adaptation Mediation
Log Module Modue Scoring Module Module Module Service
Recommendation
Services
Matching Schemes Knowledge Management Aspects Knowledge Management Services Knowledge Management
Application [\,
Application [Domains use Security
Domains uses— i Ontologies DSD Repositor:
Ontologies Ma“;“e'“gsis[g:‘e’“es 9 Aspects Knowledge pository Services
P y Repository ¢
) DSD Repository Kr"”\uieleecd‘ . Governing
Matching Schemes Repository |—> Aspects Knowledge Repository Manager o Services
| Manager e Extractor
A 3 ,J L\
1

A
‘E ;D
Matching Expert Aspect Expert

Service Registries

1
Service Provider

Figure 2: JAMEJAM Framework (Elgedawy, 2016).

about the aspect such as the aspect name, the adopted
aspect ontology (if any), the adopted application do-
main ontology (if any), and the aspect specification
category. An aspect could be described using dif-
ferent ontologies, where every ontology-based de-
scription is separately stored in the aspect descrip-
tor. 2) Service Knowledge Management Subsys-
tem: It is the subsystem responsible for managing
services knowledge, and its corresponding repository.
Every service created by a service provider should be
described according to the adopted software ontol-
ogy following the adopted aspects ontologies, form-
ing what is known by the service knowledge. Service
creators should register their services with JAME-
JAM by defining a dynamic service descriptor (DSD)
for each service, which contains the aspects values
defined according to the adopted aspects ontologies.
JAMEJAM enables service creators to enter the DSDs
manually or automatically via extractors that retrieve
the required knowledge from the service package. 3)
Matching Schemes Knowledge Management Sub-
system : It is the subsystem responsible for managing
the matching schemes knowledge, and its correspond-
ing repository. JAMEJAM aims to capture different
meta-data about the matching schemes in a matching
scheme descriptor. A matching scheme is any exist-
ing discovery approach that realizes a given discovery
task or subtask. For example, we could have match-
ing schemes for service identification, other schemes

for behavior matching, other schemes for adaptation.
and so on. Such matching schemes should be encap-
sulated as platform-services. 4) Service Discovery
Management Subsystem : It is the subsystem re-
sponsible for managing the service discovery process.
Once users defined their adopted software ontology,
matching schemes, and its services DSDs, they will
be ready for service discovery. Users can define their
queries, along with their contexts, goals, and their de-
sired matching policies, which will be used to con-
struct a customized discovery process for every query.
Such discovery management subsystem consists of
other four subsystems: the query management sub-
system, the service identification management sub-
system, the service evaluation management subsys-
tem, and service presentation management subsys-
tem. 5) Auxiliary Services: These are the services
that JAMEJAM subsystems use to accomplish their
tasks such as indexing, clustering, recommendation,
and security services.

3 RELATED WORK

As we indicated before, the web services discovery
process consists of four main stages. Hence, our study
for the existing works basically focuses on identifying
the gaps not covered by existing works. Table 1 pro-
vides a comparison between some of the existing ap-

309

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

proaches (both old and new). The existence of these
gaps is what motivates us to create DISCO to have a
holistic solution for all the discovery stages.

We organized the works in a chronological order
from top to bottom. In the table, we compare between
the approaches in terms of their coverage and com-
pleteness for the discovery process stages. An ap-
proach is considered complete for a given stage when
it provides the semantic models and algorithms to ad-
dress the stage problems. An approach is considered
approximate for a given stage when it provides par-
tial models and algorithms to address the stage prob-
lems. An approach is considered generic for a given
stage when it uses generic models (e.g., free service
description) and generic algorithms (e.g., frequency
based keyword matching algorithms) to address the
stage problems. However, we listed the service evalu-
ation stage as two separate stages (analysis and selec-
tion), in order to facilitate the comparison with the ex-
isting works that accomplish only the analysis stage.
The symbol v means a specialized semantic approach
has been proposed, the symbol ~ means a specialized
approximate approach has been proposed, while the
symbol ~ means a generic approach has been pro-
posed, while a blank entry means function is not sup-
ported.

