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Abstract: When datasets are collected and accessed legitimately, they must still be used appropriately according to 
policies, guidelines, rules, laws, and/or the (current) preferences of data subjects. Any inconsistency 
between the data collection and data usage processes can conflict with many principles of privacy like the 
transparency principle, no secondary use principle, or intended purpose usage principle. In this contribution 
we show how the usage control for the inner join operation in vertically separated relational datasets can be 
characterized as pre and post obligations of the Usage Control (UCON) model. This type of obligations is 
defined not only by the state of the UCON object (i.e., a dataset) itself, but also with respect to the state of 
another dataset. Such dependency on two datasets/objects provides a new insight in UCON obligation 
constructs when applied to the join operation. We describe also a mechanism to realize the identified 
obligation in a database management system and present an example realization of the proposed 
mechanism. Furthermore, we enlist a number of methods to determine whether two given datasets can be 
joined.

1 INTRODUCTION 

Currently data are created in an explosive rate with 
the surge of new services/applications as well as 
smart and sensory devices. Digitalization and e-
administration, e-services, Big Data, Open Data, and 
Internet of Things are example cases that contribute 
to this data outpouring and overflow. Consequently, 
it becomes a common practice in (business) data 
analytics and data intensive applications to integrate 
data from different sources, of various types, of 
large volumes, and/or of high rates. These 
applications and services aim at easing our daily 
lives, providing insight in societal phenomena, or 
creating added values for businesses. Delivering 
these benefits, however, must not violate or 
compromise, for example, the privacy, commercial, 
and intellectual rights of individuals and parties who 
contribute their data to the data integration process. 

For a long time, access control mechanisms have 
been used to protect the security and privacy of data. 
An access control mechanism controls the access to 
the data by granting or rejecting an access request. 
Although in this way the input datasets for a data 
integration process may be acquired or accessed 

legitimately, it is crucial for the output dataset of the 
data integration process to be legitimate and 
acceptable for all parties who provided the input 
datasets. For example, the privacy and business 
sensitivity requirements of these parties must be 
preserved. Today, personal devices produce more 
and more personal data than before. Big data 
analytics makes it possible to combine these data, 
resulting in (new) personal data that may expose the 
private lives of people in quite detail. Such data 
combinations may result in unexpected and harmful 
impacts on individuals. Therefore, access control is 
insufficient in current era of data expulsion. 

Given the fact that the access to data is obtained 
legitimately, one needs to control how the data are 
used practically. Suppose that a tax officer needs to 
know the name, the annual income, the spouse’s 
name, and the number of children of a person in 
order to carry out his/her tasks. It is not, however, 
the business of the tax officer to find out how many 
spouses or children per spouse a certain person (like 
a celebrity) has had. The system, therefore, should 
note such illegitimate use of attribute values and 
exclude them from the tax officer’s access. 
Therefore, a query like “find all spouses of singer-X 
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and for each spouse the name of the children” is an 
improper use of the attribute values and should not 
be executed. 

Determining the (privacy) policies that govern 
such data integrations become steadily unforeseeable 
due to availability of vast amount of background 
information to data receivers and adversaries. For 
example, one cannot predetermine the datasets that 
will be encountered and integrated with a given 
dataset in the future. This makes it difficult to assess 
the potential risks in combining the released data 
with any other datasets (i.e., with the background 
information). This uncertainty relates to the extrinsic 
characteristics of data, e.g., the (privacy) issues of a 
given datasets in relation to other datasets. The other 
datasets exist in outside world due to, for example, 
sequential data release, multiple data release, 
continuous data release, collaborative data release, 
social networks, Big Data, and Open Data. 

One may conclude that it is unwise to share data 
anymore. This policy appears to be too restrictive 
and unrealistic nowadays. Another solution direction 
is to devise and realize mechanisms that control 
compliance with data privacy policies after sharing 
the data with others, i.e., during the data usage 
lifecycle. This solution, which can be realized in 
controllable environments like an organization’s 
Database Management System (DBMS), requires a 
flexible and adaptive framework that decides based 
on a data integration policy and enforces the 
decision at runtime. Hereby it becomes possible to 
deal with the issue of authorized-access and 
unauthorized-use of datasets (Choenni et al., 2016). 
To this end, for example, the Usage Control 
(UCON) model (Park and Sandhu, 2004) is one of 
the promising models. 

Our research objective is to control the usage of 
relational datasets in volatile and dynamic settings 
i.e., when data analysts gradually and unforeseeably 
gain access to datasets and want to link/integrate a 
subset of these datasets. We limit our scope to 
relational databases and those structured datasets 
that are vertically separated. By vertically separated 
datasets we mean vertically distributed datasets, as 
illustrated in (Karr et al., 2007), which are not 
necessarily at different locations (i.e., they can be 
collocated as in the case of typical data warehouse 
environments). We consider the usage control for 
the inner join operation among these vertically 
separated datasets. Inspired by the UCON model, we 
specifically investigate: How the inner join 
operation can be framed in such a data usage control 
framework. This investigation results in a new 
insight in UCON obligation constructs. As our first 

contribution, we distinguish a new type of 
obligations where the state of the object (e.g., a 
dataset) is determined with respect to existence of 
another dataset. This type of dependency, to the best 
of our knowledge, has not been identified so far. As 
our second contribution, we present a mechanism to 
realize the identified obligation in a DBMS. As our 
third contribution, we present an example realization 
to illustrate how the proposed mechanism can be 
implemented and analyze the results. Furthermore, 
we enlist a number of methods for determining 
whether two given datasets can be joined. 

The paper starts with a problem statement in 
Section 2 and provides some background 
information on access control and usage control in 
Section 3. Subsequently Section 4 presents our 
proposed approach and mechanism. Section 5 
describes our example realization of the proposed 
mechanism and discusses its issues. Section 6 
presents the related work and Section 7 captures our 
conclusions and future research directions. 

2 PROBLEM STATEMENT 

In this contribution we shall focus on the issue of 
authorized-access and unauthorized-use of datasets 
that are vertically separated, as described below. 

