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Abstract: Smart Cities will mainly emerge around the opening of large amounts of data, which are currently kept closed 
by various stakeholders within an urban ecosystem. This data requires to be cataloged and made available to 
the community, such that applications and services can be developed for citizens, companies and for 
optimizing processes within a city itself. In that scope, the current work seeks to develop concepts and 
prototypes, in order to enable and demonstrate, how data cataloging and data storage can be merged towards 
the provisioning of large amounts of data in urban environments. The developed concepts, prototype, case 
study and belonging evaluations are based on the integration of common technologies from the domains of 
Open Data and large scale data processing in data centers, namely CKAN and Hadoop. 

1 INTRODUCTION 

Data Processing is at the heart of future Smart    
Cities. Current Smart City projects often include the 
provisioning of a metadata storage which helps to 
keep track of the available datasets and offers a 
unified way of accessing information regarding 
belonging data, such as format, size and licensing. 
Smart City solutions utilize the data described in 
metadata catalogs and subsequently require the 
integration of big and diverse data on distributed 
systems. Currently, there seems to be a lack of 
attempts and research efforts concerning the seamless 
integration of such systems and the provisioning of a 
unified interface and data processing capabilities in 
direct association with a metadata catalog. As of now, 
required data(-sets) need to be manually collected, 
transferred onto the processing system and kept up-
to-date, thereby forfeiting potential advantages 
offered by the aforementioned cataloging systems.  

The Comprehensive Knowledge Archive   
Network (CKAN; CKAN Association, 2015) is one 
of the two most widely used metadata storage systems 
and a core component in various Smart City projects 
(Matheus and Manuella, 2014; Lapi et al., 2012; 
Marienfeld et al., 2012). CKAN’s metadata catalog 
holds entries for resources from a diverse set of 
sources and is updated automatically   on a periodic 
basis in order to ensure the topicality of the data. Its 

harvester (Mercader et al., 2012) extends the manual 
way of publishing of datasets by enabling the 
automatic inclusion of sources such as other metadata 
hubs or similar by means of harvester-plugins. 
Hadoop (The Apache Software Foundation [TASF], 
2017a) is a popular and the currently most widely 
used open source framework for distributed storage 
and processing of big amounts of data. 

This paper describes a novel concept for the 
integration of CKAN and the Hadoop Distributed File 
System (HDFS; Shvachko et al., 2010), which is the 
starting point for further storage and processing 
within other Hadoop subsystems. The concept builds 
on the CKAN platform and utilizes the core structure 
of a CKAN plugin. This concept and belonging 
prototype is denoted as HdfsStorer plugin and 
constitutes the key contribution of this work. It serves 
the purpose of integrating CKAN as a metadata store 
with the powerful capabilities of Hadoop in order to 
enable the efficient handling of large (open) data sets 
in urban environments. 

As already mentioned, metadata catalogs such as 
CKAN, even though providing some features, can 
hardly satisfy the requirements - with respect to data 
storage - posed to a logically centralized data hub, but 
can instead deliver an entry point for its realization. 
Distributed file systems, such as the HDFS, are more 
suitable for big data storage.  

The HDFS is the underlying distributed file 
system for storing data for the Hadoop data 
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processing system. Its inherent reliability and 
scalability with regard to storage capacity and 
computing resources renders the HDFS suitable for 
coping with the vast amounts of data encountered in 
a Smart City. Therefore, in the scope of this work, 
CKAN is extended by the possibility for uploading 
the data referenced in its metadata catalog to the 
HDFS. This extension - designed, developed and 
evaluated in the scope of German national and 
European projects related to Open Data and Smart 
Cities - is presented in the current paper and referred 
to as HdfsStorer. 

