
A CKAN Plugin for Data Harvesting to the Hadoop Distributed File
System

Robert Scholz, Nikolay Tcholtchev, Philipp Lämmel and Ina Schieferdecker
Fraunhofer Institute for Open Communication Systems (FOKUS), Berlin, Germany

Keywords: Smart Cities, Open Data, Distributed Processing, Hadoop, CKAN.

Abstract: Smart Cities will mainly emerge around the opening of large amounts of data, which are currently kept closed
by various stakeholders within an urban ecosystem. This data requires to be cataloged and made available to
the community, such that applications and services can be developed for citizens, companies and for
optimizing processes within a city itself. In that scope, the current work seeks to develop concepts and
prototypes, in order to enable and demonstrate, how data cataloging and data storage can be merged towards
the provisioning of large amounts of data in urban environments. The developed concepts, prototype, case
study and belonging evaluations are based on the integration of common technologies from the domains of
Open Data and large scale data processing in data centers, namely CKAN and Hadoop.

1 INTRODUCTION

Data Processing is at the heart of future Smart
Cities. Current Smart City projects often include the
provisioning of a metadata storage which helps to
keep track of the available datasets and offers a
unified way of accessing information regarding
belonging data, such as format, size and licensing.
Smart City solutions utilize the data described in
metadata catalogs and subsequently require the
integration of big and diverse data on distributed
systems. Currently, there seems to be a lack of
attempts and research efforts concerning the seamless
integration of such systems and the provisioning of a
unified interface and data processing capabilities in
direct association with a metadata catalog. As of now,
required data(-sets) need to be manually collected,
transferred onto the processing system and kept up-
to-date, thereby forfeiting potential advantages
offered by the aforementioned cataloging systems.

The Comprehensive Knowledge Archive
Network (CKAN; CKAN Association, 2015) is one
of the two most widely used metadata storage systems
and a core component in various Smart City projects
(Matheus and Manuella, 2014; Lapi et al., 2012;
Marienfeld et al., 2012). CKAN’s metadata catalog
holds entries for resources from a diverse set of
sources and is updated automatically on a periodic
basis in order to ensure the topicality of the data. Its

harvester (Mercader et al., 2012) extends the manual
way of publishing of datasets by enabling the
automatic inclusion of sources such as other metadata
hubs or similar by means of harvester-plugins.
Hadoop (The Apache Software Foundation [TASF],
2017a) is a popular and the currently most widely
used open source framework for distributed storage
and processing of big amounts of data.

This paper describes a novel concept for the
integration of CKAN and the Hadoop Distributed File
System (HDFS; Shvachko et al., 2010), which is the
starting point for further storage and processing
within other Hadoop subsystems. The concept builds
on the CKAN platform and utilizes the core structure
of a CKAN plugin. This concept and belonging
prototype is denoted as HdfsStorer plugin and
constitutes the key contribution of this work. It serves
the purpose of integrating CKAN as a metadata store
with the powerful capabilities of Hadoop in order to
enable the efficient handling of large (open) data sets
in urban environments.

As already mentioned, metadata catalogs such as
CKAN, even though providing some features, can
hardly satisfy the requirements - with respect to data
storage - posed to a logically centralized data hub, but
can instead deliver an entry point for its realization.
Distributed file systems, such as the HDFS, are more
suitable for big data storage.

The HDFS is the underlying distributed file
system for storing data for the Hadoop data

Scholz, R., Tcholtchev, N., Lämmel, P. and Schieferdecker, I.
A CKAN Plugin for Data Harvesting to the Hadoop Distributed File System.
DOI: 10.5220/0006230200470056
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 19-28
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

19

processing system. Its inherent reliability and
scalability with regard to storage capacity and
computing resources renders the HDFS suitable for
coping with the vast amounts of data encountered in
a Smart City. Therefore, in the scope of this work,
CKAN is extended by the possibility for uploading
the data referenced in its metadata catalog to the
HDFS. This extension - designed, developed and
evaluated in the scope of German national and
European projects related to Open Data and Smart
Cities - is presented in the current paper and referred
to as HdfsStorer.

The following paragraphs describe this extension
in detail and outline its advantages and disadvantages.
The second section encompasses a short review of
already existing tools and is followed by section 3 that
elaborates the functional and non-functional
requirements for the plugin. Afterwards, the
architecture of the plugin is described in section 4 and
its performance is evaluated by means of a prototype
(described in section 5) and a use-case scenario in
section 6. Furthermore, a description of a possible
real world Smart City application for the plugin is
provided in section 7. The paper is concluded by a
general discussion section and a summary of the
contribution.

