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Abstract: In pattern classification problems kernel based methods and multi-dimensional methods have shown many 
advantages. However, since the well-known kernel functions are defined over one-dimensional vector spaces, 
it is not straightforward to join these two domains. Nevertheless, there are attempts to develop kernel functions 
which can directly operate with multi-dimensional patterns, such as the recently proposed kernels operating 
on the Grassmannian manifolds. These are based on the concept of the principal angles between the orthogonal 
spaces rather than simple distances between vectors. An example is the chordal kernel operating on the 
subspaces obtained after tensor unfolding. However, a real problem with these methods are their high 
computational demands. In this paper we address the problem of efficient implementation of the chordal 
kernel for operation with tensors in classification tasks of real computer vision problems. The paper extends 
our previous works in this field. The proposed method was tested in the problems of object recognition in 
computer vision. The experiments show good accuracy and accelerated performance. 

1 INTRODUCTION 

Kernel based methods found broad applications in 
variety of object classification problems. This is due 
to their ability of transforming patterns into higher 
dimensional space in which their separation allows 
more reliable pattern separation. The well-known 
example are the support vector machines (SVM) 
proposed by Cortes and Vapnik (Cortes and Vapnik, 
1995). On the other track, tensor methods allow direct 
processing of the multi-dimensional patterns, such as 
images, video streams, etc. The methods were 
developed in sixties, although their application in 
signal processing was started by de Lathauwer (de 
Lathauwer, 1997). Since then, many tensor based 
methods were developed for pattern classification, 
such as for instance tensor faces (Vasilescu and 
Terzopoulos, 2002, Cyganek, 2010). However, since 
the well-known kernel functions are defined over 
one-dimensional vector spaces, whereas the tensor 
methods assume multi-dimensional objects, it is not 
straightforward to find functions that are Hilbert 
kernels and directly operate with the tensor objects. 
Nevertheless, recent research on the concept of the 
principal angles between subspaces (Hamm, 2005), 

as well as distances on the Grassmannian manifolds 
led to development of kernels that can operate with 
tensor objects. Based on the works by Hamm 
Signoretto et al. proposed a chordal tensor that can 
operate with tensor and showed their superior abilities 
in signal and video processing (Signoretto et al., 
2011). A version of the chordal tensor, but operating 
on slightly different subspaces, was proposed by Liu 
et al. (Liu et al. 2013). Both chordal versions are 
based on a sequence of singular value decompositions 
(SVD) applied to the unfolded matrices obtained from 
the input tensors. This way two versions of the 
chordal tensor are obtained: the S-subspace and D-
subspace type, respectively.  This will be further 
explained in this paper. The chordal tensor was 
analyzed by Cyganek et al. (Cyganek et al. 2015) in 
broad group of pattern classification tasks. These 
works showed very good accuracy of this approach. 
However, direct computation of the chordal tensor is 
burdened with high computational costs.  

To solve this problem we proposed a number of 
improvements. In our previous work (Cyganek et al. 
2016) a fast eigenvalue computation algorithm was 
proposed which allows fast computation of the 
chordal kernel based on the so called S-spaces. 
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However, it was not shown how to use this algorithm 
for the D-spaces. In this paper we address this 
problem and show its solution which constitutes the 
main contribution.  

The rest of this paper is organized as follows: 
Section 2 presents a short introduction to kernel 
methods operating on tensor subspaces. In Section 3 
we present methods of efficient computations of the 
chordal kernels. Section 3.1 briefly outlines fast 
computation of the S-subspace chordal distance, 
which was presented in our previous work (Cyganek 
et al. 2016). On the other hand, Section 3.2 introduces 
a novel approach to the computation of the D-
subspace chordal distance. This is the main 
contribution of this paper. The paper ends with 
discussion of implementation and experimental 
results, as shown in Section 4. Finally, Section 5 
contains conclusions and directions of further work. 

