
Generating and Instantiating Abstract Workflows with QoS User
Requirements

Claudia Di Napoli1, Luca Sabatucci2, Massimo Cossentino2 and Silvia Rossi3
1C.N.R., Istituto di Calcolo e Reti ad Alte Prestazioni, Napoli, Italy

2C.N.R., Istituto di Calcolo e Reti ad Alte Prestazioni, Palermo, Italy
3DIETI, Università degli Studi di Napoli Federico II, Napoli, Italy

Keywords: Service-oriented Computing, Automatic Service Composition, Multi-agent Negotiation.

Abstract: The growing availability of services accessible through the network makes it possible to build complex ap-
plications resulting from their composition that are usually characterized also by non-functional properties,
known as Quality of Service (QoS). To exploit the full potential of service technology, automatic QoS-based
composition of services is crucial. In this work a framework for automatic service composition is presented
that relies on planning and service negotiation techniques for addressing both functional and non-functional
requirements. The proposed approach allows for dynamic service composition and QoS attributes, and it can
be applied when services are provided in the contest of a competitive market of service providers without
knowledge disclosure.

1 INTRODUCTION

Service-oriented computing (Papazoglou et al., 2007)
is opening new frontiers in the development of added
value applications, known as Service-Based Applica-
tions (SBAs), resulting from the combination of dif-
ferent services provided by different providers at dif-
ferent conditions, so leading to the vision of an open
market of services regulated by demand and supply
mechanisms.

In this context, the value of commercial Service-
Based Applications (SBAs) depends not only on the
functionality they deliver, but also on the value of
their non-functional properties, known as Quality of
Service (QoS), that are not tied to the specific func-
tionality, but rather to “how” it is provided, i.e. how
well a service serves the customer (Strunk, 2010), in
terms of its non-functional aspects (e.g. performance,
reliability, availability, cost). In fact, service imple-
mentations having similar functional capabilities are
distinguishable for their QoS values that determine
whether a service is reliable, trustworthy, or efficient,
since it may be functionally capable of performing
a given task, but it might not be reliable or efficient
enough in performing the task up to the user satisfac-
tion (Shehu et al., 2014).

When dealing with applications composed of ser-
vices orchestrated according to a specified workflow,

QoS values are usually specified at the application
level, rather than at level of the single components,
and they result from the aggregation of the QoS val-
ues of each component service, according to a func-
tion depending on the nature of the considered QoS
parameters, and on the structure of the SBA workflow
These end-to-end QoS values depend on the values
of each component service, aggregated according to a
function usually depending on the nature of the con-
sidered QoS parameters, and on the structure of the
SBA workflow.

In order to automatically compose QoS-aware
SBAs in response to a user request with QoS con-
straints, several approaches have been proposed in the
literature (Moghaddam and Davis, 2014). Static ap-
proaches typically assume that QoS parameters are
pre-defined for each service, and they do not change
during the composition process. These approaches
are not suitable within the vision of a dynamic mar-
ket of services, since QoS values may vary accord-
ing to the provision strategies of providers as well as
to users’ requirements expressed as global constraints
on the SBA’s QoS. So, heuristic approaches leading
to sub-optimal solutions are often adopted where ser-
vice QoS values are not known prior to generating the
workflow, reflecting a more realistic scenario.

In the present work, we present an integrated
framework that allows performing all stages of an

276
Di Napoli C., Sabatucci L., Cossentino M. and Rossi S.
Generating and Instantiating Abstract Workflows with QoS User Requirements.
DOI: 10.5220/0006203902760283
In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), pages 276-283
ISBN: 978-989-758-219-6
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



automatic QoS-based service composition process,
ranging from finding functionally equivalent compo-
sitions, to the selection of an appropriate composi-
tion that meets the non-functional user’s constraints.
The framework allows to deal with cases in which i)
there could be more plans (i.e. combinations of ser-
vices providing a complex service) to satisfy the same
set of user requirements, and ii) there could be more
providers for the same service in a plan. In fact, a
complex service can be realized by different plans,
and each plan may be composed of a high number
of tasks. In a real scenario, each task may be possi-
bly accomplished by different services providing the
same functionality. When there is a high number of
possible service combinations providing the complex
task, the problem of selecting an optimal combination
that meets the QoS values specified by a request be-
comes intractable. The framework provides an auto-
matic reasoner, and it is equipped with automated ne-
gotiation capabilities. The reasoner produces several
workflows of services (or plans) by aggregating dif-
ferent combinations of capabilities. Each workflow
represents an alternative solution for addressing the
specified functional part of a user request. The au-
tomated negotiation –upon QoS attributes values of
single services– allows to select services whose QoS
values, once aggregated, meet the QoS constraints set
by the user.