2.1 Motivation 

When collected datasets are accessed legitimately, 
they should still be used appropriately according to 
policies, guidelines, rules, laws, and/or the (current) 
preferences of data subjects. For example, in the 
context of business and public administration, data 
may be collected for a specific data registration (e.g., 
for hospital, municipality or judicial administration-
purposes), due to a service operation (e.g., the list of 
website visitors or mobile telephony users), or for a 
research study (e.g., a study over household or crime 
victimization). As such, the data can be collected 
within different legal domains corresponding to 
regions/countries, public sectors (e.g., healthcare, 
justice, and trade), etc. Many issues may arise when 
the data are used in another context than the one 
they were collected for and accessed to. Such an 
inconsistency between the data collection and data 
usage processes can conflict with, for instance, many 
principles of privacy like the transparency principle, 
no secondary use principle, or intended purpose 
usage principle.  

Nowadays many cases arise where it is important 
to deal with unauthorized usage of those datasets 
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that are accessed to in an authorized way. 
Businesses, organizations and services merge in 
various public, private and semi public sectors. For 
example, Google has merged various services like 
Gmail, Google+, Google Drive; and Facebook has 
acquired Instagram and WhatsApp. Such strategic 
merges require integration of information systems, 
with various datasets that are generally collected for 
different purposes and within various contexts. 
There are also Open Data initiatives to release public 
sector data to citizens as a means of, among others, 
government transparency, innovation and economic 
growth stimulator, and public participation in 
government (Dawes, 2010b)(Dawes, 2010a). Such 
initiatives motivate and encourage combining data 
from various sources in order to deliver added value 
services and insights. In such cases where 
information systems and data are integrated, there 
are potential risks of privacy breaches when (self-
provided) data of users are combined with data 
retrieved from elsewhere (Bargh and Choenni, 
2013); (Fung et al., 2010). 

Within one organization collected data can also 
be used in an unauthorized way due to, for example, 
secondary use, i.e., data that are collected for one 
purpose but are used for another one. 
Crowdsourcing, for instance, is a means of 
collecting relevant data in an affordable way. The 
resulting datasets may encompass some sorts of 
personal data from participants such as profile data 
(including their names, email addresses and phone 
numbers), activity data (indicating their sporting, 
sleeping, and eating habits), and situational data 
(revealing their visited locations, adjacency to other 
users/objects, and conversation buddies). Such 
personal data must basically be accessible to a 
limited number of authorized entities (like system 
administrators and specific services/systems) and be 
used in an authorized way (like for the specified 
purpose). Authorized insiders with ill intentions (i.e., 
those insider intruders or employees with 
questionable ethics as mentioned in (Agrawal et al., 
2002)) may reveal and misuse such personal 
information that they have access to for their 
illegitimate purposes like personal satisfaction, 
financial gains, and political benefits. Revealing 
personal information makes data subjects (i.e., those 
individuals and organizations that the data are about) 
vulnerable to cyber attacks such as identity theft, 
phishing and spams, and privacy breaches. 
Therefore, the crowd may become fearful and 
unwilling to participate in the data collection process 
due to being subjected to such threats and becoming 
victims of such attacks. Even when users voluntarily 

participate in crowdsourcing, they desire sometimes 
their personal information not to be processed when, 
for instance, they are at certain situations like during 
evenings, in the weekends, and during holidays. 

Even highly sensitive data attributes may be 
disclosed or inferred by means of easily accessible 
data and data linkage. Kosinski et al. (Kosinski et 
al., 2013) show that easily accessible digital records 
of behavior, e.g., Facebook Likes, can be used to 
automatically and accurately predict a range of 
highly sensitive personal attributes (such as sexual 
orientation, ethnicity, religious and political views, 
personality traits, intelligence, happiness, use of 
addictive substances, parental separation, age, and 
gender). De Montjoye et al., (2013) analyzed a 
dataset of fifteen months of human mobility data for 
1.5 million individuals. According to (de Montjoye 
et al., 2013), human mobility traces are highly 
unique. For example, when the location of an 
individual is specified hourly at the precision level 
of mobile network cells, it is possible to uniquely 
identify 95% of the individuals based on four 
spatiotemporal points. They also found that even 
rather highly aggregated datasets provide little 
anonymity. 

2.2 Problem Formalization 

For scientific studies, our research center maintains 
a data warehouse that contains various datasets from 
several organizations involved in the Dutch justice 
system. These organizations include the Police, the 
Public Prosecution Office, the courts, the Central 
Fine Collection Agency, the agency of correctional 
institutions (i.e., prisons) and the Probation Service. 
In some projects the data of more than one 
organization can be used to measure the 
performance of the Dutch justice chain by 
combining the necessary datasets from these 
organizations. For combining these datasets, a case 
number is used to uniquely identify a judicial case 
across all these organizations. Although our data 
analysts have access to all datasets, they may not 
combine all datasets due to privacy and other 
reasons (for instance, as the number and contents of 
the datasets are growing over time, one may 
combine old and new data under certain conditions). 

Inspired by (Agrawal et al., 2002), we focus on 
the (privacy) policy violation issues that arise when 
linking/ integrating datasets in relational datasets 
during their usage time. Assume a data analyst, who 
works for project A, obtains access to dataset A at 
time ݐ஺. At a later time ݐ஻ ൐  ஺ the data analyst, whoݐ
now works also for project B, gets access to dataset 

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

192



 

B. We shall, therefore, denote these datasets also by 
 .஻ሻ notations, respectivelyݐሺܤ ஺ሻ andݐሺܣ

Dataset A and B contain data tuples represented 
by ࢇ௜ ൌ ൫ܽ௜,ଵ, ܽ௜,ଶ,⋯ , ܽ௜,௠ಲ

൯	and ࢈௝ ൌ
൫ ௝ܾ,ଵ, ௝ܾ,ଶ,⋯ , ௝ܾ,௠ಳ൯, respectively, where ݅:	1,⋯ , ݊஺ 
and ݆:	1,⋯ , ݊஻. Every tuple ࢇ௜ is defined over single 
valued attributes from set ܶܶܣ஺ ൌ
൛ܽݐݐଵ஺, ଶݐݐܽ