The following paragraphs describe this extension 
in detail and outline its advantages and disadvantages. 
The second section encompasses a short review of 
already existing tools and is followed by section 3 that 
elaborates the functional and non-functional 
requirements for the plugin. Afterwards, the 
architecture of the plugin is described in section 4 and 
its performance is evaluated by means of a prototype 
(described in section 5) and a use-case scenario in 
section 6. Furthermore, a description of a possible 
real world Smart City application for the plugin is 
provided in section 7. The paper is concluded by a 
general discussion section and a summary of the 
contribution. 

2 RELATED WORK 

In addition to the HDFS, a multitude of other 
distributed file storage systems exists, such as Apache 
Cassandra (TASF, 2017b; Fan et al., 2015) - a 
distributed design with multiple entry points/where 
each node can also act as a master, or Open Stack 
Swift and Cinder (Rosado and Bernardino, 2014), 
which are distributed object and block storages 
respectively, abbreviated as OS-S/C (Open Stack – 
Swift and Cinder). Commercial solutions, such as the 
Ceph file system (CephFS; Weil et al., 2006) and the 
Amazon S3 cloud (Amazon.com, 2017) are also 
available. Furthermore, there are a variety of add-ons 
or pluggable systems that allow for the 
interoperability of the various associated     
technology stacks. These include OS Sahara (Thaha 
et al., 2014), formerly known as Savanna, which 
allows Hadoop processing engines to work on data 
stored on OS-S/C, as well as the CephFS Hadoop 
plugin (Red Hat, 2014), that makes data stored in the 
CephFS available to the above mentioned Hadoop 
processing engines. In this work we will focus on the 
HDFS as it offers the most straightforward entry point 
for further processing by a maximum amount of 
processing engines. 

Stream processing tools such as Kafka (Kreps, 
Narkhede and Rao, 2011) already provide the 
possibility of pushing streaming data (in contrast to 
batch data, which shall be the focus of this work) from 
a variety of sources onto the HDFS, where it will be 
available for long term usage. So far, there is also no 
integration with metadata portals that register and 
catalog such data streams. However, as the amount of 
data, which ultimately has to be manually transferred, 
is limited to access information about the stream - e.g. 
Kafka related information for accessing the data 
stream - such integration is also not of major 
importance. 

To shift batches of data from one repository to 
another, appropriate protocols are needed. Ahuja and 
Moore (2013) pointed out a weakness regarding the 
consumption of computing resources by the 
Transmission Control Protocol (TCP) during the 
transfer of big amounts of data. Therefore Tierney et 
al. (2012) suggest the usage of the Remote Direct 
Memory Access protocol over Converged Ethernet 
(RoCE) for data transfer to/from and between 
repositories.  

To the authors’ best knowledge, the question of 
automated data import on the basis of metadata 
storage engines/catalogs has not been addressed yet. 
As an example, Khan et al. (2015) state that they use 
the data from the Bristol Open Data portal (Bristol 
City Council, 2015), but do not mention how it is 
being accessed and transferred to the utilized 
distributed file system. The current work aims at 
bridging this gap on the concept level, as well as on 
the level of case studies and prototype 
implementations. 

3 REQUIREMENTS FOR THE 
HDFS-HARVESTER 

Based on the inherent properties of big data itself and 
with regard to the presence of very diverse 
environments in which both CKAN and Hadoop find 
their applications - a similar diversity can also be 
found within the field of Smart Cities - the following 
main requirements for an integrating 
component/plugin can be derived: 
 

Req. 1: Seamless integration of the HdfsStorer 
with CKAN: The user experience should not be 
disturbed by the plugin running in the background. 

Req. 2: Timeliness of resources: Every time a 
new resource is created and provided, an existing 
resource updated or respectively deleted, these 
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changes should be mirrored on the distributed file 
system (HDFS). 

Req. 3: Network Usage Economization: Files on 
the HDFS should only be updated if the source data 
has changed, not upon every harvesting process. 
(CKAN checks periodically for changes in remote 
datasets). 

Req. 4: Completeness: Files irrespective of their 
size or format should be uploaded to the file system. 
Especially, there should be no upper limit for file 
upload as has been the case with the CKAN-internal 
Filestore.  