Table 1: A Comparison between some of the Existing Dis-
covery Approaches.

Existing Discovery Service Service Service Service
Approaches Ident- Eval- Selec- Adapt-
fication uation tion ation

(Papazoglou et al., 2002)
(Berardi et al., 2003)
(Medjahed et al., 2003)
(Keller et al., 2004)
(Thakkar et al., 2004)
(Benatallah et al., 2005)
(Kokash et al., 2006)
(Elgedawy et al., 2008)
(Brogi et al., 2008)
(Plebani and Pernici, 2009)
(Paliwal et al., 2012)
(Sangers et al., 2013)
(Elgazzar et al., 2013)
(Zisman et al., 2013)
(Kritikos et al., 2014)
(Bislimovska et al., 2014)
(Bianchini et al., 2014)

SENEININ
2

Qe
Qe

ARARNRARARY

R

IARARNRY
NI

IAR4RY

AREARNEN
R

IARARARY

Table 1 shows none of the existing approaches
completely handles all stages. To cover such gap,
DISCO is proposed as a holistic solution for the
discovery problem, as it will enable users to cus-
tomize their discovery processes, and choose the re-
quired stages to be included in the discovery process,
also it decouples users from the headache of choos-
ing the suitable matching, evaluation, and adaptation
schemes, as it selects the suitable schemes on the fly
without users intervention. This is done with the help
of the JAMEJAM framework that provides different
types of knowledge needed to have a self-configuring

310

discovery service.

4 DISCO ARCHITECTURE AND
ASSUMPTIONS

Reconfigurability of the service discovery process in-
volves two separate issues: First, the choice of the
involved discovery stages. Second, the choice of the
suitable discovery scheme(s) to realize a given dis-
covery stage. The discovery management system of
JAMEJAM handles the second issue, but it was not
flexible for the first issue, as the JAMEJAM query
must go through all the four discovery subsystems.
To overcome such problem, we propose DISCO to
become the coordinator and the orchestrator between
JAMEJAM discovery sub-modules, as it will interact
only with the required sub-modules corresponding to
the defined discovery policy. This interactions will
be done automatically without the user involvement.
Hence, to be able to build DISCO we require the fol-
lowing:

e Each JAMEJAM subsystem should be encapsu-
lated as a platform-service that can be invoked in-
dependently.

e Business services and existing discovery ap-
proaches must be semantically described and reg-
istered with JAMEJAM. Details about descrip-
tion and registration processes are in (Elgedawy,
2016).

e Users’ queries should contain their preferred
matching/discovery aspects, their preferred dis-
covery policies, and their contexts described as
a set of satisfiable constraints. Also the query
should contain the required discovery stages, as
shown in Section 6.

Figure 3 shows the main components of the
DISCO service, which are : the query formulator, the
discovery process formulator, and the discovery pro-
cess executer. The query formulator interacts with
the user as well as the corresponding JAMEJAM ser-
vice to be able to form the required DISCO query.
The process formulator takes the DISCO query as
an input, then interact with the JAMEJAM service to
get list of candidate discovery schemes, then finally
creates BPEL processes corresponding to the identifi-
cation, evaluation, and adaptation stages, where every
stage is realized as a BPEL process. Such BPEL pro-
cesses’ partners are the platform-services correspond-
ing to the discovery schemes retrieved from JAME-
JAM’s schemes repository. If a suitable discovery
scheme cannot be found for a given aspect, DISCO

DISCO: A Dynamic Self-configuring Discovery Service for Semantic Web Services

Identification Stage

DISCO Service

oisco
QUERY DISCO Process

DISCO Query Formulator

Formulator

Discover Discover Discovery
D - : ' '
—— Executer

/
/ Evaluation

/ Stage

=
\
\

JAMEJAM Services

\ Adaptation and
\ Presentation Stage

S|
piscovery WM Discovery W Discovery
Scheme Scheme Scheme

Figure 3: DISCO Architecture.

assumes a generic matching scheme will be used
such as keyword-based matching schemes. While,
generic evaluation schemes adopt constraints satisfia-
bility schemes for the services’ static attributes. Once
the BPEL process is constructed, it is given to the
process executor to invoke the platform-services cor-
responding to every stage, and finally DISCO passes
the results to the users.

