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Abstract: The huge diffusion of the so-called smartphone devices is boosting the malware writer community to write
more and more aggressive software targeting the mobile platforms. While scientific community has largely
studied malware on Android platform, few attention is paid to iOS applications, probably to their closed-source
nature. In this paper, in order to fill this gap, we propose a method to identify malicious application on Apple
environment. Our method relies on a feature vector extracted by static analysis. Experiments, performed with
20 different machine learning algorithms, demonstrate that malware iOS applications are discriminated by
trusted ones with a precision equal to 0.971 and a recall equal to 1.

1 INTRODUCTION AND
BACKGROUND

In January of 2007, Apple released the first version
of its smartphone: the iPhone. This marked a re-
volution in the global smartphone market, thanks to
the introduction of innovative features such as touch
screen interfaces and virtual keyboards. At the time,
the iPhone of Apple was the main growth driver for
the smartphone market, pushing competitors to deve-
lop new products and operating systems to respond to
new market demands1.

This huge diffusion was also decreed by the num-
ber of available apps that has been consistently incre-
asing over the years. In March of 2010, there were
150 thousand available apps in the App Store. The
number of available apps reached 1.5 million by June
2015, 10 times more than the early 2010 number. The
growth in number of apps available is directly related
to the number of applications for the release of newly
developed apps. In May 2015, the number of applica-
tions submitted for release to the App Store surpassed
54,000 for the first time2.

Regarding availability, the most popular Apple
App Store category is gaming with about 23 percent
of available apps belonging to this category. Other

1https://www.statista.com/topics/870/iphone/
2https://www.statista.com/statistics/263794/number-of-

downloads-from-the-apple-app-store/

leading app categories based on terms of availability
are business apps, education apps, lifestyle apps and
entertainment apps. Gaming leads in terms of down-
loads as well.

The number of apps downloaded from the Apple
Store reached the 100 billion mark for the first time
in June 2015. This is a significant increase from the
previous year, considering the number of downloads
stood at 75 billion a year prior to that. However, in
the ephemeral world of apps, downloads do not equal
retention. It is estimated that 25 percent apps downlo-
aded by mobile app users worldwide were only used
once during the first six months of ownership.

For these reasons the mobile ecosystem, with the
increasing number of users that easily download ap-
plications from markets, is a very appealing scenario
for malware writer. Typically attackers write codes
more and more aggressive able to gather personal in-
formation from infected devices and to steal banking
account.

This trend is confirmed by the fact that there have
been hundreds of apps pulled from both Google Play
and the Apple App Store for security reasons. McA-
fee security experts report that the biggest threat in
2016 for iOS came from apps with overly aggressive
and invasive adware, whereas Google Play saw a fair
number of apps infected with malware3. Both Google

3http://www.mcafee.com/us/resources/reports/rp-
mobile-threat-report-2016.pdf
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and Apple have been very quick to remove malicious
apps from their associated app stores, however it is in-
evitable that some infected apps will still slip through
the screening process.

From the defensive side, the signature-based mal-
ware detection, which is the most common technique
adopted by free and commercial mobile antimalware,
is often ineffective. Moreover it is costly, as the pro-
cess for obtaining and classifying a malware signature
is laborious and time-consuming.

While the scientific community has produced a lot
of approaches to detect mobile malware on Android
environment (Battista et al., 2016; Mercaldo et al.,
2016a; Mercaldo et al., 2016b), literature lacks of
method related to iOS environment. Our idea is that
on Android, due to their open source nature, is easy
for researchers retrieve samples to reverse engineer-
ing for analysis, while in iOS, that is closed-source,
the source code extraction is more laborious and it
needs to obtain the unencrypted binary code in order
to analyze the application, as we explain in the next
section.

To fill this gap in this paper we propose a method
to identify malicious software in iOS environment.

We propose a technique for malware detection
which uses a features vector, in place of the code
signature. The assumption (that will be demonstra-
ted with the evaluation) is that malicious applications
show values for this features vector which are diffe-
rent from the values shown by trusted applications.

We consider as feature vector the occurrence of
some opcode which form the disassembled code of
the application. Our assumption is that malware ap-
plications in order the perform their harmful behavior
tend to adopt operation codes differently from legiti-
mate applications.

