
The XACML Standard
Addressing Architectural and Security Aspects

Óscar Mortágua Pereira, Vedran Semenski, Diogo Domingues Regateiro and Rui L. Aguiar
Instituto de Telecomunicações, DETI – University of Aveiro, Aveiro, Portugal

Keywords: XACML, ABAC, Access Control, Information Security, Software Architecture, IoT.

Abstract: The OASIS XACML (eXtensible Access Control Markup Language) standard defines a language for the
definition of access control requests and policies. It is intended to be used with ABAC (Attribute Based
Access Control). Along with the language, the standard defines an architecture, workflow and evaluation
mechanism. When implementing real scenarios, developers can come across with the missing of several
issues not addressed by the standard. For example, the architecture proposed defines the workflow but does
not define the way components should be distributed over different machines. Additionally, the standard
does not include any information about how securing communications between components. This paper
proposes a solution to deal with the aforementioned gaps. A proof of concept is also presented in an IoT use
case in the context of the European project: SMARTIE – secure and smarter cities data management.

1 INTRODUCTION

There is an increasing number of information
systems, applications and services that are
interconnected and dependant on each other. They
use a variety of data, cover many domains and are
very often used or integrated in more and more
businesses (Keleta et al. 2005). These systems run
on different technologies and different platforms.
They can utilize many different workflows,
methodologies, storage systems, etc.. Using many
different services over different platforms is often a
requirement. Security in these systems is often an
issue and dealing with different platforms presents a
significant challenge. Other challenges include
lower maintenance, ease of integration, and
performance. These security issues and requirements
can be associated in many areas including: Web
applications, IoT (Internet of Things) applications,
mobile applications, business information systems as
well as services, etc. (Addie & Colman 2010) (Qing
& Adams 2006). These issues are solved by
developing and/or integrating security components
and implementing security mechanisms.

Custom security components developed for
solving security issues require significant effort to
develop. They are not unified and cannot be used in
other systems and have significant problems in the
long terms. Depending on how complex the business

layer of an application is, the security component
can become complex and less flexible. Organisations
can have many departments, use many services,
databases, etc. Depending on how much the
structure, architecture or date model changes or
expands, issues can occur if the developed
component is not flexible enough to deal with those
changes.

The OASIS (Organization for the Advancement
of Structured Information Standards) XACML
(eXtensible Access Control Markup Language) is a
platform independent standard that defines a
language for writing policies and requests along with
an architecture, workflow and methodology of
evaluation requests against policies. It is based
around ABAC (Attribute Based Access Control) but
RBAC (Role Based Access Control) and other
access control methodologies can also use XACML
(Xu et al. 2011)(Stepien et al. 2011)(Ferrini &
Bertino 2009). Because it is standardised and it is
made around the ABAC methodology, it offers great
potential, flexibility and a standardised way of
dealing with security issues in applications. Its main
use is managing access to resources, which can be
anything that the user defines (data, actions,
services, etc.). It is not meant to deal with
connection or communication issues in networks
(like for instance security protocols). It is more
suited for application and business layer security
issues. While ABAC together with XACML offers

Pereira, Ó., Semenski, V., Regateiro, D. and Aguiar, R.
The XACML Standard - Addressing Architectural and Security Aspects.
DOI: 10.5220/0006224901890197
In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security (IoTBDS 2017), pages 189-197
ISBN: 978-989-758-245-5
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

189

great potential, flexibility and many advancements
along with a uniformed solution, some aspects are
not addressed. The issues that this paper addresses
are ones that come from an implementation
perspective, and not the XACML standard itself. Put
more precisely, it will describe issues that were
encountered while developing a security component
based on the ABAC and the OASIS XACML
standard, propose solutions for these issues and
present a proof of concept. This paper deals mainly
with internal and external communication,
connection and architecture issues.

A security component with the proposed
architecture was developed and tested in an IoT
Smart City (European Project: SMARTIE – secure
and smarter cities data management) (FP7 2016)
use-case scenario. The security component uses a
PDP evaluation engine and other basic XACML
functionalities from an open source project (AT&T
XACML 3.0 implementation).