S DISCOVERY KNOWLEDGE
MANAGEMENT

DISCO needs different types of knowledge regard-
ing services, and discovery schemes in order to be
able to customize the discovery process for users’
queries. The JAMEJAM framework captures and
manages such knowledge. In what follows, we will
summarize the required knowledge types:

e Discovery Schemes Knowledge Management:
Discovery schemes are introduced to provide
the know-how discovery information (i.e., sim-
ply the algorithms). To register a discov-
ery scheme with JAMEJAM, discovery ex-
perts are required to enter the correspond-
ing discovery scheme descriptor. We de-
fine a discovery scheme descriptor as a tuple
(SchemeRef, AspectName, StageRef, SWORef ,
SchemeService, PreConditions, PostConditions),
where SchemeRef is a unique reference for the
matching scheme, AspectName is the name of
the involved comparison aspect, StageRef is
the reference to the discovery stage the scheme
corresponds to, SWORef is the reference to
the adopted software ontology, SchemeService
is the reference to the web service encapsulat-
ing the discovery approach, PreConditions and
PostConditions are the sets of required precondi-

tions, and post-conditions, respectively.

e Service Knowledge Management: Service
knowledge is the collective knowledge regarding
the service various aspects. That for every aspect
defined in the software ontology, a correspond-
ing value should appear in the service descrip-
tion. Hence, every service registered with JAME-
JAM should have a dynamic descriptor known as
aDSD (i.e. Dynamic Service Descriptor). DISCO
defines the service DSD as set of aspect value
descriptor, where an aspect value descriptor is
defined as the tuple (AspectName, AspectValue,
SWORef), where AspectName is the name of
the aspect, AspectValue is the aspect value, and
SWORef is a reference to the adopted software
ontology. Such DSDs should be defined in any
machine-understandable format. Hence, for sim-
plicity we propose to use standard XML format to
describe the aspects and their attributes’ values.
However, any semantic web representation lan-
guage could be used to describe the DSDs (such
as RDF, OWL, or WSMO).

e Software Ontology Management: Once the
company experts defined their preferred aspects
and discovery schemes, they can group these def-
initions into software ontologies. A software on-
tology is simply a collection of aspects and dis-
covery schemes descriptors defined before. We
formally define the software ontology as the tuple
(SWORef, AspectsList, DiscoverySchemesList),
where SWORef is a reference to the software on-
tology, AspectsList is a list of required aspect de-
scriptors defined as per JAMEJAM model, and
DiscoverySchemesList is a list of the required dis-
covery schemes descriptors. Use of software on-
tologies will make things easier for the users, as
they just need to reference the required software
ontology in their queries, and DISCO will simply
know the involved aspects and discovery scheme

311

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

definitions. DISCO does not force all companies
to use the same software ontology, however it en-
ables every company to define its own software
ontology based on the aspects they see important,
as DISCO supports multi-tenancy, where every
tenant can have its own services, schemes , and
software ontologies.

6 DISCO QUERY

DISCO requires an explicit query that should contain
the following information:

e The required aspects, their values and the adopted
software ontology. Users could also define for
every identified aspect, the sources that could be
used to generate the aspect value via the identified
aspect extractors, as per the JAMEJAM frame-
work.

e The required discovery policy that defines users’
preferences and logic regarding the service dis-
covery process. Users can arrange the discovery
schemes in any way they find suitable, and can
choose only the discovery stages they are inter-
ested in.

e User’s context and SLA obligations. User’s con-
text should be defined in terms of the defined as-
pects if possible. However, if users could not
find the suitable aspects to define their contexts,
they can specify extra conditions (known as the
correctness criteria) to be satisfied by the match-
ing results, where generic condition matching ap-
proaches are used to check their satisfiability. For
example, if users need to specify a provider geo-
graphical scope aspect in their context, and such
aspect is not supported by the adopted software
ontology, hence they can define such aspect as a
generic condition.