2 INTRODUCTION TO KERNELS 
ON TENSOR SUBSPACES 

The presented in this paper chordal kernel allows 
direct computation of the kernel function directly out 
of the tensor objects. As shown by many authors, 
application of the high dimensional tensor methods 
and kernels, in many domains leads to superior results 
(Signoretto et al. 2011, Liu et al. 2013, Cyganek et al. 
2015). In this section we present only a brief outline 
of the chordal kernel and tensor methods. However, 
further details can be found in the aforementioned 
publications.  

The chordal kernel tensor, which is the main 
subject of this paper, relies on computation of the 
chordal distance, which is defined on the spaces 
spanned by the unfolded representations of the two 
tensors. In order to come to the proper expressions, 
let us briefly recall basic facts on tensor algebra (for 
a more complete description see papers by 
Lathauwer, Kolda, Cichocki, Cyganek). A tensor is 
defined as follows 

× ×∈ ℜ 1 2 LN N N , (1)

which can be seen as an L-dimensional cube of real 
data; Its dimensions correspond to different factors of 
the measurements. A j-th flattening, or unfolding, of 
a tensor  is a matrix defined as follows 

( ) ( )− +×
∈ ℜ

 1 2 1 1j j j LN N N N N NjA , (2)

where columns of ( )jA are the j-mode vectors of . 

Let us notice, that j in the above denotes a row index 

of ( )jA . On the other hand, column index is a product 
of all the rest L-1 indices of the tensor  (Cichocki, 

2009) (Lathauwer, 1997) (Lathauwer, 2000) 

(Cyganek, 2013). Having defined the ( )j
A flattening 

of the tensor let us compute its SVD 

decomposition, as follows 
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Further on, let us observe that columns of ( )
,1

j

AD  

and columns of ( )
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AS  constitute orthogonal bases, 

called the D-space and S-space, respectively. Both 
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respectively. Based on this observation, two types of 
projectors can be defined, as follows (Cyganek, 2016) 
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as well as 
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The two above projectors directly lead to the two 
chordal distances and chordal kernels, respectively, 
as follows (Signoretto et al. 2011) 
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and (Liu et al. 2013) 
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In one of our previous papers on this subject we 
investigated properties of the kernel (6), showing its 
superior performance in many classification tasks of 
the visual objects (Cyganek et al. 2014). However, 
the computational burden was very high and the 
subsequent research led to development of new fast 
computation methods of the kernel (7) (Cyganek et 
al. 2016), and finally to the kernel (6) (this paper). 
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3 EFFICIENT COMPUTATION 
OF THE CHORDAL KERNELS 

The previous discussion has shown that computation 
of the two types of the chordal kernel requires 
a number of decompositions of the unfolding 
matrices obtained from the input tensor. A more 
detailed investigation shows that this is the main 
bottleneck of the whole method. Therefore, a faster 
algorithm would help in this respect. Algorithm 1 
presents such an algorithm which is based on the 
work by Bingham and Hyvärinen (Bingham and 
Hyvärinen, 2000). This is the fast eigen-
decomposition based on the fixed point theorem, 
which allows alleviation of the much slower full SVD 
decomposition algorithm (Golub and van Loan, 
1996). However, contrary to the latter, the Algorithm 
1 requires a symmetric matrix on its input. In the next 
sections we show how to fulfill this requirements 
when computing the S-space, as well as the D-space 
versions of the chordal distance, respectively. The 
latter constitutes the main contribution of this paper.  

Algorithm 1. Fast eigen-decomposition of a symmetrical 
matrix 
 
Input – a symmetric matrix C,  
    a number of eigenvectors kmax, 

    a threshold ρ
th
. 

Output – kmax first eigenvectors of C. 