2 RELATED WORK

In addition to the HDFS, a multitude of other
distributed file storage systems exists, such as Apache
Cassandra (TASF, 2017b; Fan et al., 2015) - a
distributed design with multiple entry points/where
each node can also act as a master, or Open Stack
Swift and Cinder (Rosado and Bernardino, 2014),
which are distributed object and block storages
respectively, abbreviated as OS-S/C (Open Stack –
Swift and Cinder). Commercial solutions, such as the
Ceph file system (CephFS; Weil et al., 2006) and the
Amazon S3 cloud (Amazon.com, 2017) are also
available. Furthermore, there are a variety of add-ons
or pluggable systems that allow for the
interoperability of the various associated
technology stacks. These include OS Sahara (Thaha
et al., 2014), formerly known as Savanna, which
allows Hadoop processing engines to work on data
stored on OS-S/C, as well as the CephFS Hadoop
plugin (Red Hat, 2014), that makes data stored in the
CephFS available to the above mentioned Hadoop
processing engines. In this work we will focus on the
HDFS as it offers the most straightforward entry point
for further processing by a maximum amount of
processing engines.

Stream processing tools such as Kafka (Kreps,
Narkhede and Rao, 2011) already provide the
possibility of pushing streaming data (in contrast to
batch data, which shall be the focus of this work) from
a variety of sources onto the HDFS, where it will be
available for long term usage. So far, there is also no
integration with metadata portals that register and
catalog such data streams. However, as the amount of
data, which ultimately has to be manually transferred,
is limited to access information about the stream - e.g.
Kafka related information for accessing the data
stream - such integration is also not of major
importance.

To shift batches of data from one repository to
another, appropriate protocols are needed. Ahuja and
Moore (2013) pointed out a weakness regarding the
consumption of computing resources by the
Transmission Control Protocol (TCP) during the
transfer of big amounts of data. Therefore Tierney et
al. (2012) suggest the usage of the Remote Direct
Memory Access protocol over Converged Ethernet
(RoCE) for data transfer to/from and between
repositories.

To the authors’ best knowledge, the question of
automated data import on the basis of metadata
storage engines/catalogs has not been addressed yet.
As an example, Khan et al. (2015) state that they use
the data from the Bristol Open Data portal (Bristol
City Council, 2015), but do not mention how it is
being accessed and transferred to the utilized
distributed file system. The current work aims at
bridging this gap on the concept level, as well as on
the level of case studies and prototype
implementations.

3 REQUIREMENTS FOR THE
HDFS-HARVESTER

Based on the inherent properties of big data itself and
with regard to the presence of very diverse
environments in which both CKAN and Hadoop find
their applications - a similar diversity can also be
found within the field of Smart Cities - the following
main requirements for an integrating
component/plugin can be derived:

Req. 1: Seamless integration of the HdfsStorer
with CKAN: The user experience should not be
disturbed by the plugin running in the background.

Req. 2: Timeliness of resources: Every time a
new resource is created and provided, an existing
resource updated or respectively deleted, these

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

20

changes should be mirrored on the distributed file
system (HDFS).

Req. 3: Network Usage Economization: Files on
the HDFS should only be updated if the source data
has changed, not upon every harvesting process.
(CKAN checks periodically for changes in remote
datasets).

Req. 4: Completeness: Files irrespective of their
size or format should be uploaded to the file system.
Especially, there should be no upper limit for file
upload as has been the case with the CKAN-internal
Filestore.

Req. 5: Backwards-compatibility: A way for
importing datasets to the HDFS that have been
registered with CKAN prior to the activation of the
plugin should be available.

Based on these key requirements, the next

sections proceed with devising the architecture of the
HdfsStorer plugin, evaluating it based on a prototype,
as well presenting the belonging case study and
measurements.

4 ARCHITECTURE OF THE
HDFS-HARVESTER

CKAN offers different points of entry for plugin
development. These are given by programming
interfaces. Mainly there are three important events to
consider in the lifecycle of a data resource: 1) the
creation of a new resource, 2) the update of an
existing resource, and finally 3) the deletion of it. The
interface, which is foreseen to handle these events, is
the IResourceController within the Python based
CKAN platform, offering the functions after_create,
after_update and before_delete. The other functions
provided are left out of consideration, as they won’t
have to be implemented.