The increasing need for integrating security
components in systems is a reason to modify the
existing architecture from a implementation
perspective (Keleta et al. 2005) (Addie & Colman
2010) (Brown et al. 2012). It is because of this that
the security component was viewed as a "black box"
component that should be easy to integrate into other
systems, easy to use and manage. This should
therefore result in a more secure system and requires
significant changes to the existing proposed solution
for the XACML architecture (Brown et al. 2012).

This paper is organized in six additional main
chapters. Chapter 2 presents the background
technologies and terminologies that are related to
this work. Chapter 3 presents the related work.
Chapter 4 presents the issues that were found in the
current proposal in the standard XACML (Brown et
al. 2012). Chapter 5 describes the proposed solutions
for the issues identified in Chapter 3. Chapter 6
presents a proof of concept and test results. Chapter
7 contains an overview of the work that was done
and a final conclusion.

2 BACKGROUND

Before elaborating on the issues that were identified,
a brief description of concepts relevant for this work
needs to be given.

Access Control Access Control is a general term
that can be described as a way of securely granting,
limiting or denying access to resources therefore
protecting the resources from potentially malicious
parties (Priebe et al. 2006)(Samarati & Di Vimercati

2001).
Before continuing, some key terms need to be

explained as they will be used throughout this work:
Subject - entity that is trying to access a certain
resource. Example: person, process, device, etc.
Resource/Object - anything that access control is
being enforced upon. Example: database data, access
to an application, service, access to sensors, etc.
Request - the subject's request for a resource. It can
be formatted in some way (document, file, string)
and represent an actual "physical" request (database
query, call to a service) or it can also be the actual
"physical" request. Policy - set of rules that an
access control based security system needs to
enforce.

Access control is a security technique that
enforces security over resources by limiting access
to them. The access is given only to authorised
subjects which can be people or other systems,
depending on the implementation. A typical
workflow with access control would consist of:
receiving a request for a certain resource, evaluating
the request against one or more policies, and
allowing or denying the request depending on the
evaluation result. The systems enforcing access
control must have an architecture to facilitate
enforcement of access control, an evaluation
methodology and well defined policies (or rules) for
evaluating the requests. The significance,
complexity and size of these, of course, varies from
implementation to implementation and can depend
heavily on the business layer of the system that is
integrating access control.
ABAC ABAC (Attribute Based Access Control) is a
type of access control that evaluates requests against
policies according to attribute values (Priebe et al.
2007)(Priebe et al. 2006). Attributes are typically
divided into three categories: subject - subject/user
attributes (examples: age, postal code, IP address,
etc.); object - resource attributes (examples: type,
value, age, etc.); environment (examples: day of the
week, hour of the day, etc.).

These attributes therefore contain data from the
subject trying to access the resource, data from the
resource that is being accessed and environmental
data which represent current conditions. When a
request is being evaluated, the decision is made
according to these values and conditions/rules
defined in policies.
XACML XACML (eXtensible Access Control
Markup Language) is a declarative access control
policy language implemented in XML and created
by OASIS (Organization for the Advancement of
Structured Information Standards) (OASIS 1993). It
defines a way to evaluate requests for resources

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

190

Figure 1: Reference XACML architecture.

according to rules defined in policies. Put simply it
is a thought out and standardized solution for
implementing access control in software applications
(Lin et al. 2013)(Liu et al. 2011). It provides a
common ground regarding terminology and
workflow between multiple vendors building
implementations of access control using XACML
and interoperability between the implementations
(Fisler et al. 2005)(Lorch et al. 2003). It is primarily
intended for ABAC but can also be used for RBAC
and others. The XACML reference architecture can
be seen in Figure 1. This architecture is built out of
basic components: PEP (Policy Enforcement point)
- component that performs access control by
performing the decision provided by the response.
This may also mean fulfilling obligations that come
in the response. PDP (Policy Decision Point) - this
component is responsible for evaluating the request
against a policy. It contains all the functionality to
make the evaluation and produce a response. PIP
(Policy Information point) - This component is
responsible for retrieving attributes. The attributes in
ABAC are split into three types: subject,
environment and resource attributes. PRP (Policy
Retrieval Point) - component used for retrieving of
policies. PAP (Policy Administration Point) - the
component contains the functionality required for
managing policies. Typically this means adding,
removing and modifying policies. Figure 2 shows
the architecture proposed in the OASIS XACML
standard. Compared to the reference XACML
architecture this proposed architecture contains some
additional components.
These components are as follows. Context Handler
- this entity controls the workflow of the system. It
communicates with the PEP, PDP, PIP and resource.
As it controls the workflow it has many
responsibilities. Mainly, it has to forward requests
from the PEP to the PDP and return the responses
from the PDP to the PEP. Additionally it has to fetch
attributes when the PDP requests and fetch resource
content. Access requester - entity that is requesting
a resource. Obligations service - service that

executes any obligations after the evaluation is
complete. Resource - entity containing one or more