஺,⋯ , ௠ಲݐݐܽ
஺ ൟ. In other words, dataset A is 

a subset of the Cartesian product of domሺܽݐݐଵ஺ሻൈ
domሺܽݐݐଶ

஺ሻൈ⋯ൈdomሺܽݐݐ௠ಲ
஺ ሻ, in which domሺܽݐݐ௞

஺ሻ 
is the set of the values that can be assumed by 
attribute ܽݐݐ௞

஺,	where	݇: 1,⋯ ,݉஺. A tuple ࢇ௜ in 
dataset A is an ordered list of attribute values to 
which a unique identifier is attached. Without loss of 
generality, we assume this identifier corresponds to 
attribute ܽݐݐଵ஺, which is drawn from domሺܽݐݐଵ஺ሻ. 
Similarly, every tuple ࢈௝ is defined over single 
valued attributes from set ܶܶܣ஻ ൌ
൛ܽݐݐଵ஻, ଶݐݐܽ

஻,⋯ , ௠ಳݐݐܽ
஻ ൟ	 and dataset B is a subset of 

the Cartesian product of domሺܽݐݐଵ஻ሻൈdomሺܽݐݐଶ
஻ሻൈ

⋯ൈdomሺܽݐݐ௠ಳ
஻ ሻ. A tuple ࢈௝ in dataset B is an 

ordered list of attribute values to which a unique 
identifier is attached. Without loss of generality, we 
assume this identifier corresponds to attribute ܽݐݐଵ஻, 
which is drawn from domሺܽݐݐଵ஻ሻ.  

We assume that datasets A and B are partially 
vertically separated, i.e.,  
a) ܶܶܣ஺ 		∩ ஻ܶܶܣ 	് ∅ 
b) ܶܶܣ஺ 	്  ஻; because otherwise datasets A andܶܶܣ

B become horizontally separated (and thus they 
provide the very same information about those 
entities whose tuples appear in both datasets), 

c) For some ݅ and ݆ we have ܽ௜,ଵ ൌ ௝ܾ,ଵ where  
ܽ௜,ଵ ∈ domሺܽݐݐଵ஺ሻ and ௝ܾ,ଵ ∈ domሺܽݐݐଵ஻ሻ. I.e., 
data tuples ࢇ௜	and	࢈௝ refer to the same entity. 

From time ݐ஻ on, the data analyst has access to both 
datasets A and B for two different purposes: For 
Project A execution and for project B execution. It is 
foreseeable that combining/joining datasets A and B 
may not be allowed from the viewpoint of project A, 
project B or both. This lack of permission for joining 
datasets A and B can be due to, for example, privacy 
or information sensitivity reasons.  

We define an inner join action ܣ஼ as a tuple 
,஺ሻݐሺܣ〉 ,஻ሻݐሺܤ ஺ܲሺݐሻ, ஻ܲሺݐሻ, ,ܥܬܫ  where ,〈ݐ
‐ Parameter ܥܬܫ represents the criterion, condition 

or predicate for the inner join action, 
 ஻ሻ are datasets A and B, obtainedݐሺܤ ஺ሻ andݐሺܣ ‐

by the data analyst at times ݐ஺ and ݐ஻, 
respectively. 

‐ Parameter ݐ, being ݐ ൒ ஻ݐ ൐  ஺, represents theݐ

time of executing the inner join operation. 
‐ ஺ܲሺݐሻ and ஻ܲሺݐሻ are the (privacy) policies 

associated with datasets A and B at time ݐ. These 
policies, which are obtained by the data analyst 
at times ݐ஺ and ݐ஻, respectively, can be adapted 
during the lifecycle of the corresponding 
datasets. 

In order to allow the inner join action ܣ஼ to be 
carried out at ݐ, there should be two requirements 
satisfied, namely: 
‐ The resulting dataset should not violate the 

(privacy) policy of project A. This is denoted by 
requirement ܴ஺൫ܤሺݐ஻ሻ, ,஺ሻݐሺܣ	ห	ݐ ஺ܲሺݐሻ൯, where 
the notation should be read as: Requirement for 
project A in regard to dataset ܤሺݐ஻ሻ to be 
considered for the join operation at time	ݐ, given 
project A’s own dataset ܣሺݐ஺ሻ and own policy 
஺ܲሺݐሻ which are acquired at times ݐ஺ and	ݐ, 

respectively. 
‐ The resulting dataset should not violate the 

privacy policy of project B. This is similarly 
denoted by requirement 
ܴ஻൫ܣሺܣݐሻ, ,ሻܤݐሺܤ	ห	ݐ  .ሻ൯ݐሺܤܲ

The research questions to be addressed in this 
contribution are:  
‐ How can the UCON model be characterized for 

the inner join operation of the datasets?  
‐ How can we determine when the inner join is 

(dis)allowed?  
‐ How is it possible to realize the resulting 

restricted join functionality? 

3 BACKGROUND 

In this section we present the theoretical background 
on access and usage control models. 

3.1 Access Control 

Traditionally, gaining access to a resource (e.g., a 
service, document, computer system, and processing 
time of a computer) has been realized by a system 
functionality called ‘access control’. Access control 
can be defined as the ability to permit or deny access 
to a particular resource by a particular entity 
(Lazouski et al., 2010). The entity that seeks access 
to the resource and the resource that is sough by the 
entity are referred to as subject and object, 
respectively, in access control terminology. The 
access to an object can be in a specific mode like 
read, write and execute. These are usage 
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permissions, or so-called rights, that the subject is 
allowed to carry out on the object. Note that a 
particular right is not predefined and it exists at the 
time of the authorization (Lazouski et al., 2010). In 
our example, the data analyst is the subject, dataset 
A for project B and dataset B for project A are the 
objects, and the ‘inner join’ is the right. Figure 1 
illustrates a traditional access control model. As 
mentioned in (Hilty et al., 2005) the reference 
monitor in Figure 1 is a control program that 
monitors and prohibits actions. 

 

Figure 1: A traditional access control model. 