There are certain peculiarities in CKAN with
respect to metadata and dataset cataloging that have
to be considered. In CKAN, a package generally
describes a set of data and stores information about
the dataset along with all given attributes and a list of
the resources belonging to it. These resources
describe single external files (actual data), referenced
by an URL. Resources and packages, which are
deleted within CKAN, remain within their respective
PostgreSQL (Momjian, 2001) database and only a
single attribute is changed, which prevents them from
appearing in the catalog. A user with appropriate
authorization can still access them. Only after their

purging by a system administrator, either through the
CKAN web interface, or from the corresponding
database directly, resources and packages are fully
removed. Unfortunately, there is no possibility for
intercepting purge events (e.g. a function called
“after_purge”), so that in the course of each deletion,
i.e. on each call of the before_delete function, the
belonging dataset file has to be fully removed from
the HDFS storage. This procedure relates to another
interesting aspect within CKAN given by the fact that
package deletion does not automatically result in the
deletion of the embedded resources, i.e. resources
included/referred in this package/metadata.
Therefore, complementary to the core HdfsStorer
functionality, each package deletion event has to be
intercepted by implementing the IPackageController
interface and belonging embedded resources must be
removed.

The description of the architecture is further
refined in the next subsections by introducing a view
on the components of HdfsStorer as well as on the
process flows and interactions amongst these
components.

4.1 Components and Dynamic Aspects

The general architecture of the plugin including a
flow of operations – i.e. an enumeration of a sequence
of operations – is illustrated in Figure 1. Thereby the
HdfsStorer plugin is depicted as accommodated
within the CKAN harvesting eco-system, since it
essentially resembles a CKAN extension.

Figure 1: Plugin Architecture (highlighted in orange).
Deletion pathway is not included.

Harvester

HdfsStorer

H
arvest Packages

1b) Send
resource
packages

3) Exchange of
Fileinfo and

Redirect

4a) Upload and Download of
(Parts of) Files

API 2) Resource
Packages

1a) Creation
and Request
of Resources

Feedback
/Link to
Webhdfs

Harvest Sources

CKAN User

Internal Communication

* Optional Function

4b) Internal
Forwarding

.

Namenode

Webhdfs

.

DataNode 1

Webhdfs

.

DataNode 2

Webhdfs

Direct Download

A CKAN Plugin for Data Harvesting to the Hadoop Distributed File System

21

Once a resource is created or updated with respect
to its metadata in CKAN, the referenced data resource
(file) needs to be uploaded to the HDFS - operations
(1a), (1b), (2), (3) and (4a-b) in Figure 1. In turn, if a
resource or package is deleted, the corresponding
resource files have to be removed again. These files
can be identified by means of the resource IDs, as for
each ID a separate directory is created on the file
system.

CKAN’s native deletion events trigger API calls
to the methods implemented by the HdfsStorer
plugin. Upon creation, update and deletion of a
resource in CKAN, the corresponding ID and a
reference to the up-to-date file are carried along in the
parameters. If an entire package is to be deleted in
CKAN, only the package ID is given, requiring an
additional lookup in a database table for resource
identification and removal.

Communication and data exchanges - mainly
operations (3-4) in Figure 1 - between the HdfsStorer
plugin and the HDFS (in the upper right part of the
figure) are managed over the WebHDFS - a
Representational State Transfer-API for Hypertext
Transfer Protocol/TCP-based manipulation of
resources stored on the HDFS (TASF, 2013).

The employed WebHDFS operations are given in
Table 1 and encompass functionalities such as 1)
checking for the existence of a file or directory, 2) the
access and download (of parts) of a file, 3) the
creation of directories, 4) access to the location for
writing a new file thereby overriding old resource
files, 5) appending to a newly created resource file
and 6) the deletion of resource files and folders. The
order in the table corresponds to the order of the
enumeration.

Table 1: List of WebHDFS operations.

Method Operation Fields
HTTP

Return Type

GET liststatus
200 (OK) +

JSON

GET open 200 (OK) +
FILE

PUT mkdirs
200 (OK) +

JSON

PUT createfile data=' '
203

(redirect)

POST append
data;

content-
type

200

DELETE delete 200 + JSON

5 PLUGIN IMPLEMENTATION

In the following, the detailed description of the plugin
implementation is provided, starting with the
procedure for resource creation and updates.

5.1 Creation and Update of Resources

Before a new resource is created on CKAN - either
by means of manually adding it through the web
interface or by harvesting it from another source - the
before_create methods found in all plugins classes
implementing the IResourceController interface are
called whereby the data (dictionary) structure holding
information about the new resource is passed as
parameter. This is followed by internal addition of the
resource in CKAN and the call of the respective
after_create methods. A similar path is followed
during the update and deletion of resources.