Figure 2: Data workflow proposed by XACML standard.

resources and resource attributes that the access
requester is trying to access. Subjects - entity
containing subject attributes. Typically the subject
attributes are attributes of the access requester.
Environment - entity containing one or more
environmental attributes.

It can be seen that, compared to the reference
XACML architecture, the PRP has been removed
and the functionality of the PRP has been merged
with the PAP. This can be concluded because the
PDP fetches policies over the PAP.

3 RELATED WORK

The architecture proposed in the OASIS XACML
has been a basis for many modifications as many
implementations have different requirements. As the
architecture is somewhat openly defined and leaves
many aspect unaddressed, some issues have already
been addressed. Many implementations and
proposals presented in (Kehlenbeck et al.
2010)(Sardinha et al. 2007)(Brown et al. 2012)
demonstrate that there are many possibilities and
areas of implementation with XACML but also that
the architecture and data flow are often modified to
fit specific needs.

The work done by Y. Keleta in (Keleta et al.
2005) has addressed some security issues with the
data flow proposed in the standard. The connections
between components were recognized as one of the
aspects where security mechanisms were not
defined. This of course leaves the connection open
to various attacks if a malicious party gains access to
that connection. The solution that was proposed was
based on having a central entity that would distribute
a token over SSL to other components and generate
a security key for encrypting the data. Although this

The XACML Standard - Addressing Architectural and Security Aspects

191

work also uses SSL/TLS, other aspects like the
central entity, tokens and security keys are not
needed, as explained in Chapter 5.

In (Xu & Duminda 2009) concurrency issues
between the evaluation and the administration parts
were identified. A lock manager is proposed that
would give permission to access policies by locking
them with write-locks or read-locks.

In (Díaz-López et al. 2015) a proposal for
managing XACML systems in a distributed
environments and connection between central
entities and subsidiaries in a distributed system is
presented. It proposes a solution that incorporates
SSL connections and message encryption similar to
work done in (Keleta et al. 2005).

On the other hand, other related work focuses
more on expanding the standard (Ferrini & Bertino
2009)(Ardagna et al. 2009)(Demchenko et al.
2009)(Kabbani et al. 2014), providing it even with
more functionality and flexibility. They do this by
integrating it with other methodologies and other
systems. In (Kabbani et al. 2014) a Situation-
Oriented Authorization Architecture is presented
that combines a situation management architecture
and the OASIS XACML architecture for the purpose
of Specification and Enforcement of Dynamic
Authorization Policies. These works demonstrate
that the development of the XACML standard is not
finalized and is likely to continue evolving.

4 IDENTIFIED ISSUES

While developing a security component based on the
OASIS XACML standard, a number of issues were
identified. These issues were related to the
architecture proposed in the standard and security of
connections between components and external
services.

Removal of PRP By comparing the reference
XACML architecture to the one proposed in the
OASIS XACML standard v3.0 (OASIS 2013) it can
be seen that in addition to new components, the PRP
has been merged with the PAP. Put differently, the
functionality of the PRP has been added to the PAP
and it is now used for retrieving policies. An issue
with removing the PRP and integrating its
functionality in the PAP is that the PDP has access
to other functionality of the PAP that is outside the
scope of what would be in a PRP. This means it can
potentially add, remove or modify policies. This is
of course an issue as the PDP should not be allowed
to do those actions. Separating the PRP from the
PAP will remove any possibility of the PDP to
misuse the PAP. Additionally, as the PAP is an entry

point for system administrators, separation of the
PAP means that that workflow is also completely
separated from the normal workflow of evaluating
policies. This completely removes the system
administrator from the rest of the system.

Differences Between the Defined
Architecture and an Implementation Looking
at the architecture from an implementation
perspective, other questions come up, such as some
kind of storage solution is needed for storing
policies. Commonly this would either be a database
or the policies could be stored in a file storage
system.