Random initialize vector 
( )0
0
e   

k ← 0 
for k < kmax 
 i ← 1 
 do  

   
( ) ( )−← 1i i

k k
e Ce  

   G-S orthogonalization: 

   
( ) ( ) ( )( )−

=
← − 1

0

ki i T i

k k k j jj
e e e e e  

   Normalize vector: 
( ) ( ) ( )←

2

i i i

k k k
e e e  

   
( ) ( )ρ −= −1

1
T i i

k k
e e  

   i ← i + 1 

 while ρ ρ>
th
 

end for 
  

 After finding the kmax leading eigenvectors, the 
corresponding eigenvalues are computed as follows 
(Cyganek et al. 2016) 

λ = T

k k k
e Ae . (8)

 The method computes the kmax leading 
eigenvectors of a symmetric matrix C. However, the 
algorithm is iterative. Nevertheless, in practice it 

converges fast. Also, on its input, the threshold ρ
th

, 

which controls a degree of orthogonality of the 
vectors, must be provided. Detailed discussion of the 
steps of the above algorithm is presented in our 
previous publication (Cyganek et al. 2016). In the 
next two subsections we provide details on efficient 
computation of the both S and D subspaces, 
respectively, which constitute the core of 
computations of both types of the chordal kernel for 
tensor data. 

3.1 Efficient Computation of the  
S-Subspace 

A method of efficient computation of the S-space 
based on the fast eigen-decomposition algorithm was 
proposed in our previous work (Cyganek 2016). Here, 
for completeness, we recall the main steps of this 
derivation.  

In this case, we arrive to the following 
computation  

( ) ( ) ( ) ( ) ( )= = 2j T j j j T j

S
C A A S V S , (9)

where A(j) denotes the j-th flattening matrix of the 
input tensor. In the following we will skip the 
superscript (j) from for clarity.  Thus, the product 

= T

S
C AA  in (9) is always symmetric and, for 

majority of tensors used in real cases, it contains 
much less elements than the matrix A alone. Thus, CS 
can be directly used with the Algorithm 1 for 
computation of the S-type chordal kernel of tensor 
data.  

3.2 Efficient Computation of the  
D-Subspace 

As alluded to previously, computation of the chordal 
kernel in accordance with the proposition of 
Signoretto et al. requires computation of a series of D 
subspace matrices, from the decompositions of the 
two input tensors of this kernel. In this case, to come 
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with a symmetric matrix and to employ the Algorithm 
1, the following derivation is proposed.  
 In this case, starting from (3) the following is 
obtained 

( ) ( ) ( ) ( ) ( )= 2T j j T j j jA A D V D . (10)

 However, computation of the D matrix based on 
(10) from the series of unfolded tensor matrices, in 
most of the cases would be inefficient due their much 
larger number of columns than rows, i.e. N«M. 
Therefore in this case we propose to proceed slightly 
different, taking as a starting point eigen-
decomposition of the AAT, exactly as in (9). In this 
case, computation of the eigenvectors can be stated as 
follows 

μ=T

k k k
AA e e . (11)

where 
k
e  denote k-th eigenvector and μ

k
 its 

corresponding eigenvalue. Since AAT is of 

dimensions N×N, there is at most N eigenvectors 
k
e , 

i.e. k≤N. For clarity, in the above formula we also 
skipped the superscript (j) from (9). Solution to (11) 
can be efficient, since the product AAT is a symmetric 
matrix of relatively small size. 
 Now, left multiplying (11) by AT yields 

μ=T T T

k k k
A AA e A e . (12)

which can be interpreted as follows 

( ) ( ) ( )μ
Ξ

=
 

k k

T T T
k k k

q q

A A A e A e . 
(13)

So, we see that the vectors qk are eigenvectors of the 
matrix Ξ=ATA of dimensions M×M, thus they provide 
columns of the sought matrix D in (10) without 
explicit computation of the ATA, however. Thus, to 
find out qk the following product 

= T

k k
q A e  (14)

needs to be computed. If we consider all possible 
eigenvectors qk, the following matrix is obtained 

= TQ A E , (15)

where columns of the matrices Q∈ℜM×N and 
E∈ℜN×N, constitute eigenvectors qk and ek, 
respectively.  