The paper is organized as follows: Section 2 re-
ports some related work on QoS based service selec-
tion in service composition. Section 3 focuses on the
integration of the approach for service composition
with the strategy for service selection. An example
of a QoS based complex service composition in the
domain of Travel Service is presented in Section 4.
Finally, some conclusions are drawn in Section 5.

2 QoS BASED SERVICE
SELECTION

In QoS-aware service composition, the selection of
service implementations is based on the QoS values
of the candidate services. When the QoS values are
expressed at the level of the complete application, the
problem of finding a combination of services whose
QoS values, once aggregated, meet the QoS require-
ments is a constrained optimization problem that can
be reduced to the Multi-Choice Knapsack problem
known to be NP-hard. Several approaches propose
algorithms to optimize the global QoS values of a ser-
vice composition subject to multiple QoS constraints
(Zeng et al., 2004), (Ardagna and Pernici, 2007), (Yu
et al., 2007), (Alrifai and Risse, 2009). These ap-

proaches rely on prior knowledge of the component
service QoS values. They do not consider dynamic
changes in QoS, so they are not suitable in an open
market of services where QoS values may constantly
change over time, as it is assumed in the present work.

Heuristics approaches have been investigated to
find near-optimal combinations in dynamic environ-
ments. In this research line, negotiation mechanisms
were shown to be a suitable approach to deal with
QoS-aware SBAs (Yan et al., 2007), (Di Napoli et al.,
2014), (Lau, 2007).

Negotiation solutions are divided by the assump-
tion that the service providers are or not predeter-
mined before negotiation. The two approaches are
known as pre-contractual negotiation, and dynamic
provider selection. Pre-contractual negotiation usu-
ally applies negotiation for each required service in-
dependently from the others, relying on bilateral one-
to-one negotiation mechanisms such as in (Yan et al.,
2007), (Paurobally et al., 2007), (Siala and Ghedira,
2011), not allowing competition among providers.
In other approaches negotiation occurs after an opti-
mization phase, but only among the providers that do
not provide the expected QoS local values (Ardagna
and Pernici, 2007). The approach in (Di Napoli et al.,
2014) proposes a coordinated negotiation mechanism
with all providers of the different services in the com-
position, taking into account their contribution to the
global QoS values. The negotiation occurs concur-
rently with all service providers, and it requires a co-
ordination point to synchronize the concurrent nego-
tiations for global evaluation. This approach allows to
exploit the competition among service providers with-
out excluding less promising providers that could be-
come more competitive while negotiation proceeds.

3 AUTOMATIC QoS-AWARE
SERVICE COMPOSITION

The framework proposed for automatic composi-
tion of services with specified QoS user’s prefer-
ences allows to address both functional and non-
functional users requirements by integrating MUSA,
a middleware for service composition and orches-
tration (Sabatucci and Cossentino, 2015; Sabatucci
et al., 2016), with a QoS based service negotiation
module (Di Napoli et al., 2014), hereafter QoS Nego-
tiation.

The overall process for QoS-aware service com-
position is split in five phases:
1. the formulation of a user’s goal specifying a re-

quired functionality, together with non-functional
requirements expressed in terms of QoS values,

Generating and Instantiating Abstract Workflows with QoS User Requirements

277



2. automatic composition of abstract plans to ad-
dress the goal via AI planning techniques,

3. service discovery, i.e. the identification of con-
crete services matching the functional require-
ments of the tasks that compose the abstract plan,

4. QoS service selection, i.e. the identification of
one concrete service implementation for each task
of the plan whose QoS values, once aggregated
with the values provided by the other services in
the composition, satisfy the user’s preferences,

5. service binding, i.e. instantiation of the abstract
plan into an executable workflow, ready to be en-
acted.

Steps 1 and 2 are conducted by MUSA, whereas
the QoS Negotiation enacts steps 3, 4 and 5.