Reviewing the functionality of the PEP, it can be
defined as a simple component that needs to act
accordingly to the response that comes from the
PDP. This means that it needs to fulfil all obligations
and pass the request in case of a positive or
terminate the request in case of a negative response.
The connection between the Context Handler and
the resource is an issue because all information that
the PDP needs for evaluation has to be formed as
attributes. The fetching of information therefore
should be through the PIP because the PIP is
responsible for providing additional attributes. By
removing that connection, the role of the Context
Handler (from an implementation perspective)
becomes a trivial "middle man" in between the
PDP's communication with the PIP and the PEP.
The role that the Context Handler can still assume is
the initialisation/manager role, handling all other
aspects that the other components are not
responsible for handling. This would mainly mean
taking care of the initialisation and possibly handling
multiple instances. By removing the Context
Handler from the PDP-PIP connection but still
leaving it in between the PEP and PDP allows it to
have some management functionality. These would
include initialisation and configuration, managing
multiple instances for a parallel execution scenario
and leave it open for expansion if needed.

Another issue is the division of attributes by
type. This is regarding the division of attributes in
categories as: environment, subject and resource.
This is a good way of dividing them when viewing
the problem from a logical and functional
standpoint. Looking it from a PIP implementation
perspective the difference between attributes are not
in the information they represent but the type of
source they have to fetch it from. For the perspective
of the PIP it is not important if the PIP is fetching
resource, subject or environment data if it's all
coming from the same source or the way of fetching
them is the same. For example: if a person is a
registered user on a website and wants to change
some data on its user profile e.g. telephone number.

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

192

The resource that the user is trying to access and
change, and the attributes of that resource come
from the same source as the subject attributes. The
methodology of fetching those attributes is also the
same. The differentiation of these is therefore
pointless from an implementation or PIP
functionality perspective. As another example, the
environment attributes can easily come from
different sources and have much different
methodologies for acquiring those attributes. Simple
time based environmental attributes can be
generated by the system and looked up at the time of
evaluation. They do not need any kind of storage or
external connections. On the other hand fetching
attributes like: legal age limits, tax rates, currency
conversion rates etc., is much different and could
evolve external connections and special procedures.

Because of this the differentiation of connections
for the PIP by attribute type is pointless and a
differentiation by source or methodology of
acquiring is much more appropriate. The PIP
therefore can be split into many PIPs depending on
the way the attributes are acquired and the source. A
simple example would be having three PIPs
organized as hereafter indicated: Generated
Attributes PIP - responsible for fetching all
attributes that can be generated locally without the
need to contact any database or external service.
Local Attributes PIP - responsible for fetching
attributes that are located on local databases of can
be fetched from other local services. External
Attributes PIP - responsible for fetching attributes
by contacting external services. These would for
example be REST services.

The PIPs also need to know which attributes they
can acquire and which attributes, if any, are needed
to fetch those attributes. The PIPs can be organized
in a group and the PDP can than go through the
group asking which attributes they can provide and
which are needed. When it finds a match, it requests
the attributes and the evaluation continues. Along
with dividing the functionality of the PIP by
functionality as opposed to type of attributes, this
means that the PIPs are modular as one or several
can easily be removed or added to the list.

Communication Communication between
components and the distribution of components on
several machines is not defined in the standard
(OASIS 2013). Without enforcing some security
measures this leaves the system vulnerable to attacks
and may jeopardize the confidentiality of the access
requests and the authorization decisions. It is
important to put appropriate safeguards in place to
protect the system from such attacks. Examples of
such attacks include (Keleta et al. 2005):
unauthorized disclosure, message replay, message

insertion, message deletion and modification.
Considering a simple scenario in a XACML-based
security component or system, the PEP sends an
XACML request to the PDP (Keleta et al. 2005).
The standard does not define any mechanism which
would ensure that messages were not changed
during communication or that the sender and
receiver are indeed the ones they represent to be.
Without any that connection is not safe from attacks.
For example, if a malicious party manages to gain
access to the communication channel between the
PDP and the PEP, that party would be able to
intercept requests and results. This means that it
could monitor, modify or even fake requests and
responses. Effectively this means that it could
potentially gain control over all decisions made,
control who gets access to the resources, monitor the
traffic, gain insight into what is happening and
collect information that is potentially confidential.
This unauthorized disclosure of information causes a
compromise to the privacy of the users and the
system itself. Disclosure of information such as the
requestor’s identity in the decision request has a
huge impact to the privacy of the users in the
system. Appropriate safeguards should be
adequately put into force to prevent the
communication channel between the PDP and the
PEP from being intercepted by unauthorised
malicious third parties. In addition the storage
mechanism for policies has to be protected against
any unwanted connections. Connections need to be
limited only to other components that need to access
the policies (PRP, PAP).