Req. 5: Backwards-compatibility: A way for 
importing datasets to the HDFS that have been 
registered with CKAN prior to the activation of the 
plugin should be available. 

 
Based on these key requirements, the next 

sections proceed with devising the architecture of the 
HdfsStorer plugin, evaluating it based on a prototype, 
as well presenting the belonging case study and 
measurements. 

4 ARCHITECTURE OF THE 
HDFS-HARVESTER 

CKAN offers different points of entry for plugin 
development. These are given by programming 
interfaces. Mainly there are three important events to 
consider in the lifecycle of a data resource: 1) the 
creation of a new resource, 2) the update of an 
existing resource, and finally 3) the deletion of it. The 
interface, which is foreseen to handle these events, is 
the IResourceController within the Python based 
CKAN platform, offering the functions after_create, 
after_update and before_delete. The other functions 
provided are left out of consideration, as they won’t 
have to be implemented. 

There are certain peculiarities in CKAN with 
respect to metadata and dataset cataloging that have 
to be considered. In CKAN, a package generally 
describes a set of data and stores information about 
the dataset along with all given attributes and a list of 
the resources belonging to it. These resources 
describe single external files (actual data), referenced 
by an URL. Resources and packages, which are 
deleted within CKAN, remain within their respective 
PostgreSQL (Momjian, 2001) database and only a 
single attribute is changed, which prevents them from 
appearing in the catalog. A user with appropriate 
authorization can still access them. Only after their 

purging by a system administrator, either through the 
CKAN web interface, or from the corresponding 
database directly, resources and packages are fully 
removed. Unfortunately, there is no possibility for 
intercepting purge events (e.g. a function called 
“after_purge”), so that in the course of each deletion, 
i.e. on each call of the before_delete function, the 
belonging dataset file has to be fully removed from 
the HDFS storage. This procedure relates to another 
interesting aspect within CKAN given by the fact that 
package deletion does not automatically result in the 
deletion of the embedded resources, i.e. resources 
included/referred in this package/metadata. 
Therefore, complementary to the core HdfsStorer 
functionality, each package deletion event has to be 
intercepted by implementing the IPackageController 
interface and belonging embedded resources must be 
removed. 

The description of the architecture is further 
refined in the next subsections by introducing a view 
on the components of HdfsStorer as well as on the 
process flows and interactions amongst these 
components.  

4.1 Components and Dynamic Aspects 

The general architecture of the plugin including a 
flow of operations – i.e. an enumeration of a sequence 
of operations – is illustrated in Figure 1. Thereby the 
HdfsStorer plugin is depicted as accommodated 
within the CKAN harvesting eco-system, since it 
essentially resembles a CKAN extension.  
 

Figure 1: Plugin Architecture (highlighted in orange). 
Deletion pathway is not included. 
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Once a resource is created or updated with respect 
to its metadata in CKAN, the referenced data resource 
(file) needs to be uploaded to the HDFS - operations 
(1a), (1b), (2), (3) and (4a-b) in Figure 1. In turn, if a 
resource or package is deleted, the corresponding 
resource files have to be removed again. These files 
can be identified by means of the resource IDs, as for 
each ID a separate directory is created on the file 
system. 

CKAN’s native deletion events trigger API calls 
to the methods implemented by the HdfsStorer 
plugin. Upon creation, update and deletion of a 
resource in CKAN, the corresponding ID and a 
reference to the up-to-date file are carried along in the 
parameters. If an entire package is to be deleted in 
CKAN, only the package ID is given, requiring an 
additional lookup in a database table for resource 
identification and removal.  

Communication and data exchanges - mainly 
operations (3-4) in Figure 1 - between the HdfsStorer 
plugin and the HDFS (in the upper right part of  the 
figure)  are managed over the WebHDFS - a 
Representational State Transfer-API for Hypertext 
Transfer Protocol/TCP-based manipulation of 
resources stored on the HDFS (TASF, 2013).  