The procedure implemented within the
HdfsStorer plugin is illustrated in Figure 2. Upon the
call of the after_create method implemented by the
HdfsStorer plugin, a folder named after the ID of the
resource is created on the HDFS. This folder can be
found inside the resource storage folder, which has
been previously created on the HDFS and specified in
an additional parameter within the CKAN
configuration. Subsequently, a new empty file with
identical name to the remote resource file is created.
For further appending of data, a redirect to the HDFS
DataNode, on which the new empty file lies, is
provided. Consequently, chunk by chunk of the
original file is read and appended to the previously
created file. By chunking and appending, even (larger
than the machine’s memory) files can be transferred -
the biggest file transferred during testing had a size of
roughly 30 GB. Therefore, Requirement (4) can be
deemed as fulfilled. Should the file size exceed the
specified HDFS block size, the remaining data is then
automatically forwarded to a newly created block on
a different DataNode. Data replication is also
conducted on the fly in the background.

The concept of hashing plays an important role in
the current circumstances. As only resource files
should be updated, whose contents have actually
changed since the last update, a hash check was
implemented (on the right in Figure 2), satisfying
Requirement (3). Normally, a check sum is built on
the basis of entire files.

For the computation of a checksum, the files
normally have to exist locally on one machine. As it
cannot be assumed that every data provider will also
include appropriate checksums along with their files
and the HDFS only provides a so called distributed

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

22

checksum for files stored on it, both files would have
to be downloaded to a single machine in order to
calculate and compare their checksums. This would
result in additional network traffic and thus requires
further elaboration.

Figure 2: Upload of new or updated Resources to the HDFS
through the Plugin. Possible occurring errors are shown in
red.

Depending on the nature of the files implied in the
application context, one of the two following
approaches can be taken instead: 1) the comparison is
skipped entirely and on every update the resource file
is uploaded anew to the HDFS or 2) comparison of
the files is done on the basis of a partial checksum.
For the (CKAN-)HdfsStorer plugin the second
approach (partial checksum check) was taken in
anticipation of the large bodies of data needed for the
realization of Smart City solutions. It has to be noted,
that the filename is not taken into consideration for
the creation of this partial checksum, as simple
renaming of a file does not necessarily come with a
change in the contents of a file. A difference in file
size is a good indicator for differences in the contents
of a file and therefore the file size makes up one
constituent for the hash key. Files like logs, which do
constitute a big part of what has to be processed on
big data engines, are usually changed by either
appending to the back or front of a file. Usually, this
would also trigger a change in file size, and thus be

detectable by looking at the file size only. Given the
special case of a constant size log - such as for
example logs only saving data for the X-recent days,
or only saving X-number of entries - this does not
hold anymore. By chunking a specific number of
bytes at either the front or the back of a file (or both)
and including these as further ingredients into the
hash key, changes of such files could be detected. If
the number of bytes is high enough, the entire
checksum of smaller files (e.g. configuration files or
images) is computed within the presented approach.

The downside is that files with no difference in
file size after update, which are larger than the defined
chunk size, with static header (beginning of the file)
and footer (last bytes of the file) will still remain
undetected. These files are not suited very well for
distributed processing, as they are usually hard to
split. Furthermore, the very rare case of having only
minor differences in a large splittable, identically
sized file remains undetected. As usually individual
items from a big dataset are only of minor importance
to the final result (after processing the entire dataset)
and the more single items are changed, the more
likely a difference in file size can be detected, this
drawback can be deemed acceptable in the majority
of cases.

5.2 Parallel Upload of Data

In order to not negatively influence the performance
of the CKAN system and thus conform to
Requirement (1), the decision was taken to not have
the data uploads to the HDFS run in parallel, as -
depending on the specific setting - many concurrent
uploads will likely use up the entire bandwidth of the
server. This should be noted when setting the
repetition period for harvesting, as a single harvesting
circle might be slowed down markedly and might
result in an ever-increasing queue of harvesting jobs
and thus outdated data. The setup of a second CKAN
server only for the purpose of harvesting with
periodical synchronization of its database with the
main CKAN server could allow for parallel data
upload without infringing on Requirement (1).
Similar setups are already under development and
employment.

5.3 Deletion of Resources

The deletion of a single resource on CKAN results in
the call of the before_delete function of the
IResourceController interface implemented by the
plugin. Package deletion in CKAN does not result in
the deletion of the respective resources and thus does

New Resource
is created

Resource is Updated

Override with empty file

Append Chunk to local File

Get first X Bytes of
remote File + Filelength

Get first X Bytes of
existing File + Filelength

Finished

DIFFERENT

SAME

Can not
retrieve
Chunk

YES

NO

Both files
exist?

Compute Hashes

Compare
Hash

YES

Get Chunk of
Remote File

OK

Chunks
remaining?