Traditionally Discretionary Access Control 
(DAC), Mandatory Access Control (MAC), and 
Role Based Access Control (RBAC) models have 
been used. The DAC model may use a set of 
predicates to represents access constraints/rules. 
These access rules are often stored in an access 
control matrix, see the survey paper (Lopez et al., 
2004) and the references therein for the material 
presented in the rest of this subsection. For an object 
there can be a so-called Access Control List that 
specifies which subjects have which 
permissions/rights to the object. For a subject, on the 
other hand, there can be a Capability List to specify 
the access rights of the subject to various objects.  

The MAC model, which originated from 
military, focuses on the flow of information within a 
system. The model assigns security labels to objects 
and subjects, called as Classification Label (to 
represent the object’s sensitivity) and Clearance 
Label (to represent the subject’s trustworthiness), 
respectively. The model grants a subject with access 
to an object if their labels match from the viewpoints 
of their classification (e.g., top secret, confidential, 
non secret) and category properties (e.g., 
management level, department level, and project 
level). Compared to DAC, MAC requires higher 
implementation costs due to the complexity of 
planning and management of access rights. 

Both DAC and MAC models require 
considerable amount of time and effort overhead 

when a new user is introduced into an organization. 
The new subject, in such cases, should be related to 
every resource in the organization.  This process is 
also prune to human errors. Therefore RBAC is 
proposed by introducing roles as a link between 
subjects and objects. In RBAC subjects are 
authorized for roles and roles are authorized for 
objects to hold certain permissions or rights. Hereby 
instead of establishing subject-object associations 
one needs to establish two sets of subject-role 
associations and role-object associations.  

There are other access control methods in the 
literature that we do not mention for brevity of the 
presentation. Traditional access control models have 
been used successfully in many application domains 
for many years. These traditional models are mostly 
suitable for closed organizational environments, 
where the subjects and objects are well known and 
when the sensitivity and trustworthiness of the 
objects and subjects are well defined and rather 
static. In modern application settings, where for 
example social networks, Big Data, and information 
(sharing) systems across organizations like in our 
case are dealt with, one needs to cope with rather 
dynamic environments to authorize (previously 
unknown) entities who want to access and use 
objects with dynamic sensitivity, within varying 
contextual situations, across multiple organizational 
domains and boundaries, and with a commitment to 
unprecedented conditions. 

3.2 Usage Control 

To cope with the shortcomings of the traditional 
access control models, usage control models (like 
UCON model (Sandhu and Park, 2003), (Park and 
Sandhu, 2004) and (Zhang et al., 2005)) are 
introduced. The UCON model extends the 
traditional models to include also controlling the 
access decisions during the object’s usage interval 
(i.e., access decision continuity) and to allow also 
adapting the access criteria before, during and after 
object usage interval (i.e., attribute mutability). The 
continuity of decisions and mutability of attributes in 
UCON allow adapting to the changes of subject, 
object and environmental attributes before, during or 
after the data usage period. For example, the number 
of subjects that concurrently may access the object 
can change depending on the consumption intensity.  

As illustrated in Figure, the reference monitor in 
the UCON model uses three types of decision-
making factors. The first type is called 
authorizations. These authorizations include those 
predicates that put constraints on subject and object 
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attributes. The attributes of the subject (e.g., the 
name, age, role, and nationality) in UCON are 
similar to Capability List in DAC and Clearance 
Label in MAC. The attributes of the object (e.g., 
document type, content sensitivity, and data 
ownership) in UCON are similar to Access Control 
List in DAC and Classification Label in MAC (Park 
and Sandhu, 2004). 

 

Figure 2: An illustration of the UCON model, adopted 
with adaption from (Park and Sandhu, 2004) and (Zhang 
et al., 2005). 

The other two types of decision-making factors 
in the UCON model are conditions and obligations, 
which are not uniquely defined in the literature 
(Colombo and Ferrari, 2014). For conditions, the 
authors in (Park and Sandhu, 2004) consider the 
environmental or system-oriented constraints that 
should hold before or during the object’s usage 
interval. Examples conditions are those related to the 
time of the day, room temperature, and disastrous 
situation. As such, conditions are not dependent of 
the subject and the object (i.e., the data) directly. We 
shall elaborate upon obligations (especially in the 
context of relational databases) in Section 4.1.  

The reference monitor in UCON controls the 
access to and usage of the object (e.g., data items) by 
the subject. Similarly to (Hilty et al., 2005), we 
regard the UCON “reference monitor rather liberally 
to describe control programs that can not only 
monitor and prohibit actions, but can also trigger 
corrective actions such as the application of 
penalties” (Hilty et al., 2005). 

4 DESIGN AND REALISATION 

In this section we adapt the UCON model to the 

problem at hand. First in Subsection 4.1 we frame 
the data integration scenario as UCON obligations. 
Subsequently in Subsection 4.2 we describe the 
policy decision-making component of the reference 
monitor that determines whether datasets A and B 
are joinable at a given time. Finally in Subsection 
4.3 we formalize the policy decision-enforcement 
component of the reference monitor for the inner 
join operation.  

4.1 Specifics of Obligations 

Obligations are an active area of research currently. 
Particularly, the enforcement of those obligations 
that are concerned with fulfilling some tasks and 
actions during or after the usage of the object (i.e., 
data) are open research issues (Lazouski et al., 
2010).  

Obligations mandate those actions that someone 
should execute before, during or after an object’s 
usage interval (Lazouski et al., 2010). For example, 
the credit card owner must be informed in 30 days 
after a credit card being used, a license agreement 
must be signed before data usage, an ad must be 
watched for 20 seconds, and the document must be 
downloaded just one time. When the actions are 
executed appropriately, the subject could access or 
could continue to use the object. Note that the entity 
that fulfills the obligation, i.e., carries out the 
action(s), might be the subject or someone else, 
depending on the usage scenario. Similarly, the 
entity on which an obligation activity is carried out 
might be the object or something else. 