5 PROPOSED SOLUTION

After identifying the issues not addressed in the
OASIS XACML architecture, a new architecture
was made. Tests of a security component
implementation were done and are presented in
Chapter 6. This Chapter will present the proposed
architecture as well as solutions for connection
issues. The proposed architecture can be seen in
Figure 3. The changes do not change the "outside"
view of the system but are more of an internal
change and more refined solution. The connections
to the PIP and PRP are moved from the Context
Handler to the PDP so it can fetch policies and all of
the attribute information as it needs, while
evaluating policies. The PIP is not a single entity but
rather a list of PIPs that all have the same interface,
and all fulfil the same purpose of fetching attributes.
Because some attributes are located on different
locations and need to be fetched using different
services they need to implement different means of

The XACML Standard - Addressing Architectural and Security Aspects

193

Figure 3: New Proposed architecture.

fetching that information. This allows for easy
expansion of the PIP functionality and better
configuration options. This architecture therefore
deals with the issues identified in the initial one. The
Context Handler maintains only an initialisation and
configuration role rather that handling the workflow
and being the "middle man". This was established as
being more efficient and was adopted because of
that. The PDP now fetches the policies and
additional attributes directly from the PRP and list of
PIPs, only when it needs to.
The PEP The PEP is the point where access control
is enforced. This means that this point needs to be
located in the system that wants to enforce access
control at the exact place inside the workflow where
access control is needed. It therefore needs to be
robust enough to ensure correct execution and
flexible to be implemented on various types of
systems. Because of this the PEP can be used in
multiple ways. It can be implemented by providing it
with only a XACML request and depending on the
response given act appropriately. This way the
system that is implementing the PEP decides what
the resulting action will be after the evaluation is
finished. The other way is to along with the request,
provide the PEP with an object that implements a
defined interface IResourceFetcher. This is, of
course the safer and more straightforward way
because it removes any decision making from the
implementation because the decisions are made
automatically in the PEP. In Figure 4 the class
diagram for the PEPs can be seen. The
IResourceFetcher is used to ensure that the object
provided has methods available for both the
positive and negative results of the requests
evaluation. With this, the PEP executes the execute()
in case the evaluation result is positive and executes
terminate() in case of a negative result. The purpose
of this is to remove the decision making part from

the system that implements the PEP and have it
already built in and working. In the case of specific
scenarios, the other method of simply getting the

Figure 4: Class diagram of the PEP and additional
interface.

the evaluation result is also available.
Solving the distribution and securing connections
The components that should be grouped together,
i.e. be deployed together, are: PDP, Context
Handler, PRP and PIPs, as shown in Figure 5. These
components are the essential components needed for
evaluating the requests. Separation of these
components would not bring any benefits, instead it
would bring only connection issues and possibly
diminished performance. The PIPs can be connected
to external services and fetch attributes from outside
the system but should not be separated. Additionally,
connection points to outside components should also
be added to this group. These would include
components like web interfaces for the PAP, REST
service components and any other component over
which the communication with the access control
service is done. Although this group is not an
essential part to the evaluation process they are
endpoints that revolve around the database
containing policies. Keeping these together with the
rest of the group means keeping communication
between components simple, fast and safe without
the need of implementing additional safety
measures. The PEP needs to be on the machine that
is integrating access control.
This method of grouping these components brings
up issues regarding scalability. Normally, a
distributed system scales much better than a non-
distributed system and if the components cannot be
separated it is hard to have a distributed system. The
solution to this would revolve around the replication
capabilities of the database used to store policies.
The database can be replicated on multiple machines
and multiple instances of the solution can run on all
of those machines. This would then scale as needed
(Díaz-López et al. 2015). For this to work with the
REST service an additional component would be
needed. It would have functionality for handling

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

194

Figure 5: Distribution of components in a use-case.

multiple instances and delegating the workload
efficiently. Because this can be viewed as a service
for evaluating requests against policies, it is
therefore a single "black box". Along with
scalability, the parallelisation of the process is an
issue that has to be considered. This can be achieved
using the same principle as before. Having multiple
instances of a PDP and providing each one with a
subset of policies and running everything parallel
is an easy and straightforward way to deal with the
parallelisation issue. Long evaluation times in the
case of a large set of policies can therefore be split in
a fraction of the time by dividing the work and
aggregating the result at the end.

