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Abstract: Cloud computing offers a customer the possibility of the availability of large computational resources, while
paying only for the resources used. However, because of uncertainty in the customers future demand and the
future market price for the computational resources, obtaining these resources in a cost-effective and robust
way is a difficult problem. The variety of pricing plans is a further complication. In this paper we solve
this problem using two-stage stochastic programming, for the first time considering all three available pricing
plans, i.e. on-demand, reservation, and spot pricing. Through our experimental implementation, we find that
our model can lower the total operational cost by up to 1.5 percent compared to other solutions.

1 INTRODUCTION

Resource provisioning problem in the cloud com-
puting environment can be viewed from different
perspectives. the Infrastructure as a Service (IaaS)
Provider, the Software as a Service (SaaS) provider,
and the cloud end-user. Each trying to maximize their
own profit in the resource provisioning plan phase.
Due to different goals, requirements, and constraints,
the resource provisioning problem in the cloud com-
puting environment needs to be addressed separately,
for each stakeholder. In this paper we view this prob-
lem from the end-user point of view. The end-user is
an individual or an organization, aiming to rent com-
putational resources from a public cloud provider. In
cloud computing, provisioning of resources has to be
controlled by the end-user, which is a new and unfa-
miliar paradigm for such users, who are accustomed
to working with a fixed set of resources they own. In-
stead, they encounter a complicated decision making
problem of choosing the most suitable type and num-
ber of VMs with the best pricing plans, for running
their application. There are also uncertain parame-
ters that make this optimization problem even more
complicated. Since the resource demand is highly dy-
namic in nature, its pattern cannot be known, or even
be accurately predicted, in advance. Moreover the
price of resources varies and is not easily predictable.
Numerous cloud providers offer various VM types,
namely reservation, on-demand, and spot pricing.

The reservation cost of resources per unit is typ-

ically the lowest, but under-provisioning can occur
when the reserved resources are unable to fully meet
the demand. However, by provisioning more re-
sources with either on-demand or spot plan for ex-
tra demand, this problem can be solved, although the
user may be charged a higher price. Another potential
issue is the over-provisioning problem, which occurs
when the reserved resources are more than the actual
demand and thence the reserved resources will be un-
derutilized. How to manage all these problems and
optimize cost is a critical issue the end-user must deal
with.

Although there are plenty research conducted on
resource provisioning from the IaaS (Chaisiri et al.,
2009) and SaaS (Li et al., 2015) cloud provider’s
view, There has been little work on solving this prob-
lem as it is in the real-world for the cloud end-users.
The paper closest to our work optimizes the cost of
VM provisioning in the cloud computing environ-
ment from the end-user’s point of view (Chaisiri et al.,
2012) by an optimal cloud resource provisioning al-
gorithm (OCRP). To make an optimal decision, de-
mand and price uncertainty are taken into account. A
stochastic integer programming approach with multi-
stage recourse is proposed for optimizing this prob-
lem. In this work, however, spot pricing and het-
eroginity of VMs were ignored. In (Adamuthe et al.,
2013), the authors solved this problem from the end-
user view in a two phase approach by using genetic
Algorithm (GA) and Particle Swarm Optimization
(PSO). Heterogeneity of VMs, uncertainty of param-
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eters, and existence of various pricing plans were ne-
glected in this paper. In (Genaud and Gossa, 2011),
a satisfactory trade-off between cost and speed to
process a set of independent jobs is conducted from
the end-users’ side, but only the on-demand pricing
model is taken into account. The main focus of (Zhu
and Agrawal, 2010) is an automated and dynamic re-
source allocation approach, in the cloud environment,
based on control theory techniques. An autonomous
elasticity controller is proposed in (Ali-Eldin et al.,
2012), it changes the number of virtual machine al-
located to a service based on both monitored load
changes and prediction of future work.

Most of the existing literature, as mentioned above
focuses on deterministic formulations over fixed hori-
zons where the scheduler has perfect foresight (Teng
and Magoules, 2010). Those that have considered
uncertainty in their problem, typically focus on just
one aspect (e.g. real-time pricing) (Chaisiri et al.,
2012), or use very simple and artificial data (Zafer
et al., 2012). Pricing and VM heterogeneity is also
neglected in most of them.