In (Colombo and Ferrari, 2014) the authors 
consider the enforcement of obligations, which are 
derived from privacy policies, on relational database 
management operations. They regard obligations as 
“the constraints that refer to the (expected) state of 
the data [object] stored in the database” at the time 
in which the object is accessed or used (i.e., 
invoking a SQL code). For example, the bank 
account balance must be positive after withdrawing. 

In summary, one can regard obligations as the 
constraints (a) on the state of the object (i.e., the 
data in the database) or (b) on specific actions being 
executed by someone. Fulfillment of both constraint 
types can be required before, during or after an 
object’s usage interval.  

Our usage control on the inner join operation in 
this contribution can be categorized as “obligation” 
because the authorization of the right (i.e., the inner 
join of datasets A and B) is constrained with the 
state of the objects (e.g., the datasets A and B for 
projects A and B, respectively). Our first 
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contribution hereto is that we distinguish a new type 
of obligations where the state of an object (i.e., 
dataset A or dataset B) is determined with respect to 
another object. This type of dependency, to the best 
of our knowledge, has not been identified so far in 
the UCON literature. 

In distributed usage control, where information is 
disseminated in open networks, post usage 
obligations are widely applicable (Lazouski et al., 
2010). We observe that this is also the case in our 
centralized usage control, when an operation on a 
data object (like dataset A in our scenario) is 
dependent of other (upcoming) data object (like 
dataset B in our scenario). More specifically, from 
requirements ܴ஺൫ܤሺݐ஻ሻ, ,஺ሻݐሺܣ	ห	ݐ ஺ܲሺݐሻ൯ for project 
A and ܴ஻൫ܣሺݐ஺ሻ, ,஻ሻݐሺܤ	ห	ݐ ஻ܲሺݐሻ൯ for project B, 
where ݐ ൒ ஻ݐ ൐  ஺, one can define the dataݐ
integration obligations for the data analyst as the 
UCON’s subject. These obligations can be of type: 
‐ Pre-obligation for project B when ݐ ൌ   ,஻ݐ
‐ Post obligation for project A (because	ݐ ൒ ஻ݐ ൐

ݐ ஺) and for project B whenݐ ൐  .஻ݐ

So when ݐ ൌ  ஻ the constraint on datasets A and Bݐ
can be of type pre-obligation (for project B) and 
post-obligation (for project A) simultaneously. This 
duality is another new insight, to the best of our 
knowledge, provided in this contribution. 

4.2 Decision Making 

The reference monitor should decide on whether two 
datasets A and B can be joined or not based on 
requirements ܴ஺൫ܤሺݐ஻ሻ, ,஺ሻݐሺܣ	ห	ݐ ஺ܲሺݐሻ൯ and 
ܴ஻൫ܣሺݐ஺ሻ, ,஻ሻݐሺܤ	ห	ݐ ஻ܲሺݐሻ൯ that, in turn, depend on 
the momentary policies of project A and B (i.e., 
஺ܲሺݐሻ and ஻ܲሺݐሻ) as well as on the datasets of 

projects A and B (i.e., ܣሺݐ஺ሻ and ܤሺݐ஻ሻ). Joining 
two datasets may extend the attribute sets ܶܶܣ஺ and 
஺∪஻ܶܶܣ ஻ to setܶܶܣ ൌ ஺ܶܶܣ ∪ ஻ܶܶܣ ൌ
	൛ܽݐݐଵ

஺∪஻,⋯ , ௠ಲ⋃ಳݐݐܽ
஺∪஻ ൟ. 

For deciding on the join of two datasets, one 
could check whether the resulting combination of 
attributes is allowed or not. A domain expert can 
control this based on existing laws, regulations, and 
policies. Alternatively, similarly to (Byun and Li, 
2008) and based on the purposes for which datasets 
 ஻ሻ are collected, the reference monitorݐሺܤ ஺ሻ andݐሺܣ
can check whether the privacy policies of project A 
and project B allow their data objects to be part of 
the resulting table or not. This can be done through 
controlling the possibility of any inconsistency in 
data collection and usage purposes. For example, if 

dataset ܣሺݐ஺ሻ and ܤሺݐ஻ሻ are collected for 
commercial and system administration purposes, 
respectively, then the join should not go on 
assuming that commercial and administrative 
purposes are disjoint/inconsistent.  

Another way to decide on allowing the join 
operation is to control whether there would be 
undesired information leakage due to the join 
operation or not. To explain this aspect, let assume 
that every attribute in ܶܶܣ஺ and ܶܶܣ஻ and thus in 
 .஺∪஻ can be represented by a random variableܶܶܣ
For example, random variable ܶܣ ௜ܶ

஺ corresponds to 
attribute ܽݐݐ௜

஺ ∈  ஺. (NB: In the rest of thisܶܶܣ
section we misuse the notations of sets ܶܶܣ஺, ܶܶܣ஻ 
and ܶܶܣ஺∪஻ and assume they represent sets of 
attributes as well as the corresponding attribute 
random variables.) 

Further, let random variable set ࡿ ⊂  ஺∪஻ beܶܶܣ
the set of those random variable attributes after the 
join operation that are (privacy) sensitive. In our 
setting, ࡿ includes at least one member, i.e., we have 
ܶܣ ଵܶ

஺ ∋ ܶܣ being the same as) ࡿ ଵܶ
஻ ∋  as we ,ࡿ

assumed). Let random variable set ࢄ ൌ ஺∪஻ܶܶܣ ∖  ࡿ
be the set of those (privacy) non-sensitive random 
variable attributes after the join operation. Thus, sets 
 encompass those attributes that cannot be ࢄ and ࡿ
and can be, respectively, revealed to the data analyst 
in our scenario according to requirements ܴ஺ and 
ܴ஻. 