Some of the issues with connections were
identified in (Keleta et al. 2005) and explained more
in Chapter 3. The proposed solution was to have a
centralized entity that would connect to every
component over TLS and distribute a token and
encrypt messages. This would ensure that the
message is unmodified and that the request comes
from a authorised and verified source. Because the
components are grouped together this is
unnecessary, not to mention that encrypting these
tokens can add unwanted overhead.

As mentioned, the internal communication
between the PDP, Context Handler, PRP and PIPs
are no longer an issue if those components are
grouped together. The remaining connections that
present an issue are the connection between the PEP
and the Context Handler and between the PIPs and
external sources (including the resource when
fetching resource attributes). The problems with
these connections are regarding message integrity
and validity of both sides. As these communications
are most likely be over some kind of internet
connection (for example, over a REST service) the
technology to secure them already exist and are
proven to work well. A simple and effective way of
securing these connections and solving these issues

is over a HTTPS connection (SSL/TLS) (Díaz-
López et al. 2015) (Keleta et al. 2005). Using this
method provides the authentication to both parties

Figure 6: Architecture with marked SSL/TLS connections.

involved in the communication and protects the
privacy and integrity of the data being exchanged
between them. This would be sufficient to solve
these issues because the Server and Clients could
trust they are communicating with one another and
that the messages are not being tampered
with.Figure 6 shows the architecture, distribution of
components and has the SSL/TLS connections
marked where they are required to be for a secure
system. Other options like OAuth 2 and OpenID
Connect can be used on-top of TLS and provide
additional benefits when considering connection
with other systems but this work will not go into a
detailed analysis of those options or of TLS as those
technologies are already familiar and known
solution for these types of problems. The additional
benefits include delegation of the evaluation process
and utilizing the tokens used by OAuth and Open ID
Connect when connecting to other systems and , for
example, fetching attribute data.

6 PROOF OF CONCEPT

The use case scenario that the test was simulating
was using the security component as an external
service and communicating with it over a REST
service. The use case is an IoT application in the
context of the European project: SMARTIE – Secure
and smarter cities data management.

As stated in (Nam & Pardo 2011), the term smart
city is widely used, often outside of the computer
science context but rather in a more social and
cultural context. Definitions therefore vary and
many exist, but the final aim is to make a better use

The XACML Standard - Addressing Architectural and Security Aspects

195

of the public resources, increasing the quality of the
services offered to the citizens, while reducing the
operational costs of the public administrations
(Shelton et al. 2015).

SMARTIE (Smart City) is a European project
with the goal of solving security, privacy and trust
issues in IoT, with a Smart City implementation.
SMARTIE is still in the development stages and was
used as a use case scenario for testing an
implementation of the architecture proposed in
Chapter 5. The security component which was tested
was built using an AT&T XACML implementation
(XACML 2013) open source project. The PDP
engine was used for evaluating requests and policies
and custom PIPs were implemented from basic PIP
interfaces to communicate with the PDP. All other
components (PRP, PAP, Context Handler, Policy
Storage Manager, etc.) were developed and
organizes in an architecture shown in Figure 3. The
schema of the test scenario is equal to the one shown
in Figure 3 but without connection in between the
Access Control service and the resource (for
fetching resource attributes) .This means that the
PEP is integrated in the target solution and it
communicates to the access control service over a
REST service and the PIPs fetch additional attributes
both from internal and external sources. The
requests that were sent vary in the complexity as
some require all of the PIPs while others do not
require any. Additionally, half of the requests result
in a positive (P-Permit) result and half in a negative
(D-Deny). The response time and the average were
calculated. It also has to be noted that the test does
not incorporate any type of caching so the repetition
of the requests did not result in inaccurate results.
The purpose of this test is to verify that the
developed solution gives results as predicted and
that the evaluation process is working as intended.
These tests in Table 1showed that the developed
solution performed as intended from a functional
perspective and satisfactory from a performance
perspective, meaning that the overhead for the
response times is acceptable for integrating in other
systems. The tests that were done by making calls
from the SMARTIE component were also a "proof

Table 1: Test results (R-Result, P-Permit, D-Deny).