In current literature, several approaches address
the malware detection issue using features extraction.

Counting op-codes is a technique used in previ-
ous works for the detection of virus: it revealed to be
successful with several variants of the W32.Evol me-
tamorphic virus (Choucane and Lakhotia, 2006).

Bilar (Bilar, 2007) proposes a detection mecha-
nism for malicious code through statistical analy-
sis of op-codes distributions. This work compares
the statistical op-codes frequency between malware
and trusted samples, concluding that malware opcode
frequency distribution seems to deviate significantly
from trusted applications. We accomplish a similar
analysis, but for iOS malware. In reference (Rad
and Masrom, 2010; Rad et al., 2012) the histograms
of op-codes are used as a feature to find whether a
file is a morphed version of another. Using a thres-
hold of 0.067 authors in reference (Rad and Mas-

rom, 2010) correctly classify different obfuscated ver-
sions of metamorphic viruses; while in reference (Rad
et al., 2012) the authors obtain a 100% detection rate
using a dataset of 40 malware instances of NGCVK
family, 40 benign files and 20 samples classified by
authors as other virus files.

Researchers in (Mercaldo et al., 2016c; Canfora
et al., 2015c; Canfora et al., 2015b; Canfora et al.,
2015a) demonstrated that opcode distribution is dif-
ferent between Android malware and trusted applica-
tion with a precision ranging from 0.94 to 0.97, while
authors in (Bernardeschi et al., 2004) studied illegal
flow of information in Java bytecode.

Relating to Apple environment, iSAM (Damopou-
los et al., 2011) is a prototype of malware developed
for research purpose able to wireless infect and self-
propagate to iPhone devices. The malware incorpo-
rate six malware mechanism and it is able to connect
back to a bot master server to update its programming
logic.

Researchers in (Garcıa and Rodrıguez, 2016)
study the features of iOS malware and classify sam-
ples of 36 iOS malware families discovered between
2009 and 2015. Their findings evidence that most of
them are distributed out of official markets, target jai-
lbroken iOS devices, and very few exploit any vulne-
rability.

At the best of authors knowledge, this is the first
work with the aim to address the mobile malware is-
sue on Apple environment exploring machine lear-
ning techniques.

The paper poses following research question:

• RQ: are the features extracted able to distinguish
a malware from a trusted application for iOS plat-
form?

The rest of the paper is organized as follows:
the next section illustrates the proposed features and
the detection technique; the third section discusses
the evaluation; the fourth section explains the perfor-
mance of our approach and, finally, conclusion and
future works are given in the last section.

2 THE APPROACH

We classify malware using a set of features which
count the occurrences of a specific group of op-codes
extracted from the application under analysis (AUA
in the remaining of the paper).

We produce the histograms of a set of opcodes
occurring in the AUA: each histogram dimension re-
presents the number of times the opcode correspon-
ding to that dimension appears in the code.
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Table 1: Most recurrent opcode with relative description.

Op-code Description
MSR Move to system coprocessor register from ARM register.
MUL Performs an unsigned multiplication
ADC Adds two registers
TEQ instruction to test if two values are equal
LDM Load and Multiple registers.
ORR Exclusive OR, and OR operation
SBC Subtracts two registers
AND AND operation
MVN performs a bitwise logical NOT operation on the value.
STC Sets the carry flag to 1.
STM Store and Multiple registers.
TST The instruction performs a bitwise AND on two operands
BX The instruction causes a branch and exchanges the instruction set
CMN The instructions compare the value in a register
SUB The instruction is used for performing subtraction of binary data in byte
CMP The instruction is used to perform comparison
STR The single data transfer instructions is used to store single bytes/words of data
MLA Multiply-Accumulate with signed or unsigned 32-bit operands
LDR The single data transfer instructions is used to load single bytes/words of data
EOR It performs the logical EOR between the contents of two registers
B Branch instruction set
MOV The instruction is a mnemonic for the copying of data