In this paper, we propose a mechanism to opti-
mize cost by choosing the most appropriate pricing
plans and VM types, while considering the applica-
tion’s demand uncertainty from the consumer side
and price uncertainty (on-demand and spot) from the
providers side. In order to take into account the un-
certainties, we model it as a two stage stochastic opti-
mization problem using the MiniZinc modelling lan-
guage (Nethercote et al., 2007). The results show that
our approach leads to a lower operational cost, com-
pared to previous relevant works.

The rest of the paper is organized as follows. The
problem description and formulation is discussed in
section II, then in section III is implementation and
experimental evaluation, followed by the result dis-
cussion in section IV. Finally in section V, conclu-
sions are stated.

2 SYSTEM MODEL AND
PROBLEM FORMULATION

The cloud end-user needs to rent a number of VMs
for running his application, using public cloud re-
sources with minimum cost. Amazon is a dominant
provider in the cloud service market and offers vari-
ous IaaS and Platform as a Service (PaaS) solutions.
The largest and best-known of these is the EC2 IaaS
solution (Amazon EC2, 2016). As it is one of the
most widely used IaaS providers in both academia
and industry, in this work we assume that the end-user
wishes to rent resources from the Amazon EC2.

2.1 System Model

Amazon EC2 provides various VM types with the dif-
ferent pricing plans of reservation, on-demand, and
spot. Reservation pricing refers to the advance reser-
vation of resources for a specific time period, while
securing a lower usage charge. It offers consumers
three purchasing variants, “all upfront”, “partial up-
front”, and “no upfront” to purchase reserved in-
stances. With the all-upfront variant, users pay for
the entire reserved instance with one upfront payment.
This variant provides the largest discount. With the
partial-upfront variant, users make a low upfront pay-
ment and are then charged a monthly rate for their
instances, even for instances that are not utilized in
this period of time. The no-upfront variant does not
require any upfront payment and provides a monthly
rate for the duration of the term. Amazon has recently
introduced convertible reserved VMs, which provide
customers with additional flexibility to change the
VM family, OS, or tenancy, as long as the exchange
is for an equal or greater spend on the new convert-
ible reserved VMs. However in this paper we only
consider the standard Reservation.

On-Demand pricing lets customers pay for com-
pute capacity by the hour, with no long-term com-
mitments or upfront payments. Depending on the de-
mand of their application, users can simply increase
or decrease their compute capacity and only pay for
the specified hourly rate for the instances used. Al-
though this pricing model provides convenient flexi-
bility and reliability, it charges customers higher rates
than other plans. The on-demand price is not a fixed
price and the cloud provider can change it at any time.
Spot pricing enables users to bid for unused Amazon
EC2 capacity. This price fluctuates periodically, de-
pending on the supply and demand for spot instances.
To acquire spot instances, the users place a spot re-
quest, specifying the instance type and the maximum
price they are willing to pay per hour per instance. If
the customer’s bid price meets or exceeds the current
spot price, the requested instances are granted and
they will run until either the user chooses to termi-
nate them or the spot price increases above the max-
imum bid price. In the latter case, the instances are
terminated immediately by the cloud providers with
2 minutes notice. The actual price users pay for their
instances is the spot market price, regardless of their
bid price. Due to the uncertain availability of spot in-
stances and the potential interruptions they may bring,
the spot instance plan is only practical for fault toler-
ant applications.

When it comes to spot instances, a big challenge
is choosing a good bidding strategy. There are various
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strategies proposed in the literature(Tang et al., 2012),
but generally one can bid high as a means of ensuring
to obtain instances with less volatility, or bid lower to
optimize costs and send any overflow to on-demand or
reserved instances. The most common strategy, how-
ever, is to bid on-demand price, called “always bid-
ding on-demand price”. With this strategy customers
ensure that they will get a discount over on-demand,
plus they have a lower chance to be interrupted. In
our model we use this simple and effective bidding
strategy.