R (ms) # R (ms) # R (ms) # R (ms)
1 P 55 11 P 118 21 D 50 31 D 59
2 P 58 12 P 75 22 D 46 32 D 60
3 P 72 13 P 83 23 D 50 33 D 48
4 P 99 14 P 132 24 D 75 34 D 58
5 P 80 15 P 121 25 D 49 35 D 56
6 P 79 16 P 73 26 D 48 36 D 43
7 P 86 17 P 57 27 D 57 37 D 48
8 P 102 18 P 58 28 D 51 38 D 47
9 P 127 19 P 72 29 D 39 39 D 65
10 P 85 20 P 59 30 D 47 40 D 47
 Avg: 68.4

of concept" test as the primary targeted system was
SMARTIE. As the test shows, the solution
performed as predicted using requests and policies
from the target system.

7 CONCLUSION

The ABAC model together with the XACML
standard has great potential and offers great benefits.
A finalized open source implementation that
implements every aspect of the standard along with
connectivity options with many types of services
would offer great benefits for many
implementations, not only IoT applications as
mentioned before, but also for many others. A
significant benefit of having this kind of system for
enforcing security is that the initial requests made by
the target system do not require to have many
attributes, therefore they do not need to fetch all the
information needed for evaluation They can rely on
the access control service to fetch all additional
attributes when and if needed in an efficient manner.

After building and having a secure system,
verifying that it works correctly and predictably, the
potential failure point is no longer directly a point in
the system but the interfaces that system
administrator and people implementing the solution
have to use. The system's security relies primarily on
correctly defined policies, making requests that
correctly mirror the true requests and integration that
is done correctly. This, of course is not a trivial task
and it requires precision.

This work has shown that the architecture
proposed in the standard (OASIS 2013) does not
cover all aspects that need to be considered when
deploying such a solution, and implementations
require some extensions to keep it secure. This is
often the case as not all issues can be predicted in
the planning stages. The architecture proposed in
this work is an integration oriented proposal aimed
to make XACML easier to use by other systems.
Although the architecture is not a significant
departure from the one defined in the standard it
offers benefits as it defines the implementation
scenario and solves distribution and connection
issues that are sure to arise when deploying such a
system.

ACKNOWLEDGEMENTS

This work is funded by National Funds through FCT
Fundação para a Ciência e a Tecnologia under the
project UID/EEA/50008/2013.

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

196

REFERENCES

Addie, R.G. & Colman, A., 2010. Five Criteria for Web-
Services Security Architecture. In 4th International
Conference on Network and System Security (NSS),.
pp. 521–526.

Ardagna, C.A. et al., 2009. An XACML-based privacy-
centered access control system. In Proceedings of the
first ACM workshop on Information security
governance - WISG ’09. p. 49.

Brown, K.P. et al., 2012. Fine-grained filtering of data
providing Web Services with XACML. In Proceedings
of the Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE.
pp. 438–443.

Demchenko, Y., Cristea, M. & De Laat, C., 2009.
XACML policy profile for multidomain network
resource provisioning and supporting authorisation
infrastructure. In Proceedings - 2009 IEEE
International Symposium on Policies for Distributed
Systems and Networks, POLICY 2009. pp. 98–101.

Díaz-López, D. et al., 2015. Managing XACML systems
in distributed environments through Meta-Policies.
Computers and Security, 48, pp.92–115.

Ferrini, R. & Bertino, E., 2009. Supporting RBAC with
XACML+OWL. In Proceedings of the 14th ACM
symposium on Access control models and
technologies SE - SACMAT ’09. pp. 145–154.
Available at: citeulike-article-id:9252058%5Cnhttp://
dx.doi.org/10.1145/1542207.1542231.

Fisler, K. et al., 2005. Verification and Change-Impact
Analysis of Access-Control Policies. Proceedings of
the 27th International Conference on Software
Engineering, pp.196–205.

FP7, 2016. SMARTIE - secure and smarter cities data
management. Available at: http://www.smartie-
project.eu/ [Accessed October 25, 2016].