The employed WebHDFS operations are given in 
Table 1 and encompass functionalities such as 1) 
checking for the existence of a file or directory, 2) the 
access and download (of parts) of a file, 3) the 
creation of directories, 4) access to the location for 
writing a new file thereby overriding old resource 
files, 5) appending to a newly created resource file 
and 6) the deletion of resource files and folders. The 
order in the table corresponds to the order of the 
enumeration. 

Table 1: List of WebHDFS operations. 

Method Operation Fields 
HTTP 

Return Type 

GET liststatus   
200 (OK) + 

JSON 

GET open  200 (OK) + 
FILE 

PUT mkdirs   
200 (OK) + 

JSON 

PUT createfile data=' ' 
203 

(redirect) 

POST append 
data; 

content-
type 

200 

DELETE delete   200 + JSON 

 

5 PLUGIN IMPLEMENTATION 

In the following, the detailed description of the plugin 
implementation is provided, starting with the 
procedure for resource creation and updates. 

5.1 Creation and Update of Resources 

Before a new resource is created on CKAN - either 
by means of manually adding it through the web 
interface or by harvesting it from another source - the 
before_create methods found in all plugins classes 
implementing the IResourceController interface are 
called whereby the data (dictionary) structure holding 
information about the new resource is passed as 
parameter. This is followed by internal addition of the 
resource in CKAN and the call of the respective 
after_create methods. A similar path is followed 
during the update and deletion of resources. 

The procedure implemented within the 
HdfsStorer plugin is illustrated in Figure 2. Upon the 
call of the after_create method implemented by the 
HdfsStorer plugin, a folder named after the ID of the 
resource is created on the HDFS. This folder can be 
found inside the resource storage folder, which has 
been previously created on the HDFS and specified in 
an additional parameter within the CKAN 
configuration. Subsequently, a new empty file with 
identical name to the remote resource file is created. 
For further appending of data, a redirect to the HDFS 
DataNode, on which the new empty file lies, is 
provided. Consequently, chunk by chunk of the 
original file is read and appended to the previously 
created file. By chunking and appending, even (larger 
than the machine’s memory) files can be transferred - 
the biggest file transferred during testing had a size of 
roughly 30 GB. Therefore, Requirement (4) can be 
deemed as fulfilled. Should the file size exceed the 
specified HDFS block size, the remaining data is then 
automatically forwarded to a newly created block on 
a different DataNode. Data replication is also 
conducted on the fly in the background. 

The concept of hashing plays an important role in 
the current circumstances. As only resource files 
should be updated, whose contents have actually 
changed since the last update, a hash check was 
implemented (on the right in Figure 2), satisfying 
Requirement (3). Normally, a check sum is built on 
the basis of entire files. 

For the computation of a checksum, the files 
normally have to exist locally on one machine. As it 
cannot be assumed that every data provider will also 
include appropriate checksums along with their files 
and the HDFS only provides a so called distributed 
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checksum for files stored on it, both files would have 
to be downloaded to a single machine in order to 
calculate and compare their checksums. This would 
result in additional network traffic and thus requires 
further elaboration.  
 

Figure 2: Upload of new or updated Resources to the HDFS 
through the Plugin. Possible occurring errors are shown in 
red. 

Depending on the nature of the files implied in the 
application context, one of the two following 
approaches can be taken instead: 1) the comparison is 
skipped entirely and on every update the resource file 
is uploaded anew to the HDFS or 2) comparison of 
the files is done on the basis of a partial checksum. 
For the (CKAN-)HdfsStorer plugin the second 
approach (partial checksum check) was taken in 
anticipation of the large bodies of data needed for the 
realization of Smart City solutions. It has to be noted, 
that the filename is not taken into consideration for 
the creation of this partial checksum, as simple 
renaming of a file does not necessarily come with a 
change in the contents of a file. A difference in file 
size is a good indicator for differences in the contents 
of a file and therefore the file size makes up one 
constituent for the hash key. Files like logs, which do 
constitute a big part of what has to be processed on 
big data engines, are usually changed by either 
appending to the back or front of a file. Usually, this 
would also trigger a change in file size, and thus be 

