
On Usage Control in Relational Database Management Systems
Obligations and Their Enforcement in Joining Datasets

Mortaza S. Bargh1, Marco Vink1 and Sunil Choenni1,2
1Research and Documentation Centre, Ministry of Security and Justice, The Hague, The Netherlands

2Creating 010, Rotterdam University of Applied Sciences, Rotterdam, The Netherlands
{m.shoae.bargh, m.e.vink, r.choenni}@minvenj.nl, r.choenni@hr.nl

Keywords: Access Control, Inner Join, Obligations, Privacy, Usage Control.

Abstract: When datasets are collected and accessed legitimately, they must still be used appropriately according to
policies, guidelines, rules, laws, and/or the (current) preferences of data subjects. Any inconsistency
between the data collection and data usage processes can conflict with many principles of privacy like the
transparency principle, no secondary use principle, or intended purpose usage principle. In this contribution
we show how the usage control for the inner join operation in vertically separated relational datasets can be
characterized as pre and post obligations of the Usage Control (UCON) model. This type of obligations is
defined not only by the state of the UCON object (i.e., a dataset) itself, but also with respect to the state of
another dataset. Such dependency on two datasets/objects provides a new insight in UCON obligation
constructs when applied to the join operation. We describe also a mechanism to realize the identified
obligation in a database management system and present an example realization of the proposed
mechanism. Furthermore, we enlist a number of methods to determine whether two given datasets can be
joined.

1 INTRODUCTION

Currently data are created in an explosive rate with
the surge of new services/applications as well as
smart and sensory devices. Digitalization and e-
administration, e-services, Big Data, Open Data, and
Internet of Things are example cases that contribute
to this data outpouring and overflow. Consequently,
it becomes a common practice in (business) data
analytics and data intensive applications to integrate
data from different sources, of various types, of
large volumes, and/or of high rates. These
applications and services aim at easing our daily
lives, providing insight in societal phenomena, or
creating added values for businesses. Delivering
these benefits, however, must not violate or
compromise, for example, the privacy, commercial,
and intellectual rights of individuals and parties who
contribute their data to the data integration process.

For a long time, access control mechanisms have
been used to protect the security and privacy of data.
An access control mechanism controls the access to
the data by granting or rejecting an access request.
Although in this way the input datasets for a data
integration process may be acquired or accessed

legitimately, it is crucial for the output dataset of the
data integration process to be legitimate and
acceptable for all parties who provided the input
datasets. For example, the privacy and business
sensitivity requirements of these parties must be
preserved. Today, personal devices produce more
and more personal data than before. Big data
analytics makes it possible to combine these data,
resulting in (new) personal data that may expose the
private lives of people in quite detail. Such data
combinations may result in unexpected and harmful
impacts on individuals. Therefore, access control is
insufficient in current era of data expulsion.

Given the fact that the access to data is obtained
legitimately, one needs to control how the data are
used practically. Suppose that a tax officer needs to
know the name, the annual income, the spouse’s
name, and the number of children of a person in
order to carry out his/her tasks. It is not, however,
the business of the tax officer to find out how many
spouses or children per spouse a certain person (like
a celebrity) has had. The system, therefore, should
note such illegitimate use of attribute values and
exclude them from the tax officer’s access.
Therefore, a query like “find all spouses of singer-X

190
Bargh, M., Vink, M. and choenni, s.
On Usage Control in Relational Database Management Systems - Obligations and Their Enforcement in Joining Datasets.
DOI: 10.5220/0006209801900201
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 190-201
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

and for each spouse the name of the children” is an
improper use of the attribute values and should not
be executed.

Determining the (privacy) policies that govern
such data integrations become steadily unforeseeable
due to availability of vast amount of background
information to data receivers and adversaries. For
example, one cannot predetermine the datasets that
will be encountered and integrated with a given
dataset in the future. This makes it difficult to assess
the potential risks in combining the released data
with any other datasets (i.e., with the background
information). This uncertainty relates to the extrinsic
characteristics of data, e.g., the (privacy) issues of a
given datasets in relation to other datasets. The other
datasets exist in outside world due to, for example,
sequential data release, multiple data release,
continuous data release, collaborative data release,
social networks, Big Data, and Open Data.

One may conclude that it is unwise to share data
anymore. This policy appears to be too restrictive
and unrealistic nowadays. Another solution direction
is to devise and realize mechanisms that control
compliance with data privacy policies after sharing
the data with others, i.e., during the data usage
lifecycle. This solution, which can be realized in
controllable environments like an organization’s
Database Management System (DBMS), requires a
flexible and adaptive framework that decides based
on a data integration policy and enforces the
decision at runtime. Hereby it becomes possible to
deal with the issue of authorized-access and
unauthorized-use of datasets (Choenni et al., 2016).
To this end, for example, the Usage Control
(UCON) model (Park and Sandhu, 2004) is one of
the promising models.

Our research objective is to control the usage of
relational datasets in volatile and dynamic settings
i.e., when data analysts gradually and unforeseeably
gain access to datasets and want to link/integrate a
subset of these datasets. We limit our scope to
relational databases and those structured datasets
that are vertically separated. By vertically separated
datasets we mean vertically distributed datasets, as
illustrated in (Karr et al., 2007), which are not
necessarily at different locations (i.e., they can be
collocated as in the case of typical data warehouse
environments). We consider the usage control for
the inner join operation among these vertically
separated datasets. Inspired by the UCON model, we
specifically investigate: How the inner join
operation can be framed in such a data usage control
framework. This investigation results in a new
insight in UCON obligation constructs. As our first

contribution, we distinguish a new type of
obligations where the state of the object (e.g., a
dataset) is determined with respect to existence of
another dataset. This type of dependency, to the best
of our knowledge, has not been identified so far. As
our second contribution, we present a mechanism to
realize the identified obligation in a DBMS. As our
third contribution, we present an example realization
to illustrate how the proposed mechanism can be
implemented and analyze the results. Furthermore,
we enlist a number of methods for determining
whether two given datasets can be joined.

The paper starts with a problem statement in
Section 2 and provides some background
information on access control and usage control in
Section 3. Subsequently Section 4 presents our
proposed approach and mechanism. Section 5
describes our example realization of the proposed
mechanism and discusses its issues. Section 6
presents the related work and Section 7 captures our
conclusions and future research directions.

2 PROBLEM STATEMENT

In this contribution we shall focus on the issue of
authorized-access and unauthorized-use of datasets
that are vertically separated, as described below.