3.1 MUSA

MUSA (Middleware for User-driven Service Adapta-
tion) (Sabatucci et al., 2016; Sabatucci et al., 2015)
is a middlware for composing and orchestrating dis-
tributed services according to unanticipated and dy-
namic user needs. It is a platform in which 1) virtual
enterprises can deploy capabilities that wrap real ser-
vices, completing them with a semantic layer for their
automatic composition; 2) analysts and/or users can
inject their goals for requesting a specific outcome.
Under the hypothesis that both goals and capabilities
refer to the same ontology, agents of the system are
able of composing available services into plans for
addressing the user request.

The main abstraction in MUSA is a capability,
which represents something that the system knows
how to do, and goals, used to represent the user’s
requirements. In MUSA, a user is able to describe
a desired functionality via a high-level goal-oriented
description language, called GoalSPEC (Sabatucci
et al., 2013). At run-time, once a goal model is spec-
ified (often it is a tree hierarchy of goals), it may be
injected in the system. This event triggers the forma-
tion of an agent group that is committed to address
the goal (and all its subgoals). Goals represent condi-
tions, in terms of states of the world, a user may want
to be addressed.

A proactive means-end reasoning (Sabatucci and
Cossentino, 2015) associates system capabilities to
user goals for deducing possible service compositions
that can guarantee the desired final state. This proce-
dure works on two main abstractions: the Abstract
Capability and the Goal.

MUSA also provides a capability language, based
on predicate logic, that allows to specify additional
information about a service (Sabatucci et al., 2016;

Sabatucci et al., 2015). The description of a service
is made of two parts: an abstract part and a concrete
part. The Abstract Capability represents a generaliza-
tion of a service, and it forces the idea of categories
of services that produce similar results but that are
offered by different providers. It offers a descriptor
for the common elements of a category of similar ser-
vices: pre and post conditions, to be checked before
and after service execution, and evolution, to be used
in order to simulate the effects of the service for en-
abling the automatic composition.

The Configurator group is an emerging organiza-
tion of agents whose responsibility is to aggregate
capabilities in order to address a given goal through
a procedure called Proactive Means-End Reason-
ing (Sabatucci and Cossentino, 2015). This procedure
works on two main abstractions: the Abstract Capa-
bility and the Goal. Goals represent conditions, in
terms of states of the world a user may want to be
addressed.

When more Concrete Capabilities are available
for the same Abstract Capability, multiple Concrete
Workflows could be obtained, so a selection among
them has to be made. To date, MUSA does not pre-
scribe a specific strategy for service selection among
concrete services that may provide different QoS.

3.2 QoS Negotiation

In the approach proposed in (Di Napoli et al., 2014),
negotiation is used as a dynamic service selection
mechanism, aiming at selecting the services that best
match the service requester’s non-functional require-
ments, allowing to manage the dynamic nature of QoS
values. In fact, as pointed out, while a service func-
tionality is static, and it is a characterizing intrinsic
feature of the service itself, its non-functional features
may vary, as well as users’ QoS requirements/prefer-
ences. This is even truer when services are provided
in an open market of services, as it happens already
for several classes of services in different application
domains where services are considered digital goods
to be purchased.

The negotiation occurs between the service re-
quester, represented by a software agent, we refer to
as the Service Negotiator (SN), and the candidate ser-
vice providers, represented by software agents, we re-
fer to as the Service Providers (SPs). They negoti-
ate upon the QoS values of the single services whose
functionalities are required in the composition, reach-
ing an agreement if the local QoS values of each ser-
vice, once aggregated, meet the global QoS require-
ments specified by the user when the goal specifi-
cation is injected in the system. So, a successful

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

278



negotiation selects the composition of services that
best matches the service requester’s non-functional
requirements.

The adopted negotiation mechanism is based on
an iterative protocol, where the negotiator is the ini-
tiator acting on behalf of the service requester, and
the providers formulate offers specifying the QoS val-
ues of the service they are able to provide (Di Napoli
et al., 2014). The Service Negotiator evaluates the
received offers, without issuing counteroffers, since,
as it happens in a real market of services, it is un-
likely to have enough information on the providers’
strategies to formulate counteroffers. In addition, in a
service composition, counteroffers for a single func-
tionality cannot be formulated independently from the
ones received for the other functionalities. In other
words, negotiating over the attributes of the single
abstract services cannot be done independently from
each other. Single counteroffers could be formulated
only if negotiation occurs on one service after another,
since in a composition of services changing the QoS
values of one service can be done only assuming that
the QoS values of the other services are fixed. This
approach would result in serializing the negotiation,
so leading to a long process depending on the num-
ber of abstract services in a workflow, not suitable in
a dynamic market of services (Di Napoli et al., 2015).