All this information should be defined in a
machine-understandable format, as shown in Fig-
ure 4, which shows an example for an explicit DISCO
query skeleton represented in XML format. The fig-
ure shows different aspects to be used in the search
process, also it shows the required matching pol-
icy and the discovery schemes’ preferences (i.e., any
meta-data attributes of the discovery schemes’ de-
scriptors to be examined). The query contains the
targets business scope, external behavior, and reputa-
tion aspects. The discovery process for a given query
is performed in the following manner:

1. For every aspect appeared in the query, retrieve
from the discovery schemes repository all the dis-

312

<Query=>

<Aspect Name="'BusinessScope”. SWORef="....” >
<value>....</value>
</Aspect>

<Aspect Name=''Reputation”. ~ SWORef="...." >
<value>....</value>

</Aspect>

<Aspect Name=""Behavior”. SWORef="...." >

<value>...</value>
</Aspect>

<Discovery Policy, method = " Cascading ">
<Sequence>
<DiscoveryScheme stage=Identification >
<AspectName> " 'BusinessScope” </AspectName>
<PreConditions></PreConditions>
<PostConditions></PostConditions=>
</ DiscoveryScheme >
< DiscoveryScheme stage=Identification >
<AspectName> " 'Reputation” </AspectName>
<PreConditions></PreConditions>
<PostConditions™ ..
<Condition>
<Comparator> GTE </Comparator>
<Value>2 </Value>
</Condition>
</PostConditions>
</ DiscoveryScheme >
< DiscoveryScheme stage=Evaluation>

<AspectName> " 'Behavior” </AspectName>
<PreConditions></PreConditions>
<PostConditions></PostConditions>

</ DiscoveryScheme >

</Sequence>
</Discovery Policy=>

<Correctness Criteria>
<Condition> .. </Condition>
<Condition> .. </Condition>

</Correctness Criteria>

</Query>

Figure 4: An Example for a DISCO Query Skeleton.

covery schemes having the same aspects’ appear-
ing in the query for AspectName and SWORef
attributes.

2. For every identified discovery scheme, check if
its corresponding preconditions are satisfied based
on users’ contexts.

3. The obtained answers are checked against the cor-
rectness criteria provided by users (if any).

Based on the stages of the defined discovery pol-
icy, DISCO will contact the suitable JAMEJAM ser-
vices to get the results, then constructs the corre-
sponding BPEL processes, where the flow of the pro-
cesses is the same as the flow defined in the discovery
policy, and the partners are the platform-services of
the discovery schemes matching the query aspects.

7 DISCO EVALUATION

This section provides the DISCO verification experi-
ments. Our goal in these experiments to show DISCO
adaptability and how it reconfigures itself to differ-
ent discovery policies. Our goal is not to compare
between different discovery policies to come up with

DISCO: A Dynamic Self-configuring Discovery Service for Semantic Web Services

the best performing policy, as this will require a com-
pletely different set of experiments.

7.1 Discovery Processes Configuration
Verification Experiments

In this section, we show how DISCO can reconfig-
ure itself against different discovery policies. This is
done by invoking DISCO with different well-known
discovery policies (i.e., weighted parallel matching,
cascade matching, and generic matching), then plot
the precision/recall graph for every policy. Hence, we
expect the curve to change from one policy to another,
as an evidence for DISCO adaptability. This will be
done automatically by submitting different DISCO
queries. However, lack of real life data that contains
semantic descriptions for services still a big challenge
for researchers till today. However, existing datasets
such (WS-challenge, OWL-TC, SAWSDL-TC, and
WSMO-TC) are quite limited, and there is no ready
discovery schemes for them. Hence, researchers opt
to use artificial data for their experiments. Such
approach has been widely adopted by many works
such as the works in (Zisman et al., 2013) (Sangers
etal., 2013) (Bislimovska et al., 2014) (Kritikos et al.,
2014). Hence, we will follow the same approach
and generate the artificial data suitable for our experi-
ments, as our goal is just to show adaptability, and not
to compare between policies’ accuracy.