2.1 Motivation

When collected datasets are accessed legitimately,
they should still be used appropriately according to
policies, guidelines, rules, laws, and/or the (current)
preferences of data subjects. For example, in the
context of business and public administration, data
may be collected for a specific data registration (e.g.,
for hospital, municipality or judicial administration-
purposes), due to a service operation (e.g., the list of
website visitors or mobile telephony users), or for a
research study (e.g., a study over household or crime
victimization). As such, the data can be collected
within different legal domains corresponding to
regions/countries, public sectors (e.g., healthcare,
justice, and trade), etc. Many issues may arise when
the data are used in another context than the one
they were collected for and accessed to. Such an
inconsistency between the data collection and data
usage processes can conflict with, for instance, many
principles of privacy like the transparency principle,
no secondary use principle, or intended purpose
usage principle.

Nowadays many cases arise where it is important
to deal with unauthorized usage of those datasets

On Usage Control in Relational Database Management Systems - Obligations and Their Enforcement in Joining Datasets

191

that are accessed to in an authorized way.
Businesses, organizations and services merge in
various public, private and semi public sectors. For
example, Google has merged various services like
Gmail, Google+, Google Drive; and Facebook has
acquired Instagram and WhatsApp. Such strategic
merges require integration of information systems,
with various datasets that are generally collected for
different purposes and within various contexts.
There are also Open Data initiatives to release public
sector data to citizens as a means of, among others,
government transparency, innovation and economic
growth stimulator, and public participation in
government (Dawes, 2010b)(Dawes, 2010a). Such
initiatives motivate and encourage combining data
from various sources in order to deliver added value
services and insights. In such cases where
information systems and data are integrated, there
are potential risks of privacy breaches when (self-
provided) data of users are combined with data
retrieved from elsewhere (Bargh and Choenni,
2013); (Fung et al., 2010).

Within one organization collected data can also
be used in an unauthorized way due to, for example,
secondary use, i.e., data that are collected for one
purpose but are used for another one.
Crowdsourcing, for instance, is a means of
collecting relevant data in an affordable way. The
resulting datasets may encompass some sorts of
personal data from participants such as profile data
(including their names, email addresses and phone
numbers), activity data (indicating their sporting,
sleeping, and eating habits), and situational data
(revealing their visited locations, adjacency to other
users/objects, and conversation buddies). Such
personal data must basically be accessible to a
limited number of authorized entities (like system
administrators and specific services/systems) and be
used in an authorized way (like for the specified
purpose). Authorized insiders with ill intentions (i.e.,
those insider intruders or employees with
questionable ethics as mentioned in (Agrawal et al.,
2002)) may reveal and misuse such personal
information that they have access to for their
illegitimate purposes like personal satisfaction,
financial gains, and political benefits. Revealing
personal information makes data subjects (i.e., those
individuals and organizations that the data are about)
vulnerable to cyber attacks such as identity theft,
phishing and spams, and privacy breaches.
Therefore, the crowd may become fearful and
unwilling to participate in the data collection process
due to being subjected to such threats and becoming
victims of such attacks. Even when users voluntarily

participate in crowdsourcing, they desire sometimes
their personal information not to be processed when,
for instance, they are at certain situations like during
evenings, in the weekends, and during holidays.

Even highly sensitive data attributes may be
disclosed or inferred by means of easily accessible
data and data linkage. Kosinski et al. (Kosinski et
al., 2013) show that easily accessible digital records
of behavior, e.g., Facebook Likes, can be used to
automatically and accurately predict a range of
highly sensitive personal attributes (such as sexual
orientation, ethnicity, religious and political views,
personality traits, intelligence, happiness, use of
addictive substances, parental separation, age, and
gender). De Montjoye et al., (2013) analyzed a
dataset of fifteen months of human mobility data for
1.5 million individuals. According to (de Montjoye
et al., 2013), human mobility traces are highly
unique. For example, when the location of an
individual is specified hourly at the precision level
of mobile network cells, it is possible to uniquely
identify 95% of the individuals based on four
spatiotemporal points. They also found that even
rather highly aggregated datasets provide little
anonymity.

2.2 Problem Formalization

For scientific studies, our research center maintains
a data warehouse that contains various datasets from
several organizations involved in the Dutch justice
system. These organizations include the Police, the
Public Prosecution Office, the courts, the Central
Fine Collection Agency, the agency of correctional
institutions (i.e., prisons) and the Probation Service.
In some projects the data of more than one
organization can be used to measure the
performance of the Dutch justice chain by
combining the necessary datasets from these
organizations. For combining these datasets, a case
number is used to uniquely identify a judicial case
across all these organizations. Although our data
analysts have access to all datasets, they may not
combine all datasets due to privacy and other
reasons (for instance, as the number and contents of
the datasets are growing over time, one may
combine old and new data under certain conditions).

Inspired by (Agrawal et al., 2002), we focus on
the (privacy) policy violation issues that arise when
linking/ integrating datasets in relational datasets
during their usage time. Assume a data analyst, who
works for project A, obtains access to dataset A at
time ݐ஺. At a later time ݐ஻ ൐ ஺ the data analyst, whoݐ
now works also for project B, gets access to dataset

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

192

B. We shall, therefore, denote these datasets also by
 .஻ሻ notations, respectivelyݐሺܤ ஺ሻ andݐሺܣ

Dataset A and B contain data tuples represented
by ࢇ௜ ൌ ൫ܽ௜,ଵ, ܽ௜,ଶ,⋯ , ܽ௜,௠ಲ

൯	and ࢈௝ ൌ
൫ ௝ܾ,ଵ, ௝ܾ,ଶ,⋯ , ௝ܾ,௠ಳ൯, respectively, where ݅:	1,⋯ , ݊஺
and ݆:	1,⋯ , ݊஻. Every tuple ࢇ௜ is defined over single
valued attributes from set ܶܶܣ஺ ൌ
൛ܽݐݐଵ஺, ଶݐݐܽ

஺,⋯ , ௠ಲݐݐܽ
஺ ൟ. In other words, dataset A is

a subset of the Cartesian product of domሺܽݐݐଵ஺ሻൈ
domሺܽݐݐଶ

஺ሻൈ⋯ൈdomሺܽݐݐ௠ಲ
஺ ሻ, in which domሺܽݐݐ௞

஺ሻ
is the set of the values that can be assumed by
attribute ܽݐݐ௞

஺,	where	݇: 1,⋯ ,݉஺. A tuple ࢇ௜ in
dataset A is an ordered list of attribute values to
which a unique identifier is attached. Without loss of
generality, we assume this identifier corresponds to
attribute ܽݐݐଵ஺, which is drawn from domሺܽݐݐଵ஺ሻ.
Similarly, every tuple ࢈௝ is defined over single
valued attributes from set ܶܶܣ஻ ൌ
൛ܽݐݐଵ஻, ଶݐݐܽ

஻,⋯ , ௠ಳݐݐܽ
஻ ൟ	 and dataset B is a subset of

the Cartesian product of domሺܽݐݐଵ஻ሻൈdomሺܽݐݐଶ
஻ሻൈ

⋯ൈdomሺܽݐݐ௠ಳ
஻ ሻ. A tuple ࢈௝ in dataset B is an

ordered list of attribute values to which a unique
identifier is attached. Without loss of generality, we
assume this identifier corresponds to attribute ܽݐݐଵ஻,
which is drawn from domሺܽݐݐଵ஻ሻ.