The negotiation mechanism allows the negotiator
to negotiate with all providers of services with the
same required functionality required in the abstract
workflow, and to evaluate if the aggregated QoS val-
ues of the received offers meet the user QoS require-
ment, so to decide whether or not to accept the offers.

The negotiation protocol is organized in a set
number of negotiation rounds, until a deadline is
reached, or the negotiation is successful. The deadline
is the number of allowed rounds. Within a round, the
negotiator concurrently negotiates with all available
providers both with the ones having the same func-
tionality, and with the ones having different function-
alities. The end of a negotiation round represents a
synchronization point allowing the negotiator to eval-
uate the global QoS values, that is a necessary coor-
dination step to negotiate for end-to-end QoS values.

The negotiation process starts when an Abstract
Workflow (AW) is produced. It is a directed acyclic
graph AW = (AS,P) where AS = AS1, . . .ASn is a set
of nodes, and P is a set of directed arcs. Each node
represents an Abstract Service (AS), i.e. a generic
service description that specifies a required function-
ality in the composition of services. The Service
Negotiator prepares m call for proposals (cfps), one
for each Abstract Service in the Abstract Workflow
(AW), each one sent to the set of n available providers

for that Abstract Service. So, at each round m∗n cfps
are sent. After waiting for the time set to receive of-
fers (i.e., the expiration time of a negotiation round),
the negotiator checks if there are offers for each Ab-
stract Service; if not, it declares a failure since it is
not possible to find a Concrete Service corresponding
to each Abstract Service. Otherwise, it evaluates a se-
lected set of offers, one for each Abstract Service, and
according to the result of the evaluation, it performs
one of the following actions:

• if the aggregated QoS values of the selected of-
fers do not meet the user QoS request, it asks for
new offers by sending again m∗n cfps, so starting
another negotiation round with all the providers;

• if the aggregated QoS values of the selected of-
fers meet the user QoS request, it accepts the of-
fers sent by the corresponding providers (one for
each abstract service), so ending the negotiation
successfully;

• if the deadline is reached without a success, the
negotiator declares a failure to all providers that
took part in the negotiation.

In order to check if there is a combination of of-
fers that satisfies the end-to-end QoS constraint, at
the end of a negotiation round t the Service Negotia-
tor selects the most promising offer for each Abstract
Service, and then it verifies if the aggregation of the
selected offers meet the user’s constraints, to avoid
the computation of all possible combinations of of-
fers received for each Abstract Service. In the case of
additive QoS parameters, and QoS user requirements
representing an upper bound for acceptable composi-
tions, a promising offer x̄i, j at round t for ASi is com-
puted according to the approach proposed in (Alrifai
and Risse, 2009), as follows:

x̄t
i, j = argmax

xt
i, j∈ASi

(
max(xt

i, j)− xt
i, j

∑m
k=1 max(xt

k, j)−∑m
k=1 min(xt

k, j)
) (1)

where m is the number of Abstract Services compos-
ing the Abstract Workflow, max(xt

i, j) is the maximum
xt

i, j value offered by the service provider j for the QoS
parameter among all the available offers for the ASi
at time t, while min(xt

i, j) is the corresponding mini-
mum xt

i, j attribute value. Equation 1 estimates how
promising an offer is w.r.t. the other offers for the
same Abstract Service (local evaluation), and to the
entire workflow (global evaluation) by providing an
indication of how good the value of each QoS param-
eter is w.r.t the QoS values offered by other providers
of the same Abstract Service (the numerator), in re-
lation to the possible aggregated values of the same

Generating and Instantiating Abstract Workflows with QoS User Requirements

279



Abstract 
Capability

Concrete
Capability

implements

Concrete 
Workflow

Abstract 
Workflow

<<agent>>
Configurator

generates

Functional
Requirements

satisfies

<<agent>>
Service 

Orchestrator

enacts

composes

addresses

QoS
Requirements

satisfies

User 
Specifications

<<agent>>
Service 
Provider

provides

<<agent>>
QoS 

Negotiator

negotiate qos

publishes

builds

Concrete
Service

proxy for

Figure 1: Conceptual integration of MUSA and QoS Nego-
tiation components.

parameter for all the Abstract Services (the denomi-
nator).