In order to determine the information leakage in 
the dataset resulted from the inner join operation ܣ஼ 
as defined by 〈ܣሺݐ஺ሻ, ,஻ሻݐሺܤ ஺ܲሺݐሻ, ஻ܲሺݐሻ, ,ܥܬܫ  one ,〈ݐ
may use the mutual information function (Sankar et 
al., 2013)(Wang et al., 2014). The amount of 
information leaked about random variables in ࡿ due 
to random variables in	ࢄ can be determined by 
mutual Information ܫሺࡿ;  ሻ, which should ideally beࢄ	
zero. If this value reaches an unacceptably high level 
due to the join operation, then the join should be 
disallowed. One can also aim at the information 
leakage for any ࡿ′ ⊂  and examine whether ࡿ
;ᇱࡿሺܫ  ሻ reaches an unacceptably high level or notࢄ	
due to the join operation. The thresholds of the 
unacceptably high level can be determined from the 
policies of ஺ܲሺݐሻ and ஻ܲሺݐሻ at or up-to runtime ݐ. 

4.3 Decision Enforcement 

We defined the inner join action ܣ஼ as 
,஺ሻݐሺܣ〉 ,஻ሻݐሺܤ ஺ܲሺݐሻ, ஻ܲሺݐሻ, ,ܥܬܫ  Datasets A and B .〈ݐ
are represented by their tuples as ܣሺݐ஺ሻ ൌ
	ሼࢇ௜|	݅:	1,⋯ , ݊஺ሽ and ܤሺݐ஻ሻ ൌ 	 ൛࢈௝ห	݆:	1,⋯ , ݊஻ൟ. The 
inner join action ܣ஼ can further be specified as those 
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members of the Cartesian product of sets ܣሺݐ஺ሻ and 
⋯,1	݅:	௜|ࢇ஻ሻ, i.e., ሼݐሺܤ , ݊஺ሽ	ൈ	൛࢈௝ห	݆:	1,⋯ , ݊஻ൟ, for 
which  
a) The predicate ܥܬܫ holds for those tuples that 

ܽ௜,ଵ ൌ ௝ܾ,ଵ, and 

b) Requirements ܴ஺ and ܴ஻ hold.  

In other words, 
஼ܣ ≜ ൛ࢇ௜ൈ࢈௝ห	݅:	1,⋯ , ݊஺; 	݆:	1,⋯ , ݊஻;	ܨ௜,௝ ൌ ܶൟ, 

where ܨ௜,௝ is a Boolean function defined as the 
conjunction of the following operands: 
‐ O1: ൫ܥܬܫ൫ࢇ௜, ௝൯࢈ ൌ ܶ൯	∧	൫	ܽ௜,ଵ ൌ ௝ܾ,ଵ൯, 

‐ O2: ܴ஺൫ܤሺݐ஻ሻ, ,஺ሻݐሺܣ	ห	ݐ ஺ܲሺݐሻ൯ ൌ ܶ, 

‐ O3: ܴ஻൫ܣሺݐ஺ሻ, ,஻ሻݐሺܤ	ห	ݐ ஻ܲሺݐሻ൯ ൌ ܶ. 

In practice, due to for example privacy requirements, 
the (personal) identifiers ܽ௜,ଵ and ௝ܾ,ଵ in datasets A 
and B (i.e., for all ݅	and	j) are anonymized. In this 
section we assume they are pseudonymized by Hash 
functions ܪ஺ሺ∙ሻ and ܪ஻ሺ∙ሻ, respectively. In this case, 
operand O1 can be written as:  

O1: ൫ܥܬܫ൫ࢇ௜, ௝൯࢈ ൌ ܶ൯		∧		 ቀܪ஺൫ܽ௜,ଵ൯ ≡ ஻൫ܪ ௝ܾ,ଵ൯ቁ, 

where ܪ஺൫ܽ௜,ଵ൯ ≡ ஻൫ܪ ௝ܾ,ଵ൯	holds	if	ܽ௜,ଵ ൌ ௝ܾ,ଵ. Note 
that  
a) The operator ≡ represents the fact that there is a 

one-to-one mapping possible between ܪ஺൫ܽ௜,ଵ൯ 
and ܪ஻൫ ௝ܾ,ଵ൯, and it does not imply equality 
necessarily; and  

b) The probability that ܽ௜,ଵ ് ௝ܾ,ଵ if ܪ஺൫ܽ௜,ଵ൯ ≡
஻൫ܪ ௝ܾ,ଵ൯ is (extremely) negligible for collision-
resistant hash functions practically.  

In Subsection 5.1 we shall present a technique to 
realize operator ≡ in DBMSs.  

5 EVALUATION 

In this section we present an example realization of 
the proposed mechanism and subsequently discuss 
its characteristics and limitations. 

5.1 Example Realization 

To illustrate how to realize the proposed mechanism 
we explain an example with 3 tables A, B, and C, 
each containing two attributes: an identification 
number ID and a data attribute. The data analyst has 
access to all three tables. We assume that the analyst 
is authorized to join tables A and B, but (s)he is not 
authorized to join table A and C (for the generic 
scenario see Section 2.2). To illustrate the idea we 
use these simple tables without loss of generality 

(i.e., instead of a single table one can use a set of 
tables just like the case of our data warehouse). 

Table 1: Table A. 

ID ATTR 
1 Source value A1 
2 Source value A2 
3 Source value A3 

Table 2: Table B. 

ID ATTR
1 Source value B1 
3 Source value B3 

Table 3: table C. 

ID ATTR
2 Source value C2 
3 Source value C3 

 

Using the unique identifiers, i.e., attribute ID, as 
the primary key the data analyst can now easily 
combine the data from tables A and C: 

> Select * from a join c on c.id = a.id 

As the first step of our implementation, we replace 
the original unique identifiers, which are unique per 
criminal case, by a new set of global identifiers, 
which are globally, i.e., among these tables, unique. 
Alternatively, one could use hash functions, as 
suggested in Note (b) in Subsection 4.3. 
Consequently those tuples from different tables, 
which correspond to the same case/entity, will no 
longer have the same identifiers in the new dataset. 
The mapping between the new identifiers of an 
entity via the old identifier of the entity, see Table 7, 
is made one-to-one and it is stored in a separate 
repository, called identifier repository, safely. The 
identifier repository realizes the operation ≡ in 
practice (see Note (a) in Subsection 4.3).  