The main issue of the resource provisioning prob-
lem for users, is the complexity of dealing with multi-
ple pricing plans, purchasing variants, and VM types,
as well as the uncertainty of on-demand and spot
prices. As reserved instances are reliable and cost ef-
fective resources, they can be considered one of the
best options for customers. However users need to
decide about them in advance, before running their
application, when the real workload and prices are not
known. This decision should be made carefully, be-
cause there is a long term commitment reserving VMs
(at least 1 year). Therefore, more information about
future workload can help. Based on this information,
a more accurate decision can be made and then, af-
ter starting the application, any excess demand can be
fulfilled using the more flexible pricing plans of on-
demand and spot. As a result, the problem splits into
two steps: deciding on the number of reserved VMs,
before the uncertain parameters become known, and
then compensating for any under-provisioning with
on-demand or spot pricing plans.

Having split our uncertain problem into two
phases, one of the most appropriate techniques to
solve it, is stochastic programming (Birge and Lou-
veaux, 2011). Stochastic programming is an approach
for modelling optimization problems that involve un-
certainty. When the parameters are uncertain, but as-
sumed to lie in some given set of possible scenar-
ios, a good solution might be one that is feasible for
all possible parameter choices and optimizes a given
objective function. Stochastic programming models
are similar in style, but take advantage of the fact
that probability distributions of the uncertain data are
known or can be estimated. Often these models apply
to settings in which decisions are made repeatedly in
essentially the same circumstances, and the objective
is to come up with a decision that will, on average,
perform well. The most widely applied and studied
stochastic programming models are two-stage (linear)
programs. Here the decision maker takes some action
in the first stage, after which a random event occurs
that affects the outcome of the first-stage decision.
A recourse decision can then be made in the second

stage to compensate for any bad effects that might oc-
cur as a result of the first-stage decision(Shapiro and
Philpott, 2007).

The first stage decision, therefore, is deciding on
the number of reserved instance and the reservation
purchasing variants for a one hour time slot, based
on an estimation of the future workload. A recourse
decision in the second stage is acquiring more VMs
on On-demand or spot, if required, in the next hour
when the uncertain parameters become known. The
detailed explanation of the problem and its formula-
tion is discussed in the following section.

2.2 Problem Formulation

The objective of this problem is to minimize the to-
tal cost of provisioning resources. The decision vari-
ables are the number of each VM type provisioned
under different purchasing variants and pricing plans.
See Table 1 for notation. The decision variable xR

ik is
the number of reserved VM type i, subscribed to pur-
chasing variant k in the first stage, while xO

ik denotes
the number of operating VM type i with purchasing
variant k in the second stage. The operating cost is
the hourly rate of the reserved VM’s utilization cost.
Also decision variables xD

i and xS
i , respectively, are

the number of on-demand and spot VMs of type i in
the second stage. We have four provisioning costs,
formulated as follows:
• The total Reservation Cost, or the upfront cost of

reserving resources, where cR
ik is the price of VM

type i with purchasing variant k:

CR
ik = ∑

i
∑
k

xR
ikcR

ik (1)

• The total Operational cost, i.e. the hourly cost
of the reserved VMs actually used in the second
stage, where cO

ik is the price of VM type i with
purchasing variant k:

CO
ik = ∑

i
∑
k

xO
ikcO

ik (2)

• The total On-demand cost, where cD
i is the price

of VM type i:

CD
i = ∑

i
xD

i cD
i (3)

• The total Spot cost, where cS
i is the price of VM

type i:
CS

i = ∑
i

xS
i cS

i (4)

The objective function z is the total expected pro-
visioning cost. It is the main objective function of this
problem.

Min z = ∑
i

∑
k

cR
ik.x

R
ik + IEΩ[Φ(xR

ik,ω)] (5)

Uncertainty-aware Optimization of Resource Provisioning, a Cloud End-user Perspective

295



Table 1: Notation of the problem.

Symbol Description

I set of VM Types
R set of VM resources or features; CPU and Memory
T set of Tasks
CapCPU

i CPU Capacity of VM type i
CapMemory

i Memory Capacity of VM type i
ReqMemory

t Amount of memory required for completing task t
ReqCPU

t Amount of CPU required for completing task t
S set of scenarios
K Set of reservation purchasing variants, all-, partial-, or no-upfront
MaxBudget User’s maximum budget
CR

ik Reservation Cost of VM type i subscribed purchasing variant k
xR

ik Number of reserved Vms type i subscribed purchasing variant k
CO

ik Operation Cost of VM type i, subscribed purchasing variant k
xO

ik Number of Operation VM type i, subscribed purchasing variant k
CD

i On-demand Cost of VM type i
xD

i Number of on-demand VM type i
CS

i Spot Cost of VM type i
xS

i Number of Spot VM type i

subject to:
xR

ik ∈ N (6)

