and Computer-Assisted Intervention, pages 862–869.
Springer.
Arthur, D. and Vassilvitskii, S. (2007). k-means++: The
advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial
and Applied Mathematics.
Aruna Kumar, S. V. and Harish, B. S. (2014). Segmenting
mri brain images using novel robust spatial kernel fcm
(rskfcm). Eighth International Conference on Image
and Signal Processing, pages 38–44.
Aruna Kumar, S. V. and Harish, B. S. (2015). Segment-
ing medical images using computational intelligence
technique. International Journal of Information Pro-
cessing, 9(1):48–56.
Aruna Kumar, S. V., Harish, B. S., and Guru, D. S. (2015).
Segmenting mri brain images using evolutionary com-
putation technique. In Cognitive Computing and In-
formation Processing (CCIP), International Confer-
ence on, pages 1–6.
Bezdek, J. C. (2013). Pattern recognition with fuzzy objec-
tive function algorithms. Springer Science & Business
Media.
Brainweb. http://brainweb.bic.mni.mcgill.ca/brainweb/.
Chen, C. W., Luo, J., and Parker, K. J. (1998). Im-
age segmentation via adaptive k-mean clustering
and knowledge-based morphological operations with
biomedical applications. IEEE Transactions on Image
Processing, 7(12):1673–1683.
Chen, S. and Zhang, D. (2004). Robust image segmenta-
tion using fcm with spatial constraints based on new
kernel-induced distance measure. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions
on, 34(4):1907–1916.
Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., and Chen,
T.-J. (2006). Fuzzy c-means clustering with spatial
information for image segmentation. computerized
medical imaging and graphics, 30(1):9–15.
Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant sys-
tem: optimization by a colony of cooperating agents.
Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 26(1):29–41.
Fukuyama, Y. and Sugeno, M. (1989). A new method of
choosing the number of clusters for fuzzy c-means
method. In Proceedings of Fifth Fuzzy Systems Symp,
pages 247–250.
Hadjahmadi, A. H., Homayounpour, M. M., and Ahadi,
S. M. (2008). Robust weighted fuzzy c-means clus-
tering. In IEEE International Conference on Fuzzy
Systems(IEEE World Congress on Computational In-
telligence), pages 305–311. IEEE.
Han, Y. and Shi, P. (2007). An improved ant colony al-
gorithm for fuzzy clustering in image segmentation.
Neurocomputing, 70(4):665–671.
Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data
clustering: a review. ACM computing surveys (CSUR),
31(3):264–323.
Kuo, C.-T., Walker, P. B., Carmichael, O., and Davidson, I.
(2014). Spectral clustering for medical imaging. In
2014 IEEE International Conference on Data Mining,
pages 887–892. IEEE.
Ng, H., Ong, S., Foong, K., Goh, P., and Nowinski, W.
(2006). Medical image segmentation using k-means
clustering and improved watershed algorithm. In
IEEE Southwest Symposium on Image Analysis and
Interpretation, pages 61–65. IEEE.
Pal, N. R. and Bezdek, J. C. (1995). On cluster validity
for the fuzzy c-means model. IEEE Transactions on
Fuzzy systems, 3(3):370–379.
Van Lung, H. and Kim, J.-M. (2009). A generalized spatial
fuzzy c-means algorithm for medical image segmenta-
tion. In Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE
International Conference on, pages 409–414. IEEE.
Wang, W., Zhang, Y., Li, Y., and Zhang, X. (2006). The
global fuzzy c-means clustering algorithm. In The
Sixth World Congress on Intelligent Control and Au-
tomation, volume 1, pages 3604–3607. IEEE.
Xie, X. L. and Beni, G. (1991). A validity measure for fuzzy
clustering. IEEE Transactions on pattern analysis and
machine intelligence, 13(8):841–847.
Yu, J., Lee, S.-H., and Jeon, M. (2012). An adaptive aco-
based fuzzy clustering algorithm for noisy image seg-
mentation. International Journal of Innovative Com-
puting Information and Control, 8(6):3907–3918.
Zhang, J., Zhang, X., and Zhang, J. (2011). Image segmen-
tation method based on improved genetic algorithm
and fuzzy clustering. Advanced Materials Research,
143:379–383.
ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods
598