We assume that datasets A and B are partially
vertically separated, i.e.,
a) ܶܶܣ஺ 		∩ ஻ܶܶܣ 	് ∅
b) ܶܶܣ஺ 	് ஻; because otherwise datasets A andܶܶܣ

B become horizontally separated (and thus they
provide the very same information about those
entities whose tuples appear in both datasets),

c) For some ݅ and ݆ we have ܽ௜,ଵ ൌ ௝ܾ,ଵ where
ܽ௜,ଵ ∈ domሺܽݐݐଵ஺ሻ and ௝ܾ,ଵ ∈ domሺܽݐݐଵ஻ሻ. I.e.,
data tuples ࢇ௜	and	࢈௝ refer to the same entity.

From time ݐ஻ on, the data analyst has access to both
datasets A and B for two different purposes: For
Project A execution and for project B execution. It is
foreseeable that combining/joining datasets A and B
may not be allowed from the viewpoint of project A,
project B or both. This lack of permission for joining
datasets A and B can be due to, for example, privacy
or information sensitivity reasons.

We define an inner join action ܣ஼ as a tuple
,஺ሻݐሺܣ〉 ,஻ሻݐሺܤ ஺ܲሺݐሻ, ஻ܲሺݐሻ, ,ܥܬܫ where ,〈ݐ
‐ Parameter ܥܬܫ represents the criterion, condition

or predicate for the inner join action,
 ஻ሻ are datasets A and B, obtainedݐሺܤ ஺ሻ andݐሺܣ ‐

by the data analyst at times ݐ஺ and ݐ஻,
respectively.

‐ Parameter ݐ, being ݐ ൒ ஻ݐ ൐ ஺, represents theݐ

time of executing the inner join operation.
‐ ஺ܲሺݐሻ and ஻ܲሺݐሻ are the (privacy) policies

associated with datasets A and B at time ݐ. These
policies, which are obtained by the data analyst
at times ݐ஺ and ݐ஻, respectively, can be adapted
during the lifecycle of the corresponding
datasets.

In order to allow the inner join action ܣ஼ to be
carried out at ݐ, there should be two requirements
satisfied, namely:
‐ The resulting dataset should not violate the

(privacy) policy of project A. This is denoted by
requirement ܴ஺൫ܤሺݐ஻ሻ, ,஺ሻݐሺܣ	ห	ݐ ஺ܲሺݐሻ൯, where
the notation should be read as: Requirement for
project A in regard to dataset ܤሺݐ஻ሻ to be
considered for the join operation at time	ݐ, given
project A’s own dataset ܣሺݐ஺ሻ and own policy
஺ܲሺݐሻ which are acquired at times ݐ஺ and	ݐ,

respectively.
‐ The resulting dataset should not violate the

privacy policy of project B. This is similarly
denoted by requirement
ܴ஻൫ܣሺܣݐሻ, ,ሻܤݐሺܤ	ห	ݐ .ሻ൯ݐሺܤܲ

The research questions to be addressed in this
contribution are:
‐ How can the UCON model be characterized for

the inner join operation of the datasets?
‐ How can we determine when the inner join is

(dis)allowed?
‐ How is it possible to realize the resulting

restricted join functionality?

3 BACKGROUND

In this section we present the theoretical background
on access and usage control models.

3.1 Access Control

Traditionally, gaining access to a resource (e.g., a
service, document, computer system, and processing
time of a computer) has been realized by a system
functionality called ‘access control’. Access control
can be defined as the ability to permit or deny access
to a particular resource by a particular entity
(Lazouski et al., 2010). The entity that seeks access
to the resource and the resource that is sough by the
entity are referred to as subject and object,
respectively, in access control terminology. The
access to an object can be in a specific mode like
read, write and execute. These are usage

On Usage Control in Relational Database Management Systems - Obligations and Their Enforcement in Joining Datasets

193

permissions, or so-called rights, that the subject is
allowed to carry out on the object. Note that a
particular right is not predefined and it exists at the
time of the authorization (Lazouski et al., 2010). In
our example, the data analyst is the subject, dataset
A for project B and dataset B for project A are the
objects, and the ‘inner join’ is the right. Figure 1
illustrates a traditional access control model. As
mentioned in (Hilty et al., 2005) the reference
monitor in Figure 1 is a control program that
monitors and prohibits actions.

Figure 1: A traditional access control model.

Traditionally Discretionary Access Control
(DAC), Mandatory Access Control (MAC), and
Role Based Access Control (RBAC) models have
been used. The DAC model may use a set of
predicates to represents access constraints/rules.
These access rules are often stored in an access
control matrix, see the survey paper (Lopez et al.,
2004) and the references therein for the material
presented in the rest of this subsection. For an object
there can be a so-called Access Control List that
specifies which subjects have which
permissions/rights to the object. For a subject, on the
other hand, there can be a Capability List to specify
the access rights of the subject to various objects.

The MAC model, which originated from
military, focuses on the flow of information within a
system. The model assigns security labels to objects
and subjects, called as Classification Label (to
represent the object’s sensitivity) and Clearance
Label (to represent the subject’s trustworthiness),
respectively. The model grants a subject with access
to an object if their labels match from the viewpoints
of their classification (e.g., top secret, confidential,
non secret) and category properties (e.g.,
management level, department level, and project
level). Compared to DAC, MAC requires higher
implementation costs due to the complexity of
planning and management of access rights.

Both DAC and MAC models require
considerable amount of time and effort overhead

when a new user is introduced into an organization.
The new subject, in such cases, should be related to
every resource in the organization. This process is
also prune to human errors. Therefore RBAC is
proposed by introducing roles as a link between
subjects and objects. In RBAC subjects are
authorized for roles and roles are authorized for
objects to hold certain permissions or rights. Hereby
instead of establishing subject-object associations
one needs to establish two sets of subject-role
associations and role-object associations.