NO

A CKAN Plugin for Data Harvesting to the Hadoop Distributed File System

23

not result in the call of any functions from the
IResourceController interface. Therefore, package
deletion has to be intercepted by the (CKAN-)
HdfsStorer plugin by implementing the after_delete
function from the IPackageController interface.
After retrieval of the corresponding resource IDs in
both of these two function, the deletion of the specific
directories on the HDFS and their contents is
triggered through the WebHDFS API. This ensures
Requirement (2).

Figure 3: Import of already existing Resources to the
HDFS.

5.4 Backwards Compatibility

In order to fulfil Requirement (5), which refers to
the handling of legacy CKAN datasets, another
module was developed. This module is basically in
charge of reading the data in the CKAN Datastore
(Winn, 2013; CKAN Association, 2017) and pushing
it to HDFS thereby taking care of consistency. The
process flow within this module is illustrated in
Figure 3. The resource information for each resource
registered within CKAN is read from the internal
PostgreSQL-database and thereupon uploaded to the
HDFS. In order to allow for fast recovery of recently
deleted packages and resources, CKAN does not
remove them directly from the database, but only
marks them as deleted. These are excluded from
uploading to the HDFS.

6 PROOF OF CONCEPT

In order to exemplify the feasibility and the
workflow of the plugin, a use case was defined
based on an algorithm from the field of Machine
Learning on two different processing engines for
classification of data points. The usage of two
different systems is intended to be representative of
the variety of paths the data can take once it has
been imported to the HDFS (due to free choice of
processing engines). Thereby, the HdfsStorer is the
enabler for such evaluations by allowing large scale
Big Data and Open Data to be integrated and
efficiently used in the scope of Smart Cities.
Building an application that takes as input a dataset,
which is linked to in the CKAN-catalog, essentially
consists of three major steps elucidated and
exemplified in turn.

6.1 Import of the Dataset(S) to the
HDFS by Means of the HdfsStorer

The used input dataset (Alinat and Pierrel, 1993)
held entries about phoneme properties (such as place
of articulation) and the corresponding classification
of those into phoneme classes. It was split into a
training and an evaluation part, stored in different
files. Once the files are registered in CKAN, they
are automatically transferred to the HDFS by the
plugin.

6.2 Selection of the Appropriate
Processing Engine and Program
Logics

Both standard Hadoop MapReduce and its more
flexible in-memory counterpart Spark (TASF, 2016)
were used separately to train Artificial Neural
Networks (ANN) on the training set. A standard
backpropagation algorithm was employed for that
purpose, the details of which can be found in Liu, Li
and Miao (2010). The trained ANNs then served to
classify the data points of the evaluation set.

6.3 Job Execution and Result Retrieval

Jobs were executed through the command line. The
resulting classifications, based on the HdfsStorer
data uploads, can be retrieved from the HDFS
filesystem or the command console respectively. As
the target of this work is not to evaluate the
classification quality of different implementations,
only the training step will be considered in the

Current Resource
Row

Current Package
Row

Get the contents of both tables
sorted by package ID

In
cr
em

en
t
u
nt
il
th
e
ne
w

R
es
o
ur
ce
 h
as
 a
 d
if
fe
re
n
t

P
ac
ka
ge

 ID

YES

NO

Upload Resource
Files to HDFS

YES

YES
NO

Increment
by one

NO

Same Package
ID?

Package not
marked as
deleted?

Resource not
deleted?

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

24

following, in order to exemplify the performance of
two key approaches (Hadoop MapReduce and Spark).

Execution time was measured as the time
difference between job application submission and
job termination. The illustration of Spark and Hadoop
execution times in Figure 4 indicates that for the
current data set - imported over CKAN and the
HdfsStorer plugin - not only Spark execution times
are significantly shorter, whilst varying with the
number of ANN iterations, but also rise more slowly
than Hadoop execution times, probably due to its
much lower overhead for each iteration.

Moreover, Figure 5 depicts the mean memory
usage of both Hadoop and Spark during idle and
program execution with 100 iterations on top of the
open dataset that was imported over the HdfsStorer
plugin and CKAN. The vertical axis shows the
memory usage in Mb.

 Due to the comparably small size of the data set,
expected tendencies (such as the much higher
memory usage by Spark) in the absolute RAM usage
statistics have not been evident. The difference
between idle and work intensive periods is greater for
both slaves in the Spark deployment than that of the
slaves in the Hadoop deployment, indicating the
stronger memory dependence of Spark during
processing. Hence, we see on how HdfsStorer can
enable the efficient evaluation of various distributed
processing engines for various real word datasets and
scenarios in Smart Cities and urban environments.