Where IEΩ[Φ(xR
ik,ω)] is the expected cost under un-

certainty Ω, and Φ is the recourse optimization prob-
lem. The objective of Φ(xR

ik,ω) is to minimize the cost
under uncertainty given scenario ω:

Minimize ∑
ω
(xO

ikcO
ik + xD

i cD
i + xS

i cS
i ) (7)

subject to:

xO
ik ≤ xR

ik (8)

z≤MaxBudget (9)

TotalCPU ≥∑
t

ReqCPU
t (10)

TotalMemory≥∑
t

ReqMemory
t (11)

The first constraint (8), limits the number of op-
erating reserved VMs (xO

ik) of each type to be less
than or equal to the number of reserved VMs (xR

ik).
As discussed earlier, the customer reserves a number
of VMs in the first stage and pays an upfront fee for
them, then in the second stage these reserved VMs
can be used by the customer. So the number of used
VMs (operating VMs) in the second stage cannot be
greater than the number of reserved VMs in the first
stage. The second constraint (9) states that the to-
tal provisioning cost, or the objective function z, can-
not be greater than the maximum budget the customer
specified for running their application.

Constraints (10) and (11) both ensure that the
amount of required resources for all tasks is satisfied
by the VMs acquired in the second stage. The in-
stance types comprise varying combinations of CPU
and memory, and give the customer the flexibility to
choose the appropriate mix of resources for their ap-
plications. Therefore, each task can be run on mul-
tiple VMs simultaneously, just as each VM can host
multiple tasks of a particular application. TotalCPU
and TotalMemory are the available CPU and Memory
in the second stage, and are defined as follows:

TotalCPU = ∑
ki

xO
ikCapCPU

i

+∑
i
(xD

i + xS
i )CapCPU

i

(12)

TotalMemory = ∑
ki

xO
ikCapMemory

i

+∑
i
(xD

i + xS
i )CapMemory

i

(13)

where CapCPU
i and CapMemory

i are the CPU and mem-
ory capacity of VM type i, specified by the cloud
provider.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

296



3 EXPERIMENTAL EVALUATION

3.1 Data Set

Two main characteristic of cloud workloads, relevant
to our work, are the job length and the resource uti-
lization (Di et al., 2012). In order to have a rep-
resentative data set for cloud, the jobs should finish
quickly, on the order of a few minutes: 55% of tasks
in cloud finish within 10 minutes and about 90% of
tasks’ lengths are shorter than 1 hour(Di et al., 2012).
In addition the jobs usually have low resource demand
for CPU and memory, as they are mostly interactive
and real-time, in contrast to scientific batch jobs (Di
et al., 2012).

Therefore, for evaluating the proposed approach
under realistic and various working conditions, we
found workload traces of the DAS-2 multi-cluster sys-
tem (DAS2, 2009) well-suited for our experiments.
This data set were obtained from Parallel Workload
Archive (Parallel Workload Archive, 2016) and con-
sist of over two hundred thousand small jobs with
short run-time period.

These data are real users’ request logs collected
from five different universities in the Netherlands. We
use twelve-month workloads on DAS-2 clusters in the
year 2003. The main characteristics of the data used
in this work include: Number of Allocated Proces-
sors, Used Memory, User ID and Group ID fields.
12 user groups with various jobs (different CPU and
Memory usage pattern) are extracted from the data
set. As our problem is viewed from the end-user’s
perspective, we use top 12 dominant users’ groups (in
terms of number of tasks) individually for evaluating
our work, further discussion on group behaviours are
made in the following sections.

The other data required for our experimental eval-
uation is the VM prices for all three pricing plans.
The VM prices of the prevalent IaaS cloud provider,
Amazon EC2 (Amazon EC2, 2016), i.e., the standard
reserved, operating, on-demand, and spot prices were
extracted from Amazon EC2s official website (Ama-
zon EC2, 2016) over May 2016.