There are other access control methods in the
literature that we do not mention for brevity of the
presentation. Traditional access control models have
been used successfully in many application domains
for many years. These traditional models are mostly
suitable for closed organizational environments,
where the subjects and objects are well known and
when the sensitivity and trustworthiness of the
objects and subjects are well defined and rather
static. In modern application settings, where for
example social networks, Big Data, and information
(sharing) systems across organizations like in our
case are dealt with, one needs to cope with rather
dynamic environments to authorize (previously
unknown) entities who want to access and use
objects with dynamic sensitivity, within varying
contextual situations, across multiple organizational
domains and boundaries, and with a commitment to
unprecedented conditions.

3.2 Usage Control

To cope with the shortcomings of the traditional
access control models, usage control models (like
UCON model (Sandhu and Park, 2003), (Park and
Sandhu, 2004) and (Zhang et al., 2005)) are
introduced. The UCON model extends the
traditional models to include also controlling the
access decisions during the object’s usage interval
(i.e., access decision continuity) and to allow also
adapting the access criteria before, during and after
object usage interval (i.e., attribute mutability). The
continuity of decisions and mutability of attributes in
UCON allow adapting to the changes of subject,
object and environmental attributes before, during or
after the data usage period. For example, the number
of subjects that concurrently may access the object
can change depending on the consumption intensity.

As illustrated in Figure, the reference monitor in
the UCON model uses three types of decision-
making factors. The first type is called
authorizations. These authorizations include those
predicates that put constraints on subject and object

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

194

attributes. The attributes of the subject (e.g., the
name, age, role, and nationality) in UCON are
similar to Capability List in DAC and Clearance
Label in MAC. The attributes of the object (e.g.,
document type, content sensitivity, and data
ownership) in UCON are similar to Access Control
List in DAC and Classification Label in MAC (Park
and Sandhu, 2004).

Figure 2: An illustration of the UCON model, adopted
with adaption from (Park and Sandhu, 2004) and (Zhang
et al., 2005).

The other two types of decision-making factors
in the UCON model are conditions and obligations,
which are not uniquely defined in the literature
(Colombo and Ferrari, 2014). For conditions, the
authors in (Park and Sandhu, 2004) consider the
environmental or system-oriented constraints that
should hold before or during the object’s usage
interval. Examples conditions are those related to the
time of the day, room temperature, and disastrous
situation. As such, conditions are not dependent of
the subject and the object (i.e., the data) directly. We
shall elaborate upon obligations (especially in the
context of relational databases) in Section 4.1.

The reference monitor in UCON controls the
access to and usage of the object (e.g., data items) by
the subject. Similarly to (Hilty et al., 2005), we
regard the UCON “reference monitor rather liberally
to describe control programs that can not only
monitor and prohibit actions, but can also trigger
corrective actions such as the application of
penalties” (Hilty et al., 2005).

4 DESIGN AND REALISATION

In this section we adapt the UCON model to the

problem at hand. First in Subsection 4.1 we frame
the data integration scenario as UCON obligations.
Subsequently in Subsection 4.2 we describe the
policy decision-making component of the reference
monitor that determines whether datasets A and B
are joinable at a given time. Finally in Subsection
4.3 we formalize the policy decision-enforcement
component of the reference monitor for the inner
join operation.

4.1 Specifics of Obligations

Obligations are an active area of research currently.
Particularly, the enforcement of those obligations
that are concerned with fulfilling some tasks and
actions during or after the usage of the object (i.e.,
data) are open research issues (Lazouski et al.,
2010).

Obligations mandate those actions that someone
should execute before, during or after an object’s
usage interval (Lazouski et al., 2010). For example,
the credit card owner must be informed in 30 days
after a credit card being used, a license agreement
must be signed before data usage, an ad must be
watched for 20 seconds, and the document must be
downloaded just one time. When the actions are
executed appropriately, the subject could access or
could continue to use the object. Note that the entity
that fulfills the obligation, i.e., carries out the
action(s), might be the subject or someone else,
depending on the usage scenario. Similarly, the
entity on which an obligation activity is carried out
might be the object or something else.

In (Colombo and Ferrari, 2014) the authors
consider the enforcement of obligations, which are
derived from privacy policies, on relational database
management operations. They regard obligations as
“the constraints that refer to the (expected) state of
the data [object] stored in the database” at the time
in which the object is accessed or used (i.e.,
invoking a SQL code). For example, the bank
account balance must be positive after withdrawing.

In summary, one can regard obligations as the
constraints (a) on the state of the object (i.e., the
data in the database) or (b) on specific actions being
executed by someone. Fulfillment of both constraint
types can be required before, during or after an
object’s usage interval.

Our usage control on the inner join operation in
this contribution can be categorized as “obligation”
because the authorization of the right (i.e., the inner
join of datasets A and B) is constrained with the
state of the objects (e.g., the datasets A and B for
projects A and B, respectively). Our first

On Usage Control in Relational Database Management Systems - Obligations and Their Enforcement in Joining Datasets

195

contribution hereto is that we distinguish a new type
of obligations where the state of an object (i.e.,
dataset A or dataset B) is determined with respect to
another object. This type of dependency, to the best
of our knowledge, has not been identified so far in
the UCON literature.

In distributed usage control, where information is
disseminated in open networks, post usage
obligations are widely applicable (Lazouski et al.,
2010). We observe that this is also the case in our
centralized usage control, when an operation on a
data object (like dataset A in our scenario) is
dependent of other (upcoming) data object (like
dataset B in our scenario). More specifically, from
requirements ܴ஺൫ܤሺݐ஻ሻ, ,஺ሻݐሺܣ	ห	ݐ ஺ܲሺݐሻ൯ for project
A and ܴ஻൫ܣሺݐ஺ሻ, ,஻ሻݐሺܤ	ห	ݐ ஻ܲሺݐሻ൯ for project B,
where ݐ ൒ ஻ݐ ൐ ஺, one can define the dataݐ
integration obligations for the data analyst as the
UCON’s subject. These obligations can be of type:
‐ Pre-obligation for project B when ݐ ൌ ,஻ݐ
‐ Post obligation for project A (because	ݐ ൒ ஻ݐ ൐

ݐ ஺) and for project B whenݐ ൐ .஻ݐ

So when ݐ ൌ ஻ the constraint on datasets A and Bݐ
can be of type pre-obligation (for project B) and
post-obligation (for project A) simultaneously. This
duality is another new insight, to the best of our
knowledge, provided in this contribution.