detectable by looking at the file size only. Given the 
special case of a constant size log - such as for 
example logs only saving data for the X-recent days, 
or only saving X-number of entries - this does not 
hold anymore. By chunking a specific number of 
bytes at either the front or the back of a file (or both) 
and including these as further ingredients into the 
hash key, changes of such files could be detected. If 
the number of bytes is high enough, the entire 
checksum of smaller files (e.g. configuration files or 
images) is computed within the presented approach. 

The downside is that files with no difference in 
file size after update, which are larger than the defined 
chunk size, with static header (beginning of the file) 
and footer (last bytes of the file) will still remain 
undetected. These files are not suited very well for 
distributed processing, as they are usually hard to 
split. Furthermore, the very rare case of having only 
minor differences in a large splittable, identically 
sized file remains undetected. As usually individual 
items from a big dataset are only of minor importance 
to the final result (after processing the entire dataset) 
and the more single items are changed, the more 
likely a difference in file size can be detected, this 
drawback can be deemed acceptable in the majority 
of cases. 

5.2 Parallel Upload of Data 

In order to not negatively influence the performance 
of the CKAN system and thus conform to 
Requirement (1), the decision was taken to not have 
the data uploads to the HDFS run in parallel, as - 
depending on the specific setting - many concurrent 
uploads will likely use up the entire bandwidth of the 
server. This should be noted when setting the 
repetition period for harvesting, as a single harvesting 
circle might be slowed down markedly and might 
result in an ever-increasing queue of harvesting jobs 
and thus outdated data. The setup of a second CKAN 
server only for the purpose of harvesting with 
periodical synchronization of its database with the 
main CKAN server could allow for parallel data 
upload without infringing on Requirement (1). 
Similar setups are already under development and 
employment. 

5.3 Deletion of Resources 

The deletion of a single resource on CKAN results in 
the call of the before_delete function of the 
IResourceController interface implemented by the 
plugin. Package deletion in CKAN does not result in 
the deletion of the respective resources and thus does 

New Resource 
is created

Resource is Updated

Override with empty file 

Append Chunk to local File

Get first X Bytes of 
remote File + Filelength

Get first X Bytes of 
existing File + Filelength

Finished

DIFFERENT

SAME

Can not 
retrieve 
Chunk

YES

NO

Both files 
exist?

Compute Hashes

Compare 
Hash

YES

Get Chunk of 
Remote File

OK

Chunks 
remaining?

NO

A CKAN Plugin for Data Harvesting to the Hadoop Distributed File System

23



 

not result in the call of any functions from the 
IResourceController interface. Therefore, package 
deletion has to be intercepted by the (CKAN-) 
HdfsStorer plugin by implementing the after_delete 
function from the IPackageController interface. 
After retrieval of the corresponding resource IDs in 
both of these two function, the deletion of the specific 
directories on the HDFS and their contents is 
triggered through the WebHDFS API. This ensures 
Requirement (2). 
 

 
 

Figure 3: Import of already existing Resources to the 
HDFS. 

5.4 Backwards Compatibility 

In order to fulfil Requirement (5), which refers to   
the handling of legacy CKAN datasets, another 
module was developed. This module is basically in 
charge of reading the data in the CKAN Datastore 
(Winn, 2013; CKAN Association, 2017) and pushing 
it to HDFS thereby taking care of consistency. The 
process flow within this module is illustrated in 
Figure 3. The resource information for each resource 
registered within CKAN is read from the internal 
PostgreSQL-database and thereupon uploaded to the 
HDFS. In order to allow for fast recovery of recently 
deleted packages and resources, CKAN does not 
remove them directly from the database, but only 
marks them as deleted. These are excluded from 
uploading to the HDFS. 