This evaluation gives an idea of the importance of
choosing the right processing engine for the
efficiency of the overall application. The usage of the
HDFS thereby enables the free choice of the
processing engine, as it is the basis for a wide range
thereof. The evaluation can be done on a wider basis
or can be targeting specific datasets or scenarios in
Smart Cities. This setup is overall enabled by the
HdfsStorer plugin, designed and prototyped in the
current work.

7 A SMART CITY SCENARIO
USING HADOOP AND CKAN

After having shown the general workflow of the
plugin and evaluated its principal applicability, it is
also possible to envision its working in the context of
a more complex scenario. For that purpose, we
envision the scenario that the public transport system
of a forthcoming Smart City is to be streamlined and
optimized. This includes schedule improvements
following the dynamic identification of peak traffic
hours and the possibility for both, delay and
occupancy prediction integrated with trip planning,
thus providing a better travel experience to
passengers This can help, as an example, to answer
questions such as “Will the airport express bus
normally arrive on time and should I worry about
fitting in along with my baggage? What about the
next bus? Is it worth to wait another ten minutes?”.

The data required for this particular scenario is
composed of two different classes: static and real-
time. The current schedule and past occupancy and
punctuality statistics along with the past road and
weather condition records are spread over different
data stores as static data and their location and other
information is indexed in the CKAN-catalog.
Periodical harvesting through CKAN keeps this
catalog up-to-date. Information about the current
weather, road and traffic conditions and the amount

Figure 4: Comparison of Spark and Hadoop Execution
Times. Four stars indicate a significant deviation of the
means with a p-value less than 0.0001.

Figure 5: Hadoop (H) and Spark (S) Memory Usage during
idle ("Baseline” BL) and work intensive Periods shown for
Neural Network Training with 100 Iterations. NN:
NameNode/MasterServer, RM: ResourceManager, SL1/2:
Slaves.

A CKAN Plugin for Data Harvesting to the Hadoop Distributed File System

25

of passenger measured by sensors inside the transport
vehicle are provided as streaming data.

Integration of these two types of data in Hadoop
is sketched in Figure 6. The HdfsStorer plugin serves
hereby as the intermediate for importing static data to
the HDFS according to information provided in the
CKAN-catalog (such as location of the original
dataset). Thereupon, different processing engines,
that can make use of the files stored on the HDFS and
data streams provided through message brokers,
integrate all this information and thus allow for said
enhancements.

A full implementation of a similar procedure can
be found e.g. on the H2O.ai github-page (H2O.ai,
2016). Therein Spark is used in combination with the
H2O extension (=Sparkling water) to create a flight
arrival delay prediction system based on past data and
current weather information. In contrast to our
scenario, the used dataset is already believed to be
existent on the HDFS right from the beginning, e.g.
by prior manual transfer. We extend such legacy
solutions by a more convenient way for data import
to a distributed filesystem, making use of a widely
applied data cataloging system (i.e. CKAN) in the
Smart City context.

8 DISCUSSION

This work described a possible realization of data
import on the basis of the CKAN metadata catalog to
the HDFS. The resulting CKAN plugin suits well the
requirements of many use cases that can be

encountered in a Smart City or during research.
According to the type of application, different ways
of realization are suitable for data import.
Furthermore, the structure of the implicated systems
has been described in detail and an overview about
current research efforts in the field of ICT for Smart
Cities and the state-of-the-art in the field of
distributed processing has been provided, along with
some intuition about possible future developments
and improvements therein. The choice of the HDFS
as target has been majorly motivated by the fact that
a multitude of popular processing systems can make
use of it. In the following, some prospects are
discussed, which are enabled through the HDFS
import of data, facilitated by the developed plugin.
Furthermore, the results of the current work are
briefly summarized and related to the possible
research directions.

CKAN is currently one of the two most employed
metadata storage systems. A multitude of Smart City
initiatives embrace the idea of creating a unified
publically accessible portal, where mostly various
governmental entities, but also other stakeholders, are
publishing their data. This is done with the hope that
once the data is available, private citizens and
companies will use it, in order to realize their own
ideas and make use of that portal, where mostly
various governmental entities, but also other
stakeholders, are publishing their data. New business
models are created and the public benefits emerge
through better services based on the published data.

For certain applications it is advantageous to
process the vast amounts of provided data in a
distributed fashion. For this purpose, the user would
normally have to accesses the web portal and search
for each dataset. In order to make use of the resources
provided therein, he or she has to download them
separately from the referenced websites. After this,
those files have to be uploaded in turn to the
distributed file system in order to enable their
processing. This way of accessing big data sets has
some major drawbacks: It is likely that the resource
size exceeds local file system storage capabilities
(and thus resource transfer wouldn’t work at all) and
it also takes quite some time going through the whole
process manually.