4.2 Decision Making

The reference monitor should decide on whether two
datasets A and B can be joined or not based on
requirements ܴ஺൫ܤሺݐ஻ሻ, ,஺ሻݐሺܣ	ห	ݐ ஺ܲሺݐሻ൯ and
ܴ஻൫ܣሺݐ஺ሻ, ,஻ሻݐሺܤ	ห	ݐ ஻ܲሺݐሻ൯ that, in turn, depend on
the momentary policies of project A and B (i.e.,
஺ܲሺݐሻ and ஻ܲሺݐሻ) as well as on the datasets of

projects A and B (i.e., ܣሺݐ஺ሻ and ܤሺݐ஻ሻ). Joining
two datasets may extend the attribute sets ܶܶܣ஺ and
஺∪஻ܶܶܣ ஻ to setܶܶܣ ൌ ஺ܶܶܣ ∪ ஻ܶܶܣ ൌ
	൛ܽݐݐଵ

஺∪஻,⋯ , ௠ಲ⋃ಳݐݐܽ
஺∪஻ ൟ.

For deciding on the join of two datasets, one
could check whether the resulting combination of
attributes is allowed or not. A domain expert can
control this based on existing laws, regulations, and
policies. Alternatively, similarly to (Byun and Li,
2008) and based on the purposes for which datasets
 ஻ሻ are collected, the reference monitorݐሺܤ ஺ሻ andݐሺܣ
can check whether the privacy policies of project A
and project B allow their data objects to be part of
the resulting table or not. This can be done through
controlling the possibility of any inconsistency in
data collection and usage purposes. For example, if

dataset ܣሺݐ஺ሻ and ܤሺݐ஻ሻ are collected for
commercial and system administration purposes,
respectively, then the join should not go on
assuming that commercial and administrative
purposes are disjoint/inconsistent.

Another way to decide on allowing the join
operation is to control whether there would be
undesired information leakage due to the join
operation or not. To explain this aspect, let assume
that every attribute in ܶܶܣ஺ and ܶܶܣ஻ and thus in
 .஺∪஻ can be represented by a random variableܶܶܣ
For example, random variable ܶܣ ௜ܶ

஺ corresponds to
attribute ܽݐݐ௜

஺ ∈ ஺. (NB: In the rest of thisܶܶܣ
section we misuse the notations of sets ܶܶܣ஺, ܶܶܣ஻
and ܶܶܣ஺∪஻ and assume they represent sets of
attributes as well as the corresponding attribute
random variables.)

Further, let random variable set ࡿ ⊂ ஺∪஻ beܶܶܣ
the set of those random variable attributes after the
join operation that are (privacy) sensitive. In our
setting, ࡿ includes at least one member, i.e., we have
ܶܣ ଵܶ

஺ ∋ ܶܣ being the same as) ࡿ ଵܶ
஻ ∋ as we ,ࡿ

assumed). Let random variable set ࢄ ൌ ஺∪஻ܶܶܣ ∖ ࡿ
be the set of those (privacy) non-sensitive random
variable attributes after the join operation. Thus, sets
 encompass those attributes that cannot be ࢄ and ࡿ
and can be, respectively, revealed to the data analyst
in our scenario according to requirements ܴ஺ and
ܴ஻.

In order to determine the information leakage in
the dataset resulted from the inner join operation ܣ஼
as defined by 〈ܣሺݐ஺ሻ, ,஻ሻݐሺܤ ஺ܲሺݐሻ, ஻ܲሺݐሻ, ,ܥܬܫ one ,〈ݐ
may use the mutual information function (Sankar et
al., 2013)(Wang et al., 2014). The amount of
information leaked about random variables in ࡿ due
to random variables in	ࢄ can be determined by
mutual Information ܫሺࡿ; ሻ, which should ideally beࢄ	
zero. If this value reaches an unacceptably high level
due to the join operation, then the join should be
disallowed. One can also aim at the information
leakage for any ࡿ′ ⊂ and examine whether ࡿ
;ᇱࡿሺܫ ሻ reaches an unacceptably high level or notࢄ	
due to the join operation. The thresholds of the
unacceptably high level can be determined from the
policies of ஺ܲሺݐሻ and ஻ܲሺݐሻ at or up-to runtime ݐ.

4.3 Decision Enforcement

We defined the inner join action ܣ஼ as
,஺ሻݐሺܣ〉 ,஻ሻݐሺܤ ஺ܲሺݐሻ, ஻ܲሺݐሻ, ,ܥܬܫ Datasets A and B .〈ݐ
are represented by their tuples as ܣሺݐ஺ሻ ൌ
	ሼࢇ௜|	݅:	1,⋯ , ݊஺ሽ and ܤሺݐ஻ሻ ൌ 	 ൛࢈௝ห	݆:	1,⋯ , ݊஻ൟ. The
inner join action ܣ஼ can further be specified as those

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

196

members of the Cartesian product of sets ܣሺݐ஺ሻ and
⋯,1	݅:	௜|ࢇ஻ሻ, i.e., ሼݐሺܤ , ݊஺ሽ	ൈ	൛࢈௝ห	݆:	1,⋯ , ݊஻ൟ, for
which
a) The predicate ܥܬܫ holds for those tuples that

ܽ௜,ଵ ൌ ௝ܾ,ଵ, and

b) Requirements ܴ஺ and ܴ஻ hold.

In other words,
஼ܣ ≜ ൛ࢇ௜ൈ࢈௝ห	݅:	1,⋯ , ݊஺; 	݆:	1,⋯ , ݊஻;	ܨ௜,௝ ൌ ܶൟ,

where ܨ௜,௝ is a Boolean function defined as the
conjunction of the following operands:
‐ O1: ൫ܥܬܫ൫ࢇ௜, ௝൯࢈ ൌ ܶ൯	∧	൫	ܽ௜,ଵ ൌ ௝ܾ,ଵ൯,

‐ O2: ܴ஺൫ܤሺݐ஻ሻ, ,஺ሻݐሺܣ	ห	ݐ ஺ܲሺݐሻ൯ ൌ ܶ,

‐ O3: ܴ஻൫ܣሺݐ஺ሻ, ,஻ሻݐሺܤ	ห	ݐ ஻ܲሺݐሻ൯ ൌ ܶ.