3.2 MiniZinc Model

The model was implemented in the MiniZinc mod-
eling language (Nethercote et al., 2007), using the
G12 MIP solverWe model the problem in two sep-
arate MiniZinc models. The first model solves the
problem of determining the number of reserved VM,
before the unknown parameters become known. The
workload probability distributions for the user group
are extracted from the DAS-2 data set (DAS2, 2009).

Figure 1: Workload patterns in cloud computing (Steve
Clayton, 2009).

To represent the uncertainty of parameters, 50 work-
load scenarios are chosen pseudo-randomly with a
uniform distribution from that range. Similarly, 50
cost scenarios for on-demand and spot prices were
generated based on the extracted data of May 2016.
The outcome of this model is the optimum number of
reserved VMs, and the expected total cost based on
the 50 scenarios.

In the second stage, the real workload and real
prices of on-demand and spot VMs become known.
A single set of workload demand is again pseudo-
randomly generated from our DAS-2 data set(DAS2,
2009) and is used with the prices captured from Ama-
zon EC2 (Amazon EC2, 2016). Based on these data
and determined number of reserved VMs from the
first model, the outcome of the stage 2 model is the
optimal number of spot and on-demand instances as
well as the actual total cost.

The model contains some approximations. In gen-
eral, not all instances of a particular type perform to
exactly the same standards, because of variations in
the physical hardware that is allocated for them and
possible multi tenancy (Mao and Humphrey, 2012).
We use the minimum guaranteed performance of EC2
instances as the baseline to ensure that sufficient re-
sources are available for each job.

We repeated the first and second stage models 20
times, for each individual group independently and
for different options, that are described in section 3.4,
to see how total price varies. They all share the same
data and configuration during each run and the over-
all MiniZinc execution time for each run is less than
1 minute.

3.3 Cloud Workload Patterns

Microsoft research (Steve Clayton, 2009) identified
four workload patterns as most suitable for cloud
computing applications, as shown in Fig 1. The work-
loads are:
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On and off: Applications that have a relatively
short period of activity and after producing a result
they can be terminated ( such as image processing ap-
plications).

Predictable/unpredictable Bursting: In pre-
dictable bursting workload, the peak demand period
is roughly known. In unpredictable bursting work-
load, however, it is unknown when the peak demand
will be.

Growing Fast: This is the scenario of start-up
companies, when suddenly their services become suc-
cessful and the infrastructure they are running their
application on cannot cope.

3.4 Pricing Plan Options

We repeat the experiment for four different options
that are various combinations of Amazon EC2 pricing
plans. The options are:

• Reservation-Ondemand-Spot (ROS) option: This
is our main option; it considers all three pricing
plans. The ROS option is ideal for cloud users
with a “predictable bursting” workload. As we
will discuss later in the result section, a better pre-
diction of workload can lead to a more cost sav-
ing due to more accurate decisions made in the
first stage on number of reserved VMs, and then
extra demand can be optimally satisfied with on-
demand and spot instances, if the application is
fault tolerant enough to deal with spot.

• Reservation-Ondemand (RO) option: Only reser-
vation and on-demand pricing are considered
for this option, it corresponds to the model of
(Chaisiri et al., 2012). When the user’s applica-
tion is time critical and deadline sensitive, the spot
instances cannot help much. So even if they have
the ideal “bursting” workload, they cannot con-
sider ROS. Instead they can apply the RO option.

• Ondemand-Spot (OS) option: The OS (no reser-
vation) option only considers on-demand and spot
pricing plans.

• Ondemand (O) option: In the O (all on-demand)
option, the only pricing plan is the on-demand
plan. With an application with “on and off” de-
mand that is deadline sensitive, the user has no
choice but the expensive on-demand instances.

Each option has its place and when used in the
correct manner savings can be made.

(a) Group 2 (b) Group 3

(c) Group 4 (d) Group 8

(e) Group 9 (f) Group 11

Figure 2: CPU usage probability distribution.

4 RESULTS

Figure 3 shows the average total cost of all groups for
all the above mentioned options. The ROS achieves
the lowest total cost for all 12 groups, while the O
yields the highest total cost due to the fact that on-
demand instances are the most expensive ones. The
next highest cost belongs to the OS and the RO op-
tions, respectively.