Then, the Service Negotiator checks if the selected
set of offers at round t meets the constraint, i.e.:

m

∑
i=1

x̄t
i, j ≤ Req QoS (2)

where Req QoS is the user required QoS value, ex-
pressed as an upper bound of an acceptable combina-
tion, and it is assumed to be composed of one QoS
parameter.

3.3 System Integration

Figure 1 shows an overview of the integration be-
tween the architecture of MUSA and the components
for the automatic negotiation. The integration was
possible thanks to a semantic reconciliation:

• MUSA introduces the concept of Abstract Capa-
bility in order to provide a means for describing
a service in abstract terms. The QoS Negotiation
uses Abstract Service (AS) for the same concept.

• A MUSA plan –built for addressing a set of
goals– corresponds to the QoS Negotiation Ab-
stract Workflow (AW).

• In MUSA, each Abstract Capability is associated
to a Concrete Capability that encapsulates the in-
structions for invoking a specific service. Given
that more providers may offer the same function-
ality, in order to distinguish them the QoS Nego-
tiation refers to a specific Concrete Service (CS).

• Finally, the run-time plan, that will be executed by
the workflow engine, corresponds to a Concrete
Workflow (CW).

QoS metrics to compute end-to-end QoS values
and aggregation rules, depend both on the types of

LOOP

Configurator Negotiator Service 
Provider

goals

abstract 
workflow

execute workflow

negotiate QoS
concrete 
workflow

Orchestrator

Figure 2: Interaction diagram showing the integration of
MUSA and QoS Negotiation components.

QoS, and on the structure of the AW (i.e., its control
flow). In the integrated framework, service selection,
as shown in Figure 2, is carried out before execution
since starting the execution of a Concrete Workflow
that can end up without meeting the users’ QoS re-
quirements would result in a waste of computing re-
sources.

Once one or more plans or Abstract Workflows
have been generated, a set of concrete capabilities are
mapped to each abstract capability in the workflow.
Concrete capabilities are implemented by Web Ser-
vices, and as such they only know about themselves,
and they are not capable of autonomous action, inten-
tional communication, or proactive cooperative be-
havior (Huhns, 2002). So, in order to provide the
middleware with negotiation capabilities, a software
agent approach is adopted as proposed in (Di Napoli,
2009). In fact, software agents possess all of these
meta-capabilities, and they are used to represent ser-
vice providers and service consumers.

4 A MOTIVATING EXAMPLE:
THE SMART TRAVEL SERVICE

A Smart Travel service is a complex distributed com-
posite service acting as a tour operator for organizing
holiday packages and supporting travelers on-the-run.
The user may use the Smart Travel service to orga-
nize a vacation by specifying a set of functional re-
quirements about the kind of desired vacation includ-
ing the geographic area of interest, places of interest,
activities to perform, and a ser of non functional re-
quirements about a budget to spend, or the degree of
service reliability and so on.

Users may express travel preferences supported by
a flexible language and a specific interface to convey
her goals about: places to visit, activities to do and –in
general– the kind of vacation. The aim is to aggre-
gate heterogeneous touristic services (flights, trans-

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

280



fers, hotels and tickets for museums, for the opera
and for other local events) in a dynamic, open and ge-
ographically distributed environment. Creating new
travel experiences grounds on putting traveler’s re-
quirements at the center of the process.

The system has to organize the corresponding ser-
vices and acts as a local guide for traveler, running on
a personal device.

4.1 Abstract Workflow Generation

In the running example goals represent the main in-
strument for the users in order to express their travel-
ing requests. An example could be the goal:
WHEN in sicily THE user SHOULD ADDRESS vis-
iting palermo for at least 3 days.

Besides the functional requirements, quality as-
sets are the fundamental mechanism to increase user’s
flexibility in expressing their expectations. They rep-
resent a powerful instrument to set the expected QoS.
An example of QoS asset is:
the total cost IS LOWER THAN 1500 e.