In practice, due to for example privacy requirements,
the (personal) identifiers ܽ௜,ଵ and ௝ܾ,ଵ in datasets A
and B (i.e., for all ݅	and	j) are anonymized. In this
section we assume they are pseudonymized by Hash
functions ܪ஺ሺ∙ሻ and ܪ஻ሺ∙ሻ, respectively. In this case,
operand O1 can be written as:

O1: ൫ܥܬܫ൫ࢇ௜, ௝൯࢈ ൌ ܶ൯		∧		 ቀܪ஺൫ܽ௜,ଵ൯ ≡ ஻൫ܪ ௝ܾ,ଵ൯ቁ,

where ܪ஺൫ܽ௜,ଵ൯ ≡ ஻൫ܪ ௝ܾ,ଵ൯	holds	if	ܽ௜,ଵ ൌ ௝ܾ,ଵ. Note
that
a) The operator ≡ represents the fact that there is a

one-to-one mapping possible between ܪ஺൫ܽ௜,ଵ൯
and ܪ஻൫ ௝ܾ,ଵ൯, and it does not imply equality
necessarily; and

b) The probability that ܽ௜,ଵ ് ௝ܾ,ଵ if ܪ஺൫ܽ௜,ଵ൯ ≡
஻൫ܪ ௝ܾ,ଵ൯ is (extremely) negligible for collision-
resistant hash functions practically.

In Subsection 5.1 we shall present a technique to
realize operator ≡ in DBMSs.

5 EVALUATION

In this section we present an example realization of
the proposed mechanism and subsequently discuss
its characteristics and limitations.

5.1 Example Realization

To illustrate how to realize the proposed mechanism
we explain an example with 3 tables A, B, and C,
each containing two attributes: an identification
number ID and a data attribute. The data analyst has
access to all three tables. We assume that the analyst
is authorized to join tables A and B, but (s)he is not
authorized to join table A and C (for the generic
scenario see Section 2.2). To illustrate the idea we
use these simple tables without loss of generality

(i.e., instead of a single table one can use a set of
tables just like the case of our data warehouse).

Table 1: Table A.

ID ATTR
1 Source value A1
2 Source value A2
3 Source value A3

Table 2: Table B.

ID ATTR
1 Source value B1
3 Source value B3

Table 3: table C.

ID ATTR
2 Source value C2
3 Source value C3

Using the unique identifiers, i.e., attribute ID, as
the primary key the data analyst can now easily
combine the data from tables A and C:

> Select * from a join c on c.id = a.id

As the first step of our implementation, we replace
the original unique identifiers, which are unique per
criminal case, by a new set of global identifiers,
which are globally, i.e., among these tables, unique.
Alternatively, one could use hash functions, as
suggested in Note (b) in Subsection 4.3.
Consequently those tuples from different tables,
which correspond to the same case/entity, will no
longer have the same identifiers in the new dataset.
The mapping between the new identifiers of an
entity via the old identifier of the entity, see Table 7,
is made one-to-one and it is stored in a separate
repository, called identifier repository, safely. The
identifier repository realizes the operation ≡ in
practice (see Note (a) in Subsection 4.3).

The joins in the proposed approach will be made
through the identifier repository, where we will use a
usage rights table to check whether the tables can be
combined. The tables with the new identifiers, the
identifier repository, and the usage rights table are
shown in Table 4, Table 5, Table 6, Table 7 and
Table 8 below.

Table 4: Table DWH_A.

ID ATTR
N1 Source value A1
N2 Source value A2
N3 Source value A3

On Usage Control in Relational Database Management Systems - Obligations and Their Enforcement in Joining Datasets

197

Table 5: Table DWH_B.

ID ATTR
N4 Source value B1
N5 Source value B3

Table 6: table DWH_C.

ID ATTR
N6 Source value C2
N7 Source value C3

Table 7: Table ID_REP (identifier repository).

ID_SRC ID_DWH SRC_DATASET
1 N1 A
2 N2 A
3 N3 A
1 N4 B
3 N5 B
2 N6 C
3 N7 C

Table 8: Table USAGE_RIGHT (the authorization
policy).

DATASET1 DATASET2
A B
B A

Now direct joining like in the previous SQL
query will return an empty result set, since the
identifiers no longer match. In the next query the
join is performed through the identifier repository,
and includes a check on the usage rights:

> select dwh_a.*, dwh_b.*
> from dwh_a
 > join id_rep rep1 on rep1.id_dwh
 = dwh_a.id
 > join id_rep rep2 on rep2.id_src
 = rep1.id_src
 > join dwh_b on dwh_b.id =
rep2.id_dwh
 > join usage_right on
 (usage_right.dataset1 =
 rep1.src_dataset and
usage_right.dataset2 =
rep2.src_dataset)

For tables DWH_A and DWH_B this will result in a
dataset with the combined data. When a similar
query is run for table DWH_A and DWH_C there
will be an empty result set because the join is not
allowed according to the USAGE_RIGHT table.

The final step in our implementation is to set
access control to the tables in the example. The data

analyst is not allowed to see the identifier repository
or to change the usage rights. Joins are carried out
through a stored procedure, which has access to the
identifier repository. It generates a table with the
join of the two given tables if allowed by the
USAGE_RIGHT table. The result does not contain
the old or new identifiers from the identifier
repository, but a new independent set of identifiers is
generated. In this way the identifiers in the new
dataset cannot easily and readily be tracked back to
the original datasets, nor will it be possible to easily
link the identifiers of the joined dataset to other
(possible future) datasets.

5.2 Discussion and Limitations

As described before the database consists of
different datasets. Within a dataset the tables can be
joined as usual so the performance will be the same
as for standard joins. When tables of different
datasets are joined there is a performance penalty
since the identifiers have to be looked up in the
identifier repository and usage control rights have to
be checked. As we have seen this adds three extra
joins. Obviously this is less efficient than a single
join. However modern database engines are very
efficient in doing joins and can be optimized by the
use of techniques like indexing.

Furthermore we propose a scenario where the
combination of two datasets is generated once with a
new identifier set. Within the new combined dataset
the joins will have no performance loss. The
generation of the new dataset will have a cost, but in
a data warehouse setting this is usually not a
problem.

The USAGE_RIGHT table is a good location to
hook in extra usage control decision factors like
authorizations, conditions or obligations. For
example only tuples for adults may be combined, the
datasets may only be joined during a fixed period, or
the requester has to sign a privacy statement. For
example:

Table 9: Extended table USAGE_RIGHT.