We adopt the same steps used to generate artifi-
cial data mentioned in (Elgedawy, 2016). However,
due to space limitation we will not mention the steps
here, and interested readers should refer to the pa-
per for more details. In this dataset, we generate
DSD for a number of services (i.e. arbitrary chosen
as 10,000 service), such DSDs contain the business
scope aspect, the behavior aspect, and the reputation
aspect. The corresponding matching approaches are
encapsulated as platform-services. To generate the
query set. We select a random 100 distinct service
DSD from the generated dataset. For each DSD in
the query set, we generate a random number of DSD
replicas. Such number is chosen from the arbitrary
range of (0-50) to ensure having different number of
services for each service description. Finally, such
generated replicas are added to the dataset and ran-
domly distributed among the DSDs. By doing so,
we can automatically identify the correct answer for
each query, which is the corresponding service and its
replicas. Hence, recall and precision could be auto-
matically computed. Once the dataset and query sets
are generated, we generate different DISCO queries
that adopt the mentioned aspects, however different
discovery policies will be used. For simplicity, we

will make the discovery policies target the identifica-
tion stage only, as if DISCO managed to reconfigure
itself for the identification stage, it will be able to re-
configure itself for other stages, as similar steps will
be carried out. Hence, the discovery policy is reduced
to a matching policy.

Precision/Recall Graph

Precision

1

g i W g ht2d P ralled

0.6 Matching Policy

«s o+ Cascade Matching
Policy

03 Generic Matching

Policy

Recall

Figure 5: Different Discovery Configurations Comparison
With DISCO.

The first used matching policy is the weighted
matching policy, in which all aspects’ matching
schemes are applied independently over the whole
DSD repository, and the answers of all schemes are
aggregated by computing a total score for every an-
swer. In our experiments, we used equal weights. The
second used matching policy is the cascade matching
policy, in which aspects are matched in a cascade or-
der starting by the reputation aspect, followed by be-
havior aspect, followed by the behavior aspect, then
we computed the corresponding precision and recall.
The last matching policy is the generic one that uses
keyword matching approach. We submitted the three
queries to DISCO, and computed the precision and
recall for every case; results are depicted in Figure 5.
The figure shows every matching policy provided a
different result, which means DISCO managed to re-
configure itself according to the given matching poli-
cies. Also the figure shows the worst performing pol-
icy is the generic policy, as it is known of providing
the biggest number of false positives (Elgedawy et al.,
2008). However, we cannot say the weighted match-
ing policy outperforms the cascading policy in gen-
eral, as the order of the aspects in the cascade policy
affects the final accuracy. Hence, we can only say for
the given cascade order, and for the given dataset, the
weighted method is the best. However, if we need a
more through comparison between policies different
experiments are required, which is not in the scope
of this paper. However, interested reader could refer

313

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

to (Elgedawy, 2015) for more details about the effect
of the cascading order on the discovery process accu-
racy.

8 CONCLUSION AND FUTURE
WORK

In this paper, we proposed DISCO, a dynamic self-
configuring discovery service for semantic web ser-
vices. DISCO creates for every query a collection of
executable BPEL processes, that can identify, evalu-
ate, and adapt the obtained matching results on the
fly. Such BPEL processes are realized on the fly by
choosing the suitable discovery schemes; adopting
different types of knowledge regarding the business
services and discovery schemes, which are captured
and managed by the JAMEJAM framework. Exper-
imental results show that DISCO could be automati-
cally re-configured according to the provided discov-
ery policies.

The main limitation of DISCO is lack of real-life
consolidated discovery knowledge repository. From
our experience industry is reluctant to build such
knowledge repository. Hence, our future work will fo-
cus on filling JAMEJAM with the required knowledge
types. Hoping that will make DISCO more practical,
and appealing to industry.