Comparing the total cost of the ROS to other op-
tions in average, there is a 70% and 53% cost sav-
ing over the O and the OS options, respectively. Also
there is an average of 1.53% cost reduction by using
the ROS option rather that the RO. In some groups,
the total costs of ROS and RO options are the same,
such as groups 1, 3, 5, and 8, where spot instances are
not needed. Whereas for groups 2, 4, 9, and 11 there
is a 6.6%, 7%, 4%, and 2% cost saving, respectively,
by using the ROS option. Therefore the ROS option
can be more or less beneficial for users with different
demand attributes.

To get an idea of the group’s demand attributes,
Figure 2 shows the probability distribution for jobs’
CPU demand for 6 different user groups. Groups 3
and 8 have almost similar distribution patterns, their
density of the number of CPU demand is mostly
concentrated around a specific range (1 to 4 CPU
core). Other illustrated groups, group 2, 4, 9, and 11
have different probability distribution patterns, how-
ever they all have one thing in common: a large vari-
ety in the number of CPU cores required.
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Figure 3: Total Cost Comparison for all on-demand (O), no reservation (OS), no spot (RO), and the complete ROS options.

Figure 4: The difference (expected cost − actual cost) in $
for the ROS and RO options.

Consequently, we find that the probability distri-
bution of CPU and Memory usage is a factor in cost
reduction by ROS, compared to RO. A more nar-
row demand distribution results in less cost saving,
whereas a wider range of job requirements leads to a
better cost saving. This is true for all groups, even
for the ones that are not shown in Figure 2. The un-
derlying reason appears to be that the workload of a
concentrated distribution is more predictable, as the
first stage decision is made based on a set of work-
load scenarios that are more likely to be similar to the
real time workload of the second stage. That is why
the decision in the first stage can be made more accu-
rately by the solver, and therefore there is less need to
handle jobs in the second stage, and in particular, less
need to employ spot instances.

The accuracy of the first-stage decision can be cal-
culated as the the difference between expected cost in
the first stage and the actual cost in the second stage.
The closer to zero this number is, the more accurate
was the decision for the number of reserved VMs in
the first stage. Figure 4 shows the difference of to-
tal expected and total actual cost for the ROS and OS
options. In terms of overall accuracy on average, the
accuracy of the ROS is 5% better than the RO, while
for groups 2, 4, 9, and 11 this number is more signif-
icant. Accordingly, the total cost saving for them in

Figure 5: Number of Reserved VMs in ROS and RO op-
tions, average over 20 runs.

Figure 6: Total cost and number of reserved VMs in the RO
option.

the ROS is higher.
As depicted in Figure 5, for all groups, the num-

ber of reserved VMs with the RO option is greater
than or equal to the number of reserved VMs with
ROS, 4% greater on average. When there is not a low
cost spot VM available, the solver reserves more VMs
in the first stage, to avoid paying for expensive on-
demand VMs later in the second stage. These extra
reserved VMs may not be used in the second stage,
therefore the user may pay for unused reserved in-
stances. Hence, the number of reserved VMs deter-
mined in the first stage has an important impact on
the total price and leads to a higher price for the RO
model, as shown in Figure 6.

Generally, the total cost of our main option, ROS,
is the lowest cost among all other options, but specif-
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ically it leads to more cost savings when the CPU de-
mand is more widely distributed or is less predictable.
The 1.5 percent cost saving by using spot instances
can be translated to a significant amount of money
when a huge amount of resources is rented for the
cloud provider by a particular company. So by choos-
ing a cloud provider that offers spot instances, users
can benefit from the potential huge discounts.

5 CONCLUSIONS

The resource provisioning problem in the cloud envi-
ronment is viewed from the end-user perspective, in
this paper. While there are uncertainties in the param-
eters and heterogeneity in VM type and prices, the
optimal number of VMs are determined using a two
stage stochastic optimization problem.

Our results show that in general, the proposed
ROS option is cheaper than the others. We saw that
user groups with almost uniform CPU requirements
do not pay a penalty when using the RO option, but
other user groups can pay a significant penalty. Other
options are significantly more expensive. Overall, our
results demonstrate and quantify the effects that job
mix and workload patterns can have on the resource
provisioning cost for cloud end-users.

We plan to extend this study by evaluating our
model with a real cloud dataset (Google Cluster
Dataset) and improve our model to a multi-stage
stochastic model for getting more precise results, and
also make the model more flexible by considering the
convertible reserved VMs.
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