DATAS
ET1

DATAS
ET2

AUTH COND OBLIG

A D D.age>
18

System.dat
e<15 July

Agree on
privacy policy

We created a new identifier (i.e., pseudo ID) for
those tuples in the resulting dataset of the join
operation. In practice, however, it is possible for a
data analyst with ill intentions to infer those
identifiers in table A (see Table 4) and in table B

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

198

(see Table 5) that their records appear also in the
resulting table of the join operation. The data analyst
can infer the mappings in the identity repository for
these records by using/matching the values of the
other attributes in Table A, Table B and the resulting
table from their join, using techniques described in
(Narayanan and Shmatikov, 2008); (Choenni et al.,
2010). This can be seen as an attack on the
pseudonimization part of the proposed approach. As
mentioned in Subsection 5.1, our proposed approach
attempts to impede those attackers (i.e., data
analysts, the employee with questionable ethics as
mentioned in (Agrawal et al., 2002)) who want to
directly track the identifiers in the new dataset back
to the original datasets.

6 RELATED WORK

This section provides a review of some related
works on obligations and on controlling the join
operation in relational databases.

6.1 Obligations

Obligations are considered an important means of
realizing privacy and security aware systems,
nevertheless, as mentioned before, there is still no
consensus on the precise meaning of the term
obligation (Colombo and Ferrari, 2014).

One misalignment in the literature relates to the
concepts of pre-obligation, on-going obligation and
post-obligation. In the UCON-ABC model of (Park
and Sandhu, 2004) pre-obligations and on-going
obligations are recognized. The concept of post-
obligation is added to the UCON model in (Katt et
al., 2008). Note that, not within the context of the
UCON model, others (e.g. (Hilty et al., 2005);
(Gama et al., 2006) and (Bettini et al., 2003)) had
already considered obligations as requirements that
must be fulfilled after data access has been done. In
(Ni et al., 2008) the authors introduce pre and post
obligations to the Role Based Access Control (P-
RBAC). In (Bettini et al., 2003) pre-obligations are
characterized as provisions.

In (Hilty et al., 2005) obligations are further
classified in two dimensions of being
(un)observational and being temporally-
(un)bounded. The observational aspect characterizes
whether the reference monitor can observe the
fulfillment of the obligation or not. The temporal
bound-ability characterizes whether obligations
should be fulfilled in a certain time period or not

(i.e., should be checked for ever). These criteria
define four obligation types:
‐ Bounded future and observable (e.g., pay a fee

within a fixed number of days, data item may not
be accessed for x days, the reference monitor
must notify the data owner about the access
within x days).

‐ Bounded future and non-observable (e.g., data
item must be deleted within x days, data item
must not be redistributed in the next x days),

‐ Unbounded future and observable (e.g., re-access
the data at least every x days to maintain
freshness of data as demanded by some data
protection regulations), and

‐ Unbounded future and non-observable (e.g., data
should be used only for statistical analysis, data
should not be distributed further, each usage of
the data must be reported immediately, or must
be protected with protection level L until it is
declassified by the owner).

The obligation for the join operation is temporally
unbounded, i.e., it holds for as long as there is a
possibility of joining any pair of vertically separated
datasets (e.g., in our case ܣሺݐ஺ሻ and ܤሺݐ஻ሻ). The
obligation for the join operation is also unobservable
(i.e., in project A one cannot foresee that project B is
going to link dataset ܣሺݐ஺ሻ with its dataset ܤሺݐ஻ሻ
and vice versa). By introducing the reference
monitor we ensure the join operation to be
observable to the central reference monitor and,
eventually, those non-observable data protection
requirements to be adhered to. This strategy is also
mentioned in (Hilty et al.. 2005), whereby an
unobservable obligation is enforced by transforming
a non-observable obligation into a set of provisions
and observable obligations that prevent unwanted
executions. One can think of not only this “strict
sense of enforcement”, i.e., “the prevention of
unwanted executions of a system through system
monitoring and denying actions that would violate
the policy”, but also additional corrective or
“compensating actions (e.g. penalties) in case the
execution violates the policy” (Hilty et al., 2005).
Unlike in our case, obligations in (Hilty et al., 2005)
are those conditions that must be imposed in the
future (i.e., the time after an access is authorized)
and (Hilty et al., 2005) uses provisions instead of
obligations to refer to those conditions that must be
imposed by/at the time of an access being
authorized. In our case, furthermore, we showed that
it is possible for obligations to be of types pre-
obligation/on-going-obligation and post-obligation
at the same time.

On Usage Control in Relational Database Management Systems - Obligations and Their Enforcement in Joining Datasets

199

6.2 Relational Databases

As the work presented in this contribution relates to
usage control for relational databases and privacy
protection for the join operation in relational DBMS,
we review some related works on these topics in the
following.

In (Colombo and Ferrari, 2014) the authors
consider enforcing obligations, which are derived
from privacy policies, on relational database
management operations. While Colombo and Ferrari
(2014) consider SQL operations in general, we focus
on the inner join operation particularly, and zoom in
its peculiarities from the viewpoints of the parties
(i.e., projects) involved in the operation. Similarly to
our work, (Colombo and Ferrari, 2014) considers
obligations as constraints on “the [expected] state of
the data [(i.e., the object)] stored in the database at
the time in which the execution of an action (i.e.,
SQL code) is invoked (like the account balance after
withdrawing must be positive)”. We go one step
further and take into account also the state of each of
the two datasets of the join operation with respect to
the other dataset.

Secure Multi Party Computing (SMPC) methods
aim at computing a function F on vertically or
horizontally distributed datasets for data mining or
data processing purposes, without requiring the raw
datasets to be shared with a central entity (a Trusted
Third Party, TTP) or with the peers. In this way
every party learns only the result of function F and
its own dataset. SMPC methods are applied in
combination with the SQL join operation in multi-
party settings in (Laur et al., 2013) for horizontally
distributed datasets. As mentioned above, the
objective of SMPC is to compute a specific function
F on the joined dataset in a privacy preserving way
(i.e., without sharing the datasets with a TTP or the
peers). For example, the function F in (Laur et al.,
2013) delivers the number of rows in the join table
(for which the join predicate holds). In our setting,
however, the aim is to authorize the inner join
operation or not, regardless of which function the
data analyst intends to apply to the resulting datasets
in the future. As such, our approach acts as a sort of
on-fly access control (thus a usage control)
mechanism rather than a privacy preserving data
mining or data processing mechanism.

7 CONCLUSION

To deal with the issue of authorized-access and
unauthorized-use of datasets, there is a need for a

flexible and adaptive framework to decide on and
enforce the data integration policy at runtime. We
motivated this need for the inner join operation in
vertically separated relational datasets where one
cannot predetermine which datasets would be
encountered and integrated with a given dataset.