The current (CKAN-)HdfsStorer plugin was
developed from the perspective of a CKAN instance
operator. Making use of the CKAN plugin interface
structure for data import has the following
advantages: There is no need for writing a separate
client for handling requests to the CKAN API and
response parsing. The CKAN harvesters possess rich
extensions for harvesting other non-CKAN sources

Figure 6: Distributed Integration of Static and Real-Time
Data from different Sources.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

26

(e.g. other metadata catalogs or specialized formats)
and the data described in there can be easily imported
without the need for further solutions.

Additionally, operators of already existing CKAN
instances are provided with a convenient way of
going over from metadata-only storage to having
access to the full set of data, accumulated from a
multitude of different sources. This could be one
simple way for the creation of a Smart City Data Hub
on which centralized data processing could then take
place. Coupling the data import with CKAN has the
further advantage of ensuring the timeliness of the
data. A more elaborate data upload logic could also
contribute towards streamlining this process.

Aside of the usage in the context of a Smart City,
also other areas could benefit from the combined
power of CKAN and Hadoop: The field of
computational linguistics uses big corpora of text for
language research and as the basis for speech
production and translation engines (Wuebker, Ney
and Zens, 2012). The creation of big corpora
consumes a lot of time and poses a great challenge
especially for smaller research groups as they usually
do not have access to sufficient sources. Therefore, a
few corpora are re-used repeatedly. This is a useful
for the comparison of different solutions to a specific
problem, as the number of confounding variables is
decreased, but has the drawback that only a small and
possibly not representative subset of a language is
looked at. More resources and corpora would mean a
better abstraction of the results and avoidance of
possible biases. Ad-hoc creation of new specialized
corpora could give rise to insights into the
characteristics of situative (e.g. newspaper articles,
law texts, search queries, chat logs or email
correspondence) and group-specific (e.g. youth,
elderly, the scientific community, cross cultural
communications) language usage. CKAN instances
provide an entry point for finding a high number of
diverse resources and the metadata allows for easy
identification of textual material and its classification
according to situation and types/classes/groups of
data. By means of harvesting a specific set of CKAN
instances, and possibly also other user defined
sources, the desired type of corpus can be
accumulated on the HDFS in a time efficient manner
by even a small group of people. Within the HDFS
this corpus can then be readily processed by means of
the distributed nature of Hadoop. According to the
specific application, these non-annotated corpora can
either be used directly or further pre-processed. The
example of machine translation making use of aligned
corpora has already been mentioned previously. The
alignment of corpora can also be done on the HDFS

grace to the availability of governmental documents
in different languages, as there are often multiple
official languages in a single administrative union
(Steinberger et al., 2014).

The above described prospects outline possible
further developments on top of the CKAN-
HdfsStorer plugin. Some of these directions will be
pursued in the course of emerging and running
national and international projects regarding the topic
of Urban Data Platforms.

9 SUMMARY & CONCLUSIONS

The current paper presented our recent work on the
integration of metadata harvesting and data importing
within Smart Cities. The concepts are exemplified
based on two widely used systems – CKAN for
metadata aspects and HDFS/Hadoop for enabling the
distributed processing of Big/Open Data. The paper
presents an architecture for such a component
integrating the harvesting processes of CKAN and the
storage of data to HDFS for further usage by different
processing engines.

The architecture and concepts were prototyped
and various evaluations were conducted which
illustrated the benefits of the proposed solutions. A
special section discusses the various application areas
of our component and thus points to potential future
developments and applications (e.g. Linguistics,
Public Transportation) within urban environments.

REFERENCES

Ahuja, S. P. and Moore, B. 2013. State of big data analysis
in the cloud. Network and Communication
Technologies, 2(1), 62.

Alinat, P. and Pierrel, J. 1993. Esprit II project 5516 Roars:
robust analytic speech recognition system.

Amazon.com. Amazon Simple Storage Service. Available
at: https://aws.amazon.com/de/s3/ [Accessed on 20
Feburary 2016].

Bristol City Council. 2015. Bristol Open Data Portal.
Available at: https://www.bristol.gov.uk/data-
protection-foi/open-data [Accessed on 20 Feburary
2016].

CKAN Association. CKAN Overview. 2015. Available at:
http://ckan.org [Accessed on 20 Feburary 2016].

CKAN Association. DataStore Extension. 2017. Available
at:
http://docs.ckan.org/en/latest/maintaining/datastore.ht
ml [Accessed on 20 Feburary 2016].