The main problem in retrieving source code by
iOS samples, differently to Android environment, is
represented by the fact that usually iOS samples are
encrypted, for this reason we need to unencrypt them
to obtain the disassembled code. For this reason, in
the first step (i.e., the processing) of our method we
need to have the unencrypted binary code to analyze
the malicious payload. The iOS application availa-
ble in the Apple Store can be downloaded as an IPA
file, which is ciphered by Apple and thus, we need
to decipher it. Otherwise, when the malicious sam-
ple is a dylib, package.deb, or an application distri-
buted through Apple Enterprise Provisioning4, the bi-
nary file is not ciphered and thus we can pass over this
stage. The otool tool (with option -l) is used to ve-
rify whether the sample is encrypted, indicated by the
cryptid value of the LC ENCRYPTION INFO com-
mand (a zero value indicates unencrypted) (Garcıa
and Rodrıguez, 2016). When the sample is encrypted,
the dumpdecrypted tool is used to obtain the unen-
crypted code.

Once we obtained the disassembled code we com-
pute the occurrence for each opcode in order to se-
lect the most occurring features: this is the feature
selection step. We compute the occurrency using the
NgramTokenizer class provided by Lucene library. It
is worth observing that the histogram dissimilarity
has been already applied with success in malware de-
tection in (Rad and Masrom, 2010; Rad et al., 2012).

Table 1 shows the most occurrency opcode in mal-
ware applications.

The output of the feature selection step is repre-
sented by a series of histograms, a histogram for each
AUA; each histogram has 22 dimensions, where each
dimension corresponds to one among the 22 opcodes
included in the model divided the total number of op-

4https://developer.apple.com/

code in the application.
For the sake of clarity, we compute each histogram

according with following formula:

#Fx =
∑N

i=1 Xi

∑N
i=1 Oi

where F be one of the 22 features extracted, let X
be one of the occurrence of the 22 opcode (i.e., O)
from the i-th function and N is the total number of the
functions forming the AUA.

For a single application we compute the 22 histo-
grams i.e., the feature vector for each application is
composed by the value of the histograms.

3 THE EVALUATION

We designed an experiment in order to evaluate the
effectiveness of the proposed technique, expressed
through the research question RQ, stated in the intro-
duction.

The evaluation dataset includes 50 iOS trusted ap-
plications and 50 real-world iOS malware applica-
tions: the trusted samples were retrieved from App
Store5, while the malicious ones from Contagio Mo-
bile6. The dataset includes different types of mal-
ware categorized by installation methods and activa-
tion mechanisms, as well as the nature of carried ma-
licious payloads and they are appeared between July
2013 and February 2016, while trusted application
were the free most downloaded in September, 2016.
Table 2 shows the malware families we considered in
the study with the upload date on the Contagio Mobile
website.

Table 2: iOS malware families involved in the study with
respective upload date on Contagio Mobile website.

Families Description
TRracer - commercial spyware July 13, 2013
iOS adware using Cydia March 25, 2014
iOS AppBuyer malware - infostealer September 15, 2014
Xsser (mRat) for IOS October 8, 2014
IOS iphone Stealer.A December 20, 2014
Inception APT iOS sample December 20, 2014
Cloud Atlas / Inception iOS - WhatsAppUpdate.deb December 20, 2014
iPhone / IOS clickfraud June 5, 2015
KeyRaider: iOS infostealer September 1, 2015
YiSpecter iOS October 4, 2015
Wirelurker for iOS November 5, 2014
ZergHelper February 22, 2016

We submitted the malicious and trusted applica-
tion to the 57 antimalware provided by VirusTotal7,
in order to test, respectively, the maliciousness and
the trustworthiness of the dataset.

5http://www.apple.com/iphone/appstore
6http://contagiominidump.blogspot.it/
7https://www.virustotal.com/
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Table 3: Classification algorithms used in the evaluation.

Alg Name Description
BN BayesNet Bayes Network learning using various search algorithms and quality measures.
NB NaiveBayes Naive Bayes classifier using estimator classes. Numeric estimator precision values are chosen based on training

data analysis.
NBU NaiveBayesUpdateable This is the updateable version of NaiveBayes.
Log Logistic Class for building and using a multinomial logistic regression model with a ridge estimator.
MP MultilayerPerceptron A Classifier that uses back propagation to classify instances. The network can also be monitored and modified

during training time. The nodes in this network are all sigmoid (except for when the class is numeric in which
case the output nodes become unthresholded linear units).