An example of a goal representing a travel request
is the following:

GOAL to_visit_city:
WHEN number_nights_to_spend(city ,nights)

AND nights > 0
THE SYSTEM SHALL ADDRESS
hotel_reserved(city)

For instance, HotelReservation is the abstract ca-
pability that identifies the reservation of a generic ho-
tel in a city for a number of nights. It is described as
follows:

capability(hotel_reservation ,

% semantic description
precondition(available(city ,dates)),
postcondition(hotel_reserved(city)),
evolution(add(hotel_reserved(city))),

).

Clearly, many Concrete Capabilities may refer to
the same abstract capability by offering the service
with different QoS (for example, prices, stars, . . . ).
Here we show the Concrete Capability provided by
Expedia services. The Concrete Capability also spec-
ifies technical details for invoking the web-service
front-end.

concrete_capability(expedia_hotel_reservation ,
extends(hotel_reservation)

% service interface
method(https ,put),
address(http://terminal2.expedia.com/x/

mhotels/reserve),
input([

param(city ,string),
param(room ,integer),
param(checkInDate ,date),
param(checkOutDate ,date)]),

output([param(reservation_id ,string)]),

% protocols

service_protocol(rest),
require_auth(oauth20)

).

According to the available services, agents of
the system are able of producing more plans for a
required goal. The proactive means-end reasoning
works with abstract capabilities, and it adopts a sym-
bolic approach to satisfy the goal from a functional
point of view. Therefore the resulting workflow ag-
gregates generic categories of services.

In the context of the Smart Travel service, the
proactive means-end reasoning organizes a trip by
combing a set of traveling acts: visiting a touristic
place, attending a local event, relaxing on a beach/re-
sort/natural place, and moving from a place to another
one. An example of trip is: 1. flight to dest city, 2.
visit for 2 days, 3. move to beach resort, 4. relax 1
day, . . . 13. flight back.

As a consequence the algorithm deduces an ab-
stract workflow for arranging the services necessary
for the trip. For instance, flying to a city demands
to book a seat in a flight in a given data, from the
departure city to the destination (flight booking capa-
bility); visiting a city requires to reserve an accom-
modation for the corresponding nights of visit (ho-
tel reservation capability); and so on. The output is a
workflow that aggregates some abstract capabilities.
For example, an extract of the workflow is the follow-
ing sequence: 1. flight booking, 2. hotel reservation,
3. restaurant booking.

The plan is still abstract because it requires addi-
tional data, for instance about the kind of accommo-
dations, the timetables, and the price. Clearly, many
alternatives exist for each single service, thus poten-
tially leading to a number of combinations.

In order to become operative, it is necessary to
specify, for each category of services, the concrete
service (and therefore its provider) that will be in-
voked. The specified quality assets help the system
to select concrete services. For instance, the require-
ment about the budget helps the system to discard lux-
ury hotels providers from the list to be contacted. To
this aim, QoS-based service selection plays a central
role. Indeed, in order to address QoS-aware service
composition, it is necessary to select the combination
of services that satisfies also the non-functional re-
quirements, expressed as end-to-end QoS values on
the complete plan.

4.2 Service Providers Strategy

The adopted negotiation mechanism is unilateral,
i.e. counteroffers are not proposed by the negotia-
tor. So, in order for the negotiation to converge, the
only strategy the providers can adopt is a concession

Generating and Instantiating Abstract Workflows with QoS User Requirements

281



one. Several types of concession strategies in auto-
mated agent negotiation are proposed in the litera-
ture (Faratin et al., 1998), (Lopes and Coelho, 2010).
Here, the concession strategies are modeled as multi-
dimensional Gaussian functions, where each dimen-
sion represents a single QoS attribute to be negotiated
(Rossi et al., 2016). The Gaussian function represents
the provider’s utility of the generated offers, and at
the same time the probability distribution of the of-
fers the provider may generate. The use of Gaussian
functions allows to simulate a stochastic behaviour of
service providers with zero-intelligence, by approx-
imating the trends of a volatile and open market of
services. A Gaussian function G is characterized by
its parameters µ and σ (G(µ,σ)). The best offer in
terms of the provider’s own utility is represented by
the µ value of the Gaussian function, i.e. U(µ) = 1,
and it corresponds to the QoS value of the offer with
the highest probability to be generated. The Gaus-
sian standard deviation σ represents the attitude of the
provider to concede during negotiation, and it deter-
mines its offer reservation value (µ−σ). Hence, big-
ger values of σ correspond to smaller reservation val-
ues, so to more conceding providers. The negotiation
set of a QoS parameter is [µ−σ;µ].