Fan, H., Ramaraju, A., McKenzie, M., Golab, W., & Wong,
B. 2015. Understanding the causes of consistency

A CKAN Plugin for Data Harvesting to the Hadoop Distributed File System

27

anomalies in Apache Cassandra. Proceedings of the
VLDB Endowment, 8(7), 810-813.

H2O.ai. AirlinesWithWeatherDemo. 2016. Available at:
https://github.com/h2oai/sparkling-
water/tree/master/examples/ [Accessed on 20 Feburary
2016].

Khan, Z., Anjum, A., Soomro, K., and Tahir, M. A. 2015.
Towards cloud based big data analytics for smart future
cities. Journal of Cloud Computing, 4(1), 1.

Kreps, J., Narkhede, N. and Rao, J. 2011, June. Kafka: A
distributed messaging system for log processing. In
Proceedings of the NetDB (pp. 1-7).

Lapi, E., Tcholtchev, N., Bassbouss, L., Marienfeld, F. and
Schieferdecker, I. 2012, July. Identification and
utilization of components for a linked open data
platform. In Computer Software and Applications
Conference Workshops (COMPSACW), 2012 IEEE
36th Annual (pp. 112-115). IEEE.

Liu, Z., Li, H. and Miao, G. 2010, August. MapReduce-
based backpropagation neural network over large scale
mobile data. In 2010 Sixth International Conference on
Natural Computation (Vol. 4, pp. 1726-1730). IEEE.

Marienfeld, F., Schieferdecker, I., Lapi, E., and Tcholtchev,
N. 2013, August. Metadata aggregation at GovData. de:
an experience report. In Proceedings of the 9th
International Symposium on Open Collaboration (p.
21). ACM.

Matheus, R. and Manuella, M. 2014. Case study: open
government data in Rio de Janeiro City. Open Research
Network.

Mercader, A. et al. 2012. ckanext-harvest - remote
harvesting extension. Available at: https://github.com/
ckan/ckanext-harvest [Accessed on 20 Feburary 2016].

Momjian, B. 2001. PostgreSQL: introduction and concepts
(Vol. 192). New York: Addison-Wesley.

Red Hat, Inc. Using Hadoop with CephFS.. 2014. Available
at: http://docs.ceph.com/docs/jewel/cephfs/hadoop
[Accessed on 20 Feburary 2016].

Rosado, T. and Bernardino, J., 2014, July. An overview of
openstack architecture. In Proceedings of the 18th
International Database Engineering & Applications
Symposium (pp. 366-367). ACM.

Shvachko, K., Kuang, H., Radia, S. and Chansler, R. 2010,
May. The hadoop distributed file system. In 2010 IEEE
26th symposium on mass storage systems and
technologies (MSST) (pp. 1-10). IEEE.

Steinberger, R., Ebrahim, M., Poulis, A., Carrasco-Benitez,
M., Schlüter, P., Przybyszewski, M., & Gilbro, S. 2014.
An overview of the European Union’s highly
multilingual parallel corpora. Language Resources and
Evaluation, 48(4), 679-707.

Thaha, A.F., Singh, M., Amin, A.H., Ahmad, N.M. and
Kannan, S., 2014, December. Hadoop in openstack:
Data-location-aware cluster provisioning. In
Information and Communication Technologies
(WICT), 2014 Fourth World Congress on (pp. 296-
301). IEEE.

The Apache Software Foundation. WebHDFS REST API.
2013. Available at: http://hadoop.apache.org/docs/
r1.0.4/webhdfs.html [Accessed on 20 Feburary 2016].

The Apache Software Foundation. Apache Spark:
Lightning-fast cluster computing. 2016. Available at:
http://spark.apache.org/ [Accessed on 20 Feburary
2016].

The Apache Software Foundation. Hadoop Project
Webpage. 2017a. Available at:
http://hadoop.apache.org/ [Accessed on 20 Feburary
2016].

The Apache Software Foundation. Apache Cassandra.
2017b. Available at: http://cassandra.apache.org/
[Accessed on 20 Feburary 2016].

Tierney, B., Kissel, E., Swany, M. and Pouyoul, E. 2012.
Efficient data transfer protocols for big data. In E-
Science (e-Science), 2012 IEEE 8th International
Conference on (pp. 1-9). IEEE.

Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. and
Maltzahn, C. 2006, November. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation (pp. 307-320). USENIX Association.

Winn, J. 2013. Research Data Management using CKAN:
A Datastore, Data Repository and Data Catalogue.
IASSIST Conference.

Wuebker, J, Ney, H and Zens, R. 2012. Fast and scalable
decoding with language model look-ahead for phrase-
based statistical machine translation. In Proceedings of
the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

28