6 PROOF OF CONCEPT 

In order to exemplify the feasibility and the   
workflow of the plugin, a use case was defined    
based on an algorithm from the field of Machine        
Learning on two different processing engines for 
classification of data points. The usage of two 
different systems is intended to be representative of 
the variety of paths the data can take once it has     
been imported to the HDFS (due to free choice of 
processing engines). Thereby, the HdfsStorer is the 
enabler for such evaluations by allowing large scale 
Big Data and Open Data to be integrated and 
efficiently used in the scope of Smart Cities.   
Building an application that takes as input a dataset, 
which is linked to in the CKAN-catalog, essentially 
consists of three major steps elucidated and 
exemplified in turn.  

6.1 Import of the Dataset(S) to the 
HDFS by Means of the HdfsStorer 

The used input dataset (Alinat and Pierrel, 1993)   
held entries about phoneme properties (such as place 
of articulation) and the corresponding classification 
of those into phoneme classes. It was split into a 
training and an evaluation part, stored in different 
files. Once the files are registered in CKAN, they    
are automatically transferred to the HDFS by the     
plugin.  

6.2 Selection of the Appropriate 
Processing Engine and Program 
Logics 

Both standard Hadoop MapReduce and its more 
flexible in-memory counterpart Spark (TASF, 2016) 
were used separately to train Artificial Neural 
Networks (ANN) on the training set. A standard 
backpropagation algorithm was employed for that 
purpose, the details of which can be found in Liu, Li 
and Miao (2010). The trained ANNs then served to 
classify the data points of the evaluation set. 

6.3 Job Execution and Result Retrieval 

Jobs were executed through the command line. The 
resulting classifications, based on the HdfsStorer  
data uploads, can be retrieved from the HDFS      
filesystem or the command console respectively. As 
the target of this work is not to evaluate the 
classification quality of different implementations, 
only the training step will be considered in the 
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following, in order to exemplify the performance of 
two key approaches (Hadoop MapReduce and Spark). 

Execution time was measured as the time 
difference between job application submission and 
job termination. The illustration of Spark and Hadoop 
execution times in Figure 4 indicates that for the 
current data set - imported over CKAN and the 
HdfsStorer plugin - not only Spark execution times 
are significantly shorter, whilst varying with the 
number of ANN iterations, but also rise more slowly 
than Hadoop execution times, probably due to its 
much lower overhead for each iteration. 

Moreover, Figure 5 depicts the mean memory 
usage of both Hadoop and Spark during idle and 
program execution with 100 iterations on top of the 
open dataset that was imported over the HdfsStorer 
plugin and CKAN. The vertical axis shows the 
memory usage in Mb. 

 Due to the comparably small size of the data set, 
expected tendencies (such as the much higher 
memory usage by Spark) in the absolute RAM usage 
statistics have not been evident. The difference 
between idle and work intensive periods is greater for 
both slaves in the Spark deployment than that of the 
slaves in the Hadoop deployment, indicating the 
stronger memory dependence of Spark during 
processing. Hence, we see on how HdfsStorer can 
enable the efficient evaluation of various distributed 
processing engines for various real word datasets and 
scenarios in Smart Cities and urban environments. 

This evaluation gives an idea of the importance of 
choosing the right processing engine for the 
efficiency of the overall application. The usage of the 
HDFS thereby enables the free choice of the 
processing engine, as it is the basis for a wide range 
thereof. The evaluation can be done on a wider basis 
or can be targeting specific datasets or scenarios in 
Smart Cities. This setup is overall enabled by the 
HdfsStorer plugin, designed and prototyped in the 
current work. 

7 A SMART CITY SCENARIO 
USING HADOOP AND CKAN 

After having shown the general workflow of the 
plugin and evaluated its principal applicability, it is 
also possible to envision its working in the context of 
a more complex scenario. For that purpose, we 
envision the scenario that the public transport system 
of a forthcoming Smart City is to be streamlined and 
optimized. This includes schedule improvements 
following the dynamic identification of peak traffic 
hours and the possibility for both, delay and 
occupancy prediction integrated with trip planning, 
thus providing a better travel experience to 
passengers This can help, as an example, to answer 
questions such as “Will the airport express bus 
normally arrive on time and should I worry about 
fitting in along with my baggage? What about the 
next bus? Is it worth to wait another ten minutes?”.  