REFERENCES

Benatallah, B., Casati, F., Grigori, D., Nezhad, H. R., and
Toumani, F. (2005). Developing adapters for web ser-
vices integration. In Proceedings of CAiSE, LNCS vol.
3520,, pages 415-429.

Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M.,
and Mecella, M. (2003). Automatic composition of e-
services that export their behavior. In Proceedings of
the first InternationalConference on Service Oriented
Computing (ICSOC), pages 43-58, Trento, Italy.

Bianchini, D., Cappiello, C., De Antonellis, V., and Pernici,
B. (2014). Service identification in interorganizational
process design. Services Computing, IEEE Transac-
tions on, 7(2):265-278.

Bislimovska, B., Bozzon, A., Brambilla, M., and Fraternali,
P. (2014). Textual and content-based search in repos-
itories of web application models. ACM Trans. Web,
8(2):11:1-11:47.

Brogi, A., Corfini, S., and Popescu, R. (2008). Semantics-
based composition-oriented discovery of web ser-
vices. ACM Trans. Internet Technol., 8(4):19:1-19:39.

Elgazzar, K., Hassanein, H. S., and Martin, P. (2013). Daas:
Cloud-based mobile web service discovery. Pervasive
and Mobile Computing.

314

Elgedawy, 1. (2015). USTA: An aspect-oriented knowl-
edge management framework for reusable assets dis-
covery. The Arabian Journal for Science and Engi-
neering, 40(2).

Elgedawy, L. (2016). JAMEJAM: A framework for automat-
ing the service discovery process. Journal of Software
(JSW), 11(7).

Elgedawy, 1., Tari, Z., and Thom, J. A. (2008). Correctness-
aware high-level functional matching approaches for
semantic web services. ACM Transactions on Web,
Special Issue on SOC, 2(2).

Keller, U., Lara, R., Polleres, A., Toma, 1., Kifer, M., and
Fensel, D. (2004). WSMO web service discovery.
http://www.wsmo.org/2004/d5/d5.1/v0.1/20041112.

Kokash, N., van den Heuvel, W.-J., and D’Andrea, V.
(2006). Leveraging web services discovery with cus-
tomizable hybrid matching. In /CSOC, volume 4294
of Lecture Notes in Computer Science, pages 522—
528. Springer.

Kritikos, K., Plexousakis, D., and Paterno, F. (2014).
Task model-driven realization of interactive applica-
tion functionality through services. ACM Trans. In-
teract. Intell. Syst., 3(4):25:1-25:31.

Medjahed, B., Bouguettaya, A., and Elmagarmid, A.
(2003). Composing web services on the semantic web.
Very Large Data Base Journal, 12(4):333-351.

Paliwal, A. V., Shafiq, B., Vaidya, J., Xiong, H., and Adam,
N. (2012). Semantics-based automated service dis-
covery. IEEE Transactions on Services Computing,
5(2):260-275.

Papazoglou, M., Aiello, M., Pistore, M., and Yang, J.
(2002). Planning for requests against web services.
IEEE Data Engineering Bulletin, 25(4):41-46.

Plebani, P. and Pernici, B. (2009). Urbe: Web ser-
vice retrieval based on similarity evaluation. IEEE
Transactions on Knowledge and Data Engineering,
21(11):1629-1642.

Sangers, J., Frasincar, F., Hogenboom, F., and Chepegin, V.
(2013). Semantic web service discovery using natural
language processing techniques. Expert Systems with
Applications, 40(11):4660—4671.

Thakkar, S., Ambite, J., and Knoblock, C. (2004). A
data integration approach to automatically composing
and optimizing web services. In Proceedings of the
second ICAPS International Workshop on Planning
and Scheduling for Web and Grid Services, British
Columbia, Canada.

Zisman, A., Spanoudakis, G., Dooley, J., and Siveroni, 1.
(2013). Proactive and reactive runtime service discov-
ery: a framework and its evaluation. /EEE Transac-
tions on Software Engineering, 39(7):954-974.