 Since qk are eigenvectors of the symmetric matrix 
Ξ=ATA, they are orthogonal. However, in general 
case they do not need to be orthonormal. Thus, the 
last step is to normalize columns of the matrix Q in 
(15), so the Frobenius norm of each of them is 1. 
Thus, an estimate of the N eigenvectors of the matrix 

,1AD  in (3) is obtained as follows 

=
,1AD Q , (16)

where Q  is a column normalized version of the 
matrix Q in (15). It is worth noticing however, that 

the rank of the matrix ( )
,1

j

AD  never exceeds N. Thus, 

the above procedure is exact up to the numerical 
errors associated with matrix multiplications.  
 Summarizing, efficient computation of the matrix 

,1AD  proceeds as follows: 

1. Compute the symmetric matrix C= AAT; 
2. Compute eigenvectors ek of C (see the 

previous section); 
3. From ek, form matrix E and compute matrix 

Q in accordance with (15); 
4. Normalize columns of Q and from (16) 

compute 
,1AD . 

 That is, in other words, efficient computation of 
D-type constitutes of two steps: computation of the 
eigenvectors exactly as in the S-type, then followed 
by one matrix multiplication and matrix 
normalization. In effect, both computations, i.e. of the 
D-type and S-type of the chordal kernel, can be 
almost identically efficiently computed, thanks to the 
fast eigen-decomposition and the D-type and S-type 
algorithms proposed in this paper.  

4 IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

All of the algorithms presented in this paper were 
implemented in C++ in the Microsoft Visual 2015 
Studio.  
 The experiments were run on a computer 
endowed with the Intel® Core™ i7-4800MQ CPU 
@2.7GHz, 32GB RAM, and OS 64-bit Windows 7. 
The input tensors were two video objects created 
from the images of the Georgia Tech Face Database 
of the two persons shown in Figure 1.  
Both tensors used for testing were of dimensions 
181x241x3x5, i.e. these were composed of 5 color 
frames. Figure 2 depicts execution times of the full 
SVD   decomposition   compared  to  the  fixed-point 
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version for the D-subspace tensor kernels for the 
video streams shown in Figure 1. 

 

Figure 1: Two video streams composed of the frames from 
the Georgia Tech Face Database which constitute two 4D 
tensors used to compute chordal kernels. 

 

Figure 2: Comparison of execution time of the full SVD 
decomposition and the fixed-point version for the D-
subspace tensor kernels of size 181x241x3x5. 

 Observing Figure 2 it becomes evident that the 
obtained with our method speed up ratio is an order 
of magnitude faster compared to the full SVD 
decomposition. On the other hand, there are no 
significant differences in computation speed between 
the D-space and S-space, computed with the fixed 
point algorithm proposed in this paper.  

 It is also in order to compare computation 
accuracy between the full SVD decomposition in 
relation to the proposed fixed point approximation of 
a number of leading eigenvectors. Results of this 
computations are shown in Figure 3. 
 Although the error is different for a different 
number of eigenvectors, the total error does not 
exceed 5e-08 which is well accepted in many 
applications. 

 

Figure 3: Difference error in computation of the D-subspace 
tensor kernel of the full SVD vs. fixed point algorithm for 
a given number of the leading eigenvectors. Error does not 
exceed 5e-08. 

5 CONCLUSIONS 

This paper extends and completes the method 
proposed in our previous work (Cyganek 2016) by 
providing a method of efficient computation of the 
chordal kernel for tensor data from the respective D 
sub-spaces of the input tensors. We show two 
efficient algorithms for computation of both versions 
of the chordal kernel operating on tensor data. This 
type of kernels opens new way of classifying tensor 
(multi-dimensional) objects, such as images, video 
streams, etc. with the broad category of kernel 
methods, such as SVM or KPCA. Our experimental 
results showed that the achieved speed up ration in an 
order of magnitude thanks to the proposed 
methodology. Further investigation will focus upon 
observing further properties of the two types of the 
chordal kernels, as well as upon development of new 
kernels capable of operation with tensor objects. 
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