SGD Stochastic Gradient Descent Implements SGD to learn various linear models (binary class SVM, binary class logistic regression, squared
loss, Huber loss and, epsilon-insensitive loss linear regression). Globally replaces all missing values and
transforms nominal attributes into binary ones. It also normalizes all attributes, so the coefficients in
the output are based on the normalized data.

SL SimpleLogistic Classifier for building linear logistic regression models. LogitBoost with simple regression functions as base
learners is used for fitting the logistic models. The optimal number of LogitBoost iterations to perform is
cross-validated.

SMO SVM Implements John Platt’s sequential minimal optimization algorithm for training a support vector classifier.
This implementation globally replaces all missing values and transforms nominal attributes into binary ones.

IBk K-nearest neighbours classifier Can select appropriate value of K based on cross-validation. Can also do distance weighting.
KStar K* is an instance-based classifier, that is the class of a test instance is based upon the class of those training

instances similar to it, as determined by some similarity function. It uses an entropy-based distance function.
LWL Locally weighted learning Uses an instance-based algorithm to assign instance weights which are then used by a specified

WeightedInstancesHandler.
AB AdaBoost M1 Class for boosting a nominal class classifier using the Adaboost M1 method.
LB LogitBoost Class for performing additive logistic regression. This class performs classification using a regression scheme

as the base learner.
JRip Repeated Incremental Pruning This class implements a propositional rule learner.
OneR One Rule Class for building and using a 1R classifier; it uses the minimum-error attribute for prediction, discretizing

numeric attributes.
PART partial decision tree Class for generating a PART decision list. Uses separate-and-conquer. Builds a partial C4.5 decision

tree in each iteration.
J48 C4.5 It is an algorithm used to generate a pruned or unpruned decision tree.
RF RandomForest Class for constructing a forest of random trees.

RnTree RandomTree Class for constructing a tree that considers K randomly chosen attributes at each node. Performs no pruning.
RepTree Reduced Error Pruning Tree Fast decision tree learner. Builds a decision/regression tree using information gain/variance and prunes it using

reduced-error pruning. Missing values are dealt with by splitting the corresponding instances into pieces,
as in C4.5.

The classification analysis was aimed at assessing
whether the features where able to correctly classify
malware and trusted applications: we apply the clas-
sification algorithm shown in Table 3 to the feature
vectors.

We evaluated the effectiveness of the classification
method with the following procedure:

1. build a training set T⊂D;

2. build a testing set T’ = D÷T;

3. run the training phase on T;

4. apply the learned classifier to each element of T’.

We performed a 10-fold cross validation: we repe-
ated the four steps 10 times varying the composition
of T (and hence of T’). The analysis was accomplis-
hed with the Weka tool8, a well-known collection of
machine learning algorithms for data mining tasks.

The results that we obtained with this procedure
are shown in Table 4. Five metrics were used to
evaluate the classification results: recall, precision, f-
measure, RocArea and MCC (i.e., Matthews correla-
tion coefficient).

The precision has been computed as the propor-
tion of the examples that truly belong to class X

8 http://www.cs.waikato.ac.nz/ml/weka/

among all those which were assigned to the class. It
is the ratio of the number of relevant records retrieved
to the total number of irrelevant and relevant records
retrieved:

Precision = t p
t p+ f p

where tp indicates the number of true positives
and fp indicates the number of false positives.

The recall has been computed as the proportion
of examples that were assigned to class X, among all
the examples that truly belong to the class, i.e. how
much part of the class was captured. It is the ratio of
the number of relevant records retrieved to the total
number of relevant records:

Recall = t p
t p+ f n

where fn is the number of false negatives. Preci-
sion and recall are inversely related.

The F-Measure is a measure of a test’s accuracy.
This score can be interpreted as a weighted average
of the precision and recall:

F-Measure = 2∗ Precision∗Recall
Precision+Recall

The Roc Area is defined as the probability that a
positive instance randomly chosen is classified above
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Table 4: Precision, Recall, F-Measure, MCC and RocArea for classifying Malware and Trusted applications.