At each negotiation round, each provider gener-
ates, following its probability distribution, a new util-
ity value corresponding to a new offer. If this value
is lower than the one offered at the previous round
and within the negotiation set, then it proposes the
new value. If this value is greater than the one offered
at the previous round, or it is outside the negotiation
set, the provider proposes the same value offered in
the previous round. This strategy allows to simulate
different and plausible behaviours of providers that
prefers not having a consistent loss in utility, even
though when the number of negotiation rounds in-
creases, the probability for the provider to move to-
wards its reservation value increases.

4.3 Negotiating upon Smart Travel QoS

Once MUSA processes the injected user goal for the
Smart Travel example, an Abstract Workflow com-
posed of 3 Abstract Services is computed: flight ser-
vice, hotel service, entertainment services. For each
service more providers are available and the nego-
tiation among them takes place in order to select
the combination of Concrete Services that meets the
user’s requirement on the cost parameters. At each
round providers submit their offers, and at the end of
the round the negotiator selects a set of promising of-
fers, one for each Abstract Service, and it checks if
the corresponding cost is less than the required global

values, i.e., ∑m
i=1 x̄i, j ≤ 1500e.

If no solution is found at round t, negotiation
takes place with all providers at round t + 1. In fact,
since the strategies of negotiators are not known to
the negotiator for the knowledge disclosure assump-
tion, there is no need to discharge providers that could
become more competitive during the negotiation pro-
cess by updating their offered QoS values. If nego-
tiation is successful, a sub-optimal solution is found
w.r.t. the user request. Of course, the length of ne-
gotiation in terms of the negotiation rounds necessary
to reach an agreement, if any, depends on both the
providers’ strategies, and on their attitude to concede,
but also on the distribution of the QoS values among
the component services. The simulation of negotia-
tion upon the QoS price value of the Smart Travel
service is carried out by randomly generating one
Gaussian distribution for each provider, with differ-
ent concession rates, and reservation values. It should
be noted that providers of the same service have the
same optimal QoS value for their offer (i.e., the one
with utility value equal to 1), to simulate that the de-
sired price of a service is an agreed value among the
providers to avoid an unbalanced market. Accord-
ing to their Gaussian distribution, providers generate
their offers at each negotiation round, until they are
informed either of the negotiation success, or of the
negotiation end with a failure. The negotiation suc-
cess is reached when the compositor finds a composi-
tion of offers with any QoS value solution of Equation
1. Concurrent negotiation with all providers at each
round makes the negotiation time independent from
the number of Abstract Services in the composition,
and of the providers available for each of them.

5 CONCLUSIONS

The paper proposes a QoS based service composition
framework that relies on both AI planning, and au-
tomatic agent negotiation: the first allows to gener-
ate abstract workflows satisfying user’s goals, while
the second allows to select the service providers able
to satisfy the QoS requirements specified by the user.
This hybrid approach allows to address the challenges
due to the dynamic nature of an open system pro-
viding services that are created and updated on the
fly. In fact, such a system has the same characteris-
tics of a market driven by the supply and demands of
goods whose non-functional characteristics have val-
ues that cannot be fixed a priori. In fact, they depend
on several factors as the volatility of the market that
may affect providers’ strategies, the nature of the pro-
vided services, and the users’ preferences. In addi-

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

282



tion, the proposed approach allows concurrent nego-
tiations among providers of the same and the different
services required in the composition, making the ne-
gotiation time independent from the number of both
abstract services in the composition, and of service
providers for each abstract service, that is a crucial
requirement in service oriented scenarios.

ACKNOWLEDGEMENTS

This work has been partially supported by the Ital-
ian Ministry of Education University and Research
within the PRIN 2015 Project “Profiling and Adap-
tation for User-centered Assistive Robotics” (Ref.
2015KBL78T).

REFERENCES

Alrifai, M. and Risse, T. (2009). Combining global opti-
mization with local selection for efficient QoS-aware
service composition. In Proceedings of the 18th Int.
Conf. on World Wide Web, pages 881–890. ACM.