We characterized the usage control model of the
inner join operation by the obligations of the UCON
model. Here the authorization of the right (i.e., the
inner join of datasets A and B) is constrained with
the state of the object. In this study we distinguished
a new type of obligations where the state of the
object (i.e., dataset A or dataset B) is determined
with respect to another dataset. These obligations
can be of both pre-obligation and post-obligation
types simultaneously, depending on the timing of the
join operation with respect to the moments of
datasets A and B availability. This duality is another
new insight provided in this contribution.

We proposed a few methods for making decision
whether two datasets A and B can be joined or not.
The decision can be based on whether the resulting
combination of attributes is allowed or not using the
domain knowledge, comparing the data collection
and data usage purposes of datasets A and B, or
information leakage about the sensitive attributes
due to the join operation. Finally we proposed a
mechanism to enforce the obligations and realized it
in an example realization. The reference monitor of
the proposed usage control is realized as a stored
procedure that maps the pseudo identifiers from the
identifier repository to the original identifiers,
checks the usage rights to determine if a join is
allowed, and joins the data if that is the case.

Our scheme uses different pseudo identifiers for
the input and output datasets of the join operation
and relies on a secure lookup table to map among
these pseudo identifiers during the realized join
functionality. This solution creates a first barrier
against the threat of inferring pseudo identifiers.
Searching for a more robust and secure solution, the
future research can be directed towards, for example,
adopting and adapting the method of Polymorphic
Encryption and Pseudonymisation (Verheul et al.,
2016).

REFERENCES

Agrawal, R. et al., 2002. Hippocratic databases.
Proceedings of the 28th international conference on
Very Large Data Bases, 4(1890), pp.143–154.

Bargh, M.S. & Choenni, S., 2013. On preserving privacy
whilst integrating data in connected information

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

200

systems. In Proceedings of International Conference
on Cloud Security Management (ICCSM’13).
Guimarães, Portugal.

Bettini, C. et al., 2003. Provisions and Obligations in
Policy Rule Management. Journal of Network and
Systems Management, 11(3), pp.351–372.

Byun, J. & Li, N., 2008. Purpose based access control for
privacy protection in relational database systems. The
VLDB Journal, pp.603–619.

Choenni, S. et al., 2016. Privacy and security in smart data
collection by citizens. In J. R. Gil-Garcia, T. A. Pardo,
& T. Nam, eds. Smarter as the New Urban Agenda.
Springer, pp. 349–366.

Choenni, S., Dijk, J. van & Leeuw, F., 2010. Preserving
privacy whilst integrating data: Applied to criminal
justice. Information Polity, 15(1–2), pp.125–138.

Colombo, P. & Ferrari, E., 2014. Enforcing obligations
within relational database management systems. IEEE
Transactions on Dependable and Secure Computing,
pp.1–14.

Dawes, S.S., 2010a. Information Policy Meta-Principles:
Stewardship and Usefulness R. H. Sprague Jr., ed.
Proceedings of the 43rd Hawaii International
Conference on System Sciences (HICSS-43), pp. 1–10.

Dawes, S.S., 2010b. Stewardship and usefulness: Policy
principles for information-based transparency.
Government Information Quarterly, 27(4), pp.377–
383.

Fung, B.C.M. et al., 2010. Privacy-preserving data
publishing. ACM Computing Surveys, 42(4), pp.1–53.

Gama, P., Ribeiro, C. & Ferreira, P., 2006. Heimdhal: A
History-based Policy Engine for Grids. In Sixth IEEE
International Symposium on In Cluster Computing
and the Grid (CCGRID).

Hilty, M., Basin, D. & Pretschner, A., 2005. On
obligations. Computer Security–ESORICS 2005,
pp.98–117.

Karr, A.F. et al., 2007. Secure, privacy-preserving analysis
of distributed databases. Technometrics, 49(3),
pp.335–345.

Katt, B. et al., 2008. A general obligation model and
continuity: enhanced policy enforcement engine for
usage control. Proceedings of the 13th ACM
symposium on Access control models and technologies
(SACMAT ’08), pp.123–132.

Kosinski, M., Stillwell, D. & Graepel, T., 2013. Private
traits and attributes are predictable from digital records
of human behavior. Proceedings of the National
Academy of Sciences of the United States of America,
110(15), pp.5802–5.

Laur, S., Talviste, R. & Willemson, J., 2013. From
oblivious AES to efficient and secure database join in
the multiparty setting. Lecture Notes in Computer
Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), 7954 LNCS, pp.84–101.

Lazouski, A., Martinelli, F. & Mori, P., 2010. Usage
control in computer security: A survey. Computer
Science Review, 4(2), pp.81–99.

Lopez, J., Oppliger, R. & Pernul, G., 2004. Authentication

and authorization infrastructures (AAIs): a
comparative survey. Computers & Security, 23(7),
pp.578–590.

de Montjoye, Y.-A. et al., 2013. Unique in the Crowd: The
privacy bounds of human mobility. Scientific reports,
3, p.1376.

Narayanan, A. & Shmatikov, V., 2008. Robust de-
anonymization of large sparse datasets open datasets.
In IEEE Symposium on Security and Privacy (SP’08).
pp. 111–125.

Ni, Q., Bertino, E. & Lobo, J., 2008. An obligation model
bridging access control policies and privacy policies.
Proceedings of the 13th ACM symposium on Access
control models and technologies - SACMAT’08, p.133.

Park, J. & Sandhu, R., 2004. The UCON ABC usage
control model. ACM Transactions on Information and
System …, 7(1), pp.128–174.

Sandhu, R. & Park, J., 2003. Usage Control : A Vision for
Next Generation Access Control. , pp.17–31.

Sankar, L., Rajagopalan, S. & Poor, H., 2013. Utility-
Privacy Tradeoff in Databases: An Information-
theoretic Approach. IEEE Transactions on
Information Forensics and Security, pp.1–1.

Verheul, E. et al., 2016. Polymorphic Encryption and
Pseudonymisation for Personalised Healthcare,
Available at:
https://www.semanticscholar.org/paper/Polymorphic-
Encryption-and-Pseudonymisation-for-Verheul-
Jacobs/7dfce578644bc101ae4ffcd0184d2227c6d07809
.

Wang, W., Ying, L. & Zhang, J., 2014. On the relation
between identifiability, differential privacy and
mutual-information privacy. In In 52nd IEEE Annual
Allerton Conference on Communication, Control, and
Computing (Allerton). pp. 1086–1092. Available at:
http://arxiv.org/abs/1402.3757.

Zhang, X. et al., 2005. Formal model and policy
specification of usage control. ACM Transactions on
Information and System Security, 8(4), pp.351–387.

On Usage Control in Relational Database Management Systems - Obligations and Their Enforcement in Joining Datasets

201