Algorithm Precision Recall F-Measure MCC RocArea
M T M T M T M T M T

BN 0,970 0,962 0,970 0.962 0,970 0.962 0,931 0,931 0.963 0,963
NB 0,931 0,800 0,818 0,923 0,871 0,857 0,736 0,736 0,855 0,875
NBU 0,931 0,800 0,818 0,923 0,871 0,857 0,736 0,736 0,885 0,875
Log 0,931 0,800 0,818 0,923 0,871 0,857 0,736 0,736 0,797 0,792
MP 0,935 0,857 0,879 0,923 0,906 0,889 0,797 0,797 0,832 0,832
SGD 0,929 0,774 0,788 0,923 0,852 0,842 0,707 0,707 0,855 0,855
SL 0,920 0,706 0,697 0,923 0,793 0,800 0,623 0,623 0,804 0,804
SMO 0,793 0,667 0,667 0,769 0,742 0,717 0,463 0,463 0,733 0,733
IBk 0,966 0,833 0,848 0,962 0,903 0,893 0,804 0,804 0,871 0,871
KStar 0,969 0,926 0,939 0,962 0,954 0,943 0,898 0,898 0,990 0,990
LWL 0,962 0,758 0,758 0,962 0,847 0,847 0,719 0,719 0,861 0,861
AB 0,935 0,857 0,879 0,923 0,906 0,889 0,797 0,797 0,956 0,956
LB 0,939 0,923 0,939 0,923 0,939 0,923 0,862 0,862 0,952 0,952
DT 0,943 1,000 1,000 0,923 0,971 0,960 0,933 0,933 0,950 0,950
JRip 0,933 0,828 0,848 0,923 0,889 0,873 0,766 0,766 0,898 0,898
OneR 0,971 1,000 1,000 0,962 0,985 0,980 0,966 0,966 0,981 0,981
PART 0,966 0,833 0,848 0,962 0,903 0,893 0,804 0,804 0,909 0,909
J48 0,960 0,735 0,727 0,962 0,828 0,833 0,692 0,692 0,839 0,839
RF 0,970 0,962 0,970 0,962 0,970 0,962 0,931 0,931 0,969 0,969
RnTree 0,941 0,960 0,970 0,923 0,955 0,941 0,897 0,987 0,946 0,946
RepTree 0,917 0,686 0,667 0,923 0,772 0,787 0,596 0,596 0,786 0,786

a negative randomly chosen.
MCC takes into account true and false positives

and negatives and is generally regarded as a balanced
measure which can be used even if the classes are of
very different sizes:

MCC = t p∗tn− f p∗ f n√
(t p+ f p)(t p+ f n)(tn+ f p)(tn+ f n)

where tn is the number of true negatives.
Table 4 shows the classification results.
We compute both the value of the metrics related

to malware and trusted identification; relating to pre-
cision the more accurate algorithms to discriminate
iOS malware samples is the OneR algorith, with a pre-
cision equal to 0,971 and a recall equal to 1.

RQ response: The evaluation shows that the featu-
res are effective to detect iOS mobile malware, obtai-
ning the best detection capability with the OneR algo-
rithm.

4 PERFORMANCE EVALUATION

In this section we discuss the performances of our ap-
proach. In order to measure performances, we used
the System.currentTimeMillis() Java method that re-
turns the current time in milliseconds. The machine
used to run the experiments and to take measurements

Table 5: The performance evaluation (values are expressed
in seconds).

t f v tm total time
2.1584 s 0.0289 s 2,1873 s

was an Intel Core i5 desktop with 4 gigabyte RAM,
equipped with Linux Mint 15. We consider the overall
time to analyse a sample as the sum of two different
contributions: the average time required to extract the
feature vector from an iOS application (t f v) and the
time required to test the extracted feature vector with
the model learned by using the OneR algorithm (tm).

Table 5 shows the performance of our method.
The most intensive task from the computational

point of view is represented by t f v, while tm requi-
res 0.0289 seconds to evaluate the feature vector: the
proposed approach takes 2,1873 seconds to test a new
sample.

5 CONCLUSION AND FUTURE
WORK

While research community has largely studied An-
droid malware, literature lacks of approach conside-
ring Apple environment. This is the reason why in
this paper we propose a method to identify iOS mali-
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cious application through static analysis and machine
learning. We obtain the best results with the OneR
algorithm. As future works, we plan to extract code
n-gram instead of occurrences to try to improve the
detection of the method and to explore the usage of
dynamic analysis, e.g. extracting system call sequen-
ces, to identify the iOS malware family.
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