The data required for this particular scenario is 
composed of two different classes: static and real-
time. The current schedule and past occupancy and 
punctuality statistics along with the past road and 
weather condition records are spread over different 
data stores as static data and their location and other 
information is indexed in the CKAN-catalog. 
Periodical harvesting through CKAN keeps this 
catalog up-to-date. Information about the current 
weather, road and traffic conditions and the amount 

Figure 4: Comparison of Spark and Hadoop Execution
Times. Four stars indicate a significant deviation of the
means with a p-value less than 0.0001. 

Figure 5: Hadoop (H) and Spark (S) Memory Usage during
idle ("Baseline” BL) and work intensive Periods shown for
Neural Network Training with 100 Iterations. NN:
NameNode/MasterServer, RM: ResourceManager, SL1/2:
Slaves. 
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of passenger measured by sensors inside the transport 
vehicle are provided as streaming data. 

Integration of these two types of data in Hadoop 
is sketched in Figure 6. The HdfsStorer plugin serves 
hereby as the intermediate for importing static data to 
the HDFS according to information provided in the 
CKAN-catalog (such as location of the original 
dataset). Thereupon, different processing engines, 
that can make use of the files stored on the HDFS and 
data streams provided through message brokers, 
integrate all this information and thus allow for said 
enhancements. 

A full implementation of a similar procedure can 
be found e.g. on the H2O.ai github-page (H2O.ai, 
2016). Therein Spark is used in combination with the 
H2O extension (=Sparkling water) to create a flight 
arrival delay prediction system based on past data and 
current weather information. In contrast to our 
scenario, the used dataset is already believed to be 
existent on the HDFS right from the beginning, e.g. 
by prior manual transfer. We extend such legacy 
solutions by a more convenient way for data import 
to a distributed filesystem, making use of a widely 
applied data cataloging system (i.e. CKAN) in the 
Smart City context. 

8 DISCUSSION 

This work described a possible realization of data 
import on the basis of the CKAN metadata catalog to 
the HDFS. The resulting CKAN plugin suits well the 
requirements of many use cases that can be 

encountered in a Smart City or during research. 
According to the type of application, different ways 
of realization are suitable for data import. 
Furthermore, the structure of the implicated systems 
has been described in detail and an overview about 
current research efforts in the field of ICT for Smart 
Cities and the state-of-the-art in the field of 
distributed processing has been provided, along with 
some intuition about possible future developments 
and improvements therein. The choice of the HDFS 
as target has been majorly motivated by the fact that 
a multitude of popular processing systems can make 
use of it. In the following, some prospects are 
discussed, which are enabled through the HDFS 
import of data, facilitated by the developed plugin. 
Furthermore, the results of the current work are 
briefly summarized and related to the possible 
research directions. 

CKAN is currently one of the two most employed 
metadata storage systems. A multitude of Smart City 
initiatives embrace the idea of creating a unified 
publically accessible portal, where mostly various 
governmental entities, but also other stakeholders, are 
publishing their data. This is done with the hope that 
once the data is available, private citizens and 
companies will use it, in order to realize their own 
ideas and make use of that portal, where mostly 
various governmental entities, but also other 
stakeholders, are publishing their data. New business 
models are created and the public benefits emerge 
through better services based on the published data. 

For certain applications it is advantageous to 
process the vast amounts of provided data in a 
distributed fashion. For this purpose, the user would 
normally have to accesses the web portal and search 
for each dataset. In order to make use of the resources 
provided therein, he or she has to download them 
separately from the referenced websites. After this, 
those files have to be uploaded in turn to the 
distributed file system in order to enable their 
processing. This way of accessing big data sets has 
some major drawbacks: It is likely that the resource 
size exceeds local file system storage capabilities 
(and thus resource transfer wouldn’t work at all) and 
it also takes quite some time going through the whole 
process manually. 