The joins in the proposed approach will be made 
through the identifier repository, where we will use a 
usage rights table to check whether the tables can be 
combined. The tables with the new identifiers, the 
identifier repository, and the usage rights table are 
shown in Table 4, Table 5, Table 6, Table 7 and 
Table 8 below. 

Table 4: Table DWH_A. 

ID ATTR
N1 Source value A1 
N2 Source value A2 
N3 Source value A3 
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Table 5: Table DWH_B. 

ID ATTR
N4 Source value B1 
N5 Source value B3 

Table 6: table DWH_C. 

ID ATTR
N6 Source value C2 
N7 Source value C3 

Table 7: Table ID_REP (identifier repository). 

ID_SRC ID_DWH SRC_DATASET
1 N1 A 
2 N2 A 
3 N3 A 
1 N4 B 
3 N5 B 
2 N6 C 
3 N7 C 

Table 8: Table USAGE_RIGHT (the authorization 
policy). 

DATASET1 DATASET2 
A B 
B A 

 

Now direct joining like in the previous SQL 
query will return an empty result set, since the 
identifiers no longer match. In the next query the 
join is performed through the identifier repository, 
and includes a check on the usage rights: 

> select dwh_a.*, dwh_b.* 
> from dwh_a 
 > join id_rep rep1 on rep1.id_dwh 
   = dwh_a.id 
 > join id_rep rep2 on rep2.id_src 
   = rep1.id_src 
 > join dwh_b on dwh_b.id =     
rep2.id_dwh 
 > join usage_right on               
   (usage_right.dataset1 =    
    rep1.src_dataset and         
usage_right.dataset2 =        
rep2.src_dataset) 

For tables DWH_A and DWH_B this will result in a 
dataset with the combined data. When a similar 
query is run for table DWH_A and DWH_C there 
will be an empty result set because the join is not 
allowed according to the USAGE_RIGHT table. 

The final step in our implementation is to set 
access control to the tables in the example. The data 

analyst is not allowed to see the identifier repository 
or to change the usage rights. Joins are carried out 
through a stored procedure, which has access to the 
identifier repository. It generates a table with the 
join of the two given tables if allowed by the 
USAGE_RIGHT table. The result does not contain 
the old or new identifiers from the identifier 
repository, but a new independent set of identifiers is 
generated. In this way the identifiers in the new 
dataset cannot easily and readily be tracked back to 
the original datasets, nor will it be possible to easily 
link the identifiers of the joined dataset to other 
(possible future) datasets. 

5.2 Discussion and Limitations 

As described before the database consists of 
different datasets. Within a dataset the tables can be 
joined as usual so the performance will be the same 
as for standard joins. When tables of different 
datasets are joined there is a performance penalty 
since the identifiers have to be looked up in the 
identifier repository and usage control rights have to 
be checked. As we have seen this adds three extra 
joins. Obviously this is less efficient than a single 
join. However modern database engines are very 
efficient in doing joins and can be optimized by the 
use of techniques like indexing.  

Furthermore we propose a scenario where the 
combination of two datasets is generated once with a 
new identifier set. Within the new combined dataset 
the joins will have no performance loss. The 
generation of the new dataset will have a cost, but in 
a data warehouse setting this is usually not a 
problem. 

The USAGE_RIGHT table is a good location to 
hook in extra usage control decision factors like 
authorizations, conditions or obligations. For 
example only tuples for adults may be combined, the 
datasets may only be joined during a fixed period, or 
the requester has to sign a privacy statement. For 
example: 

Table 9: Extended table USAGE_RIGHT. 

DATAS
ET1 

DATAS
ET2 

AUTH COND OBLIG 

A D D.age>
18 

System.dat
e<15 July 

Agree on 
privacy policy 

 

We created a new identifier (i.e., pseudo ID) for 
those tuples in the resulting dataset of the join 
operation. In practice, however, it is possible for a 
data analyst with ill intentions to infer those 
identifiers in table A (see Table 4) and in table B 
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(see Table 5) that their records appear also in the 
resulting table of the join operation. The data analyst 
can infer the mappings in the identity repository for 
these records by using/matching the values of the 
other attributes in Table A, Table B and the resulting 
table from their join, using techniques described in 
(Narayanan and Shmatikov, 2008); (Choenni et al., 
2010). This can be seen as an attack on the 
pseudonimization part of the proposed approach. As 
mentioned in Subsection 5.1, our proposed approach 
attempts to impede those attackers (i.e., data 
analysts, the employee with questionable ethics as 
mentioned in (Agrawal et al., 2002)) who want to 
directly track the identifiers in the new dataset back 
to the original datasets. 

6 RELATED WORK 

This section provides a review of some related 
works on obligations and on controlling the join 
operation in relational databases. 

6.1 Obligations 

Obligations are considered an important means of 
realizing privacy and security aware systems, 
nevertheless, as mentioned before, there is still no 
consensus on the precise meaning of the term 
obligation (Colombo and Ferrari, 2014).   

One misalignment in the literature relates to the 
concepts of pre-obligation, on-going obligation and 
post-obligation. In the UCON-ABC model of (Park 
and Sandhu, 2004) pre-obligations and on-going 
obligations are recognized. The concept of post-
obligation is added to the UCON model in (Katt et 
al., 2008). Note that, not within the context of the 
UCON model, others (e.g. (Hilty et al., 2005); 
(Gama et al., 2006) and (Bettini et al., 2003)) had 
already considered obligations as requirements that 
must be fulfilled after data access has been done. In 
(Ni et al., 2008) the authors introduce pre and post 
obligations to the Role Based Access Control (P-
RBAC). In (Bettini et al., 2003) pre-obligations are 
characterized as provisions.  

In (Hilty et al., 2005) obligations are further 
classified  in two dimensions of being 
(un)observational and being temporally-
(un)bounded. The observational aspect characterizes 
whether the reference monitor can observe the 
fulfillment of the obligation or not. The temporal 
bound-ability characterizes whether obligations 
should be fulfilled in a certain time period or not 

(i.e., should be checked for ever). These criteria 
define four obligation types:  
‐ Bounded future and observable (e.g., pay a fee 

within a fixed number of days, data item may not 
be accessed for x days, the reference monitor 
must notify the data owner about the access 
within x days).  