Kabbani, B. et al., 2014. Specification and enforcement of
dynamic authorization policies oriented by situations.
In 2014 6th International Conference on New
Technologies, Mobility and Security - Proceedings of
NTMS 2014 Conference and Workshops.

Kehlenbeck, M., Sandner, T. & Breitner, M.H., 2010.
Managing internal control in changing organizations
through business process intelligence - A service
oriented architecture for the XACML based
monitoring of supporting systems. In Proceedings of
the Annual Hawaii International Conference on
System Sciences.

Keleta, Y., Eloff, J.H. & Venter, H., 2005. Proposing a
Secure XACML architecture ensuring privacy and
trust, Available at: http://icsa.cs.up.ac.za/issa/
2005/Proceedings/Research/093_Article.pdf.

Lin, D. et al., 2013. A similarity measure for comparing
XACML policies. IEEE Transactions on Knowledge
and Data Engineering, 25(9), pp.1946–1959.

Liu, A.X. et al., 2011. Designing fast and scalable
XACML policy evaluation engines. IEEE

 Transactions on Computers, 60(12), pp.1802–1817.
Lorch, M. et al., 2003. First experiences using XACML

 for access control in distributed systems. In
Proceedings of the 2003 ACM workshop on XML
security. pp. 25–37.

Nam, T. & Pardo, T. a., 2011. Conceptualizing smart city
with dimensions of technology, people, and
institutions. Proceedings of the 12th Annual
International Digital Government Research
Conference on Digital Government Innovation in
Challenging Times - dg.o ’11, p.282. Available at:
http://dl.acm.org/citation.cfm?id=2037556.2037602%
5Cnhttp://dl.acm.org/citation.cfm?id=2072069.207210
0%5Cnhttp://dl.acm.org/citation.cfm?doid=2037556.2
037602.

OASIS, 2013. eXtensible Access Control Markup
Language (XACML) Version 3.0. Available at:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-os-en.pdf [Accessed October 25, 2016].

OASIS, 1993. OASIS. Available at: https://www.oasis-
open.org/org [Accessed October 23, 2016].

Priebe, T. et al., 2007. Supporting attribute-based access
control in authorization and authentication
infrastructures with ontologies. Journal of Software,
2(1), pp.27–38.

Priebe, T., Dobmeier, W. & Kamprath, N., 2006.
Supporting attribute-based access control with
ontologies. In Proceedings - First International
Conference on Availability, Reliability and Security,
ARES 2006. pp. 465–472.

Qing, X. & Adams, C., 2006. XACML-Based Policy-
Driven Access Control for Mobile Environments. In
Canadian Conference on Electrical and Computer
Engineering. pp. 643–646.

Samarati, P. & Di Vimercati, S.D.C., 2001. Access
Control: Policies, Models, and Mechanisms.
Foundations of Security Analysis and Design, 2171,
pp.137–196. Available at: http://
www.springerlink.com/index/80wrewj7j1a716wb.pdf.

Sardinha, A., Rao, J. & Sadeh, N., 2007. Enforcing
context-sensitive policies in collaborative business
environments. In Proceedings - International
Conference on Data Engineering. pp. 705–714.

Shelton, T., Zook, M. & Wiig, A., 2015. The “actually
existing smart city.” Cambridge Journal of Regions,
Economy and Society, 8, pp.13–25. Available at:
http://cjres.oxfordjournals.org/lookup/doi/10.1093/cjre
s/rsu026.

Stepien, B., Matwin, S. & Felty, A.P., 2011. Advantages
of a non-technical {XACML} notation in role-based
models. In Ninth Annual Conference on Privacy,
Security and Trust. pp. 193--200.

XACML, 2013. AT&T XACML 3.0 Implementation.
Available at: https://github.com/att/XACML
[Accessed October 23, 2016].

Xu, M. & Duminda, W., 2009. A role-based XACML
administration and delegation profile and its
enforcement architecture. In ACM workshop on
Secure web services. pp. 53–60.

Xu, M., Wijesekera, D. & Zhang, X., 2011. Runtime
administration of an RBAC profile for XACML. IEEE
Transactions on Services Computing, 4(4), pp.286–
299.

The XACML Standard - Addressing Architectural and Security Aspects

197