The current (CKAN-)HdfsStorer plugin was 
developed from the perspective of a CKAN instance 
operator. Making use of the CKAN plugin interface 
structure for data import has the following 
advantages: There is no need for writing a separate 
client for handling requests to the CKAN API and 
response parsing. The CKAN harvesters possess rich 
extensions for harvesting other non-CKAN sources 

Figure 6: Distributed Integration of Static and Real-Time 
Data from different Sources. 
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(e.g. other metadata catalogs or specialized formats) 
and the data described in there can be easily imported 
without the need for further solutions.  

Additionally, operators of already existing CKAN 
instances are provided with a convenient way of 
going over from metadata-only storage to having 
access to the full set of data, accumulated from a 
multitude of different sources. This could be one 
simple way for the creation of a Smart City Data Hub 
on which centralized data processing could then take 
place. Coupling the data import with CKAN has the 
further advantage of ensuring the timeliness of the 
data. A more elaborate data upload logic could also 
contribute towards streamlining this process. 

Aside of the usage in the context of a Smart City, 
also other areas could benefit from the combined 
power of CKAN and Hadoop: The field of 
computational linguistics uses big corpora of text for 
language research and as the basis for speech 
production and translation engines (Wuebker, Ney 
and Zens, 2012). The creation of big corpora 
consumes a lot of time and poses a great challenge 
especially for smaller research groups as they usually 
do not have access to sufficient sources. Therefore, a 
few corpora are re-used repeatedly. This is a useful 
for the comparison of different solutions to a specific 
problem, as the number of confounding variables is 
decreased, but has the drawback that only a small and 
possibly not representative subset of a language is 
looked at. More resources and corpora would mean a 
better abstraction of the results and avoidance of 
possible biases. Ad-hoc creation of new specialized 
corpora could give rise to insights into the 
characteristics of situative (e.g. newspaper articles, 
law texts, search queries, chat logs or email 
correspondence) and group-specific (e.g. youth, 
elderly, the scientific community, cross cultural 
communications) language usage. CKAN instances 
provide an entry point for finding a high number of 
diverse resources and the metadata allows for easy 
identification of textual material and its classification 
according to situation and types/classes/groups of 
data. By means of harvesting a specific set of CKAN 
instances, and possibly also other user defined 
sources, the desired type of corpus can be 
accumulated on the HDFS in a time efficient manner 
by even a small group of people. Within the HDFS 
this corpus can then be readily processed by means of 
the distributed nature of Hadoop. According to the 
specific application, these non-annotated corpora can 
either be used directly or further pre-processed. The 
example of machine translation making use of aligned 
corpora has already been mentioned previously. The 
alignment of corpora can also be done on the HDFS 

grace to the availability of governmental documents 
in different languages, as there are often multiple 
official languages in a single administrative union 
(Steinberger et al., 2014).  

The above described prospects outline possible 
further developments on top of the CKAN-
HdfsStorer plugin. Some of these directions will be 
pursued in the course of emerging and running 
national and international projects regarding the topic 
of Urban Data Platforms. 

9 SUMMARY & CONCLUSIONS 

The current paper presented our recent work on the 
integration of metadata harvesting and data importing 
within Smart Cities. The concepts are exemplified 
based on two widely used systems – CKAN for 
metadata aspects and HDFS/Hadoop for enabling the 
distributed processing of Big/Open Data.  The paper 
presents an architecture for such a component 
integrating the harvesting processes of CKAN and the 
storage of data to HDFS for further usage by different 
processing engines.  

The architecture and concepts were prototyped 
and various evaluations were conducted which 
illustrated the benefits of the proposed solutions. A 
special section discusses the various application areas 
of our component and thus points to potential future 
developments and applications (e.g. Linguistics, 
Public Transportation) within urban environments. 
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