‐ Bounded future and non-observable (e.g., data 
item must be deleted within x days, data item 
must not be redistributed in the next x days), 

‐ Unbounded future and observable (e.g., re-access 
the data at least every x days to maintain 
freshness of data as demanded by some data 
protection regulations), and  

‐ Unbounded future and non-observable (e.g., data 
should be used only for statistical analysis, data 
should not be distributed further, each usage of 
the data must be reported immediately, or must 
be protected with protection level L until it is 
declassified by the owner).   

The obligation for the join operation is temporally 
unbounded, i.e., it holds for as long as there is a 
possibility of joining any pair of vertically separated 
datasets (e.g., in our case ܣሺݐ஺ሻ and ܤሺݐ஻ሻ). The 
obligation for the join operation is also unobservable 
(i.e., in project A one cannot foresee that project B is 
going to link dataset ܣሺݐ஺ሻ with its dataset ܤሺݐ஻ሻ 
and vice versa). By introducing the reference 
monitor we ensure the join operation to be 
observable to the central reference monitor and, 
eventually, those non-observable data protection 
requirements to be adhered to. This strategy is also 
mentioned in (Hilty et al.. 2005), whereby an 
unobservable obligation is enforced by transforming 
a non-observable obligation into a set of provisions 
and observable obligations that prevent unwanted 
executions. One can think of not only this “strict 
sense of enforcement”, i.e., “the prevention of 
unwanted executions of a system through system 
monitoring and denying actions that would violate 
the policy”, but also additional corrective or 
“compensating actions (e.g. penalties) in case the 
execution violates the policy” (Hilty et al., 2005). 
Unlike in our case, obligations in (Hilty et al., 2005) 
are those conditions that must be imposed in the 
future (i.e., the time after an access is authorized) 
and (Hilty et al., 2005) uses  provisions instead of 
obligations to refer to those conditions that must be 
imposed by/at the time of an access being 
authorized. In our case, furthermore, we showed that 
it is possible for obligations to be of types pre-
obligation/on-going-obligation and post-obligation 
at the same time.  
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6.2 Relational Databases 

As the work presented in this contribution relates to 
usage control for relational databases and privacy 
protection for the join operation in relational DBMS, 
we review some related works on these topics in the 
following. 

In (Colombo and Ferrari, 2014) the authors 
consider enforcing obligations, which are derived 
from privacy policies, on relational database 
management operations. While Colombo and Ferrari 
(2014) consider SQL operations in general, we focus 
on the inner join operation particularly, and zoom in 
its peculiarities from the viewpoints of the parties 
(i.e., projects) involved in the operation. Similarly to 
our work, (Colombo and Ferrari, 2014) considers 
obligations as constraints on “the [expected] state of 
the data [(i.e., the object)] stored in the database at 
the time in which the execution of an action (i.e., 
SQL code) is invoked (like the account balance after 
withdrawing must be positive)”. We go one step 
further and take into account also the state of each of 
the two datasets of the join operation with respect to 
the other dataset.  

Secure Multi Party Computing (SMPC) methods 
aim at computing a function F on vertically or 
horizontally distributed datasets for data mining or 
data processing purposes, without requiring the raw 
datasets to be shared with a central entity (a Trusted 
Third Party, TTP) or with the peers. In this way 
every party learns only the result of function F and 
its own dataset. SMPC methods are applied in 
combination with the SQL join operation in multi-
party settings in (Laur et al., 2013) for horizontally 
distributed datasets. As mentioned above, the 
objective of SMPC is to compute a specific function 
F on the joined dataset in a privacy preserving way 
(i.e., without sharing the datasets with a TTP or the 
peers). For example, the function F in (Laur et al., 
2013) delivers the number of rows in the join table 
(for which the join predicate holds). In our setting, 
however, the aim is to authorize the inner join 
operation or not, regardless of which function the 
data analyst intends to apply to the resulting datasets 
in the future. As such, our approach acts as a sort of 
on-fly access control (thus a usage control) 
mechanism rather than a privacy preserving data 
mining or data processing mechanism. 

7 CONCLUSION 

To deal with the issue of authorized-access and 
unauthorized-use of datasets, there is a need for a 

flexible and adaptive framework to decide on and 
enforce the data integration policy at runtime. We 
motivated this need for the inner join operation in 
vertically separated relational datasets where one 
cannot predetermine which datasets would be 
encountered and integrated with a given dataset. 

We characterized the usage control model of the 
inner join operation by the obligations of the UCON 
model. Here the authorization of the right (i.e., the 
inner join of datasets A and B) is constrained with 
the state of the object. In this study we distinguished 
a new type of obligations where the state of the 
object (i.e., dataset A or dataset B) is determined 
with respect to another dataset. These obligations 
can be of both pre-obligation and post-obligation 
types simultaneously, depending on the timing of the 
join operation with respect to the moments of 
datasets A and B availability. This duality is another 
new insight provided in this contribution. 

We proposed a few methods for making decision 
whether two datasets A and B can be joined or not. 
The decision can be based on whether the resulting 
combination of attributes is allowed or not using the 
domain knowledge, comparing the data collection 
and data usage purposes of datasets A and B, or 
information leakage about the sensitive attributes 
due to the join operation. Finally we proposed a 
mechanism to enforce the obligations and realized it 
in an example realization. The reference monitor of 
the proposed usage control is realized as a stored 
procedure that maps the pseudo identifiers from the 
identifier repository to the original identifiers, 
checks the usage rights to determine if a join is 
allowed, and joins the data if that is the case. 

Our scheme uses different pseudo identifiers for 
the input and output datasets of the join operation 
and relies on a secure lookup table to map among 
these pseudo identifiers during the realized join 
functionality. This solution creates a first barrier 
against the threat of inferring pseudo identifiers. 
Searching for a more robust and secure solution, the 
future research can be directed towards, for example, 
adopting and adapting the method of Polymorphic 
Encryption and Pseudonymisation (Verheul et al., 
2016). 
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