Ardagna, D. and Pernici, B. (2007). Adaptive service com-
position in flexible processes. IEEE Trans. on Soft-
ware Eng., 33(6):369–384.

Di Napoli, C. (2009). Knowledge Processing and Deci-
sion Making in Agent-Based Systems, chapter Soft-
ware Agents to Enable Service Composition through
Negotiation, pages 275–296. Springer Berlin.

Di Napoli, C., Di Nocera, D., Pisa, P., and Rossi, S.
(2014). A market-based coordinated negotiation for
qos-aware service selection. In Agent-Mediated Elec-
tronic Commerce. Designing Trading Strategies and
Mechanisms for Electronic Markets, volume 187 of
LNBIP, pages 26–40. Springer.

Di Napoli, C., Di Nocera, D., and Rossi, S. (2015). Com-
puting pareto optimal agreements in multi-issue ne-
gotiation for service composition. In Proceedings of
AAMAS 2015, pages 1779–1780.

Faratin, P., Sierra, C., and Jennings, N. R. (1998). Nego-
tiation Decision Functions for Autonomous Agents.
Robotics and Autonomous Systems, 24:3–4.

Huhns, M. N. (2002). Agents as web services. IEEE Inter-
net Computing, 6(4):93–95.

Lau, R. Y. K. (2007). Towards a web services and intelli-
gent agents-based negotiation system for B2B ecom-
merce. Electronic Commerce Research and Applica-
tions, 6(3):260–273.

Lopes, F. and Coelho, H. (2010). Concession Behaviour
in Automated Negotiation, pages 184–194. Springer
Berlin Heidelberg.

Moghaddam, M. and Davis, J. (2014). Service Selection in
Web Service Composition: A Comparative Review of
Existing Approaches, pages 321–346. Springer New
York, New York, NY.

Papazoglou, M., Traverso, P., Dustdar, S., and Leymann, F.
(2007). Service-oriented computing: State of the art
and research challenges. IEEE Computer, 40(11):38–
45.

Paurobally, S., Tamma, V., and Wooldrdige, M. (2007). A
framework for web service negotiation. ACM Trans.
Auton. Adapt. Syst., 2(4).

Rossi, S., Di Nocera, D., and Di Napoli, C. (2016). Recent
Advances in Agent-based Complex Automated Nego-
tiation, volume 638 of Studies in Computational In-
telligence, chapter Gaussian-Based Bidding Strategies
for Service Composition Simulations, pages 193–208.
Springer International Publishing.

Sabatucci, L. and Cossentino, M. (2015). From Means-
End Analysis to Proactive Means-End Reasoning. In
Proceedings of 10th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing
Systems, Florence, Italy.

Sabatucci, L., Lodato, C., Lopes, S., and Cossentino, M.
(2015). Highly customizable service composition and
orchestration. In Service Oriented and Cloud Comput-
ing, volume 9306 of LNCS, pages 156–170. Springer.

Sabatucci, L., Lopes, S., and Cossentino, M. (2016). A
goal-oriented approach for self-configuring mashup of
cloud applications. In Cloud and Autonomic Comput-
ing (ICCAC), 2015 International Conference on.

Sabatucci, L., Ribino, P., Lodato, C., Lopes, S., and
Cossentino, M. (2013). Goalspec: A goal specifi-
cation language supporting adaptivity and evolution.
In Engineering Multi-Agent Systems, pages 235–254.
Springer.

Shehu, U., Epiphaniou, G., and Safdar, G. A. (2014). A
survey of qos-aware web service composition tech-
niques. International Journal of Computer Applica-
tions, 89(12):10–17.

Siala, F. and Ghedira, K. (2011). A multi-agent selection
of web service providers driven by composite QoS.
In Proc. of 2011 IEEE Symposium on Computers and
Communications (ISCC), pages 55–60. IEEE.

Strunk, A. (2010). Qos-aware service composition: A sur-
vey. In Web Services (ECOWS), 2010 IEEE 8th Euro-
pean Conference on, pages 67–74.

Yan, J., Kowalczyk, R., Lin, J., Chhetri, M. B., Goh,
S. K., and Zhang, J. (2007). Autonomous service level
agreement negotiation for service composition provi-
sion. Future Gener. Comput. Syst., 23(6):748–759.

Yu, T., Zhang, Y., and Lin, K.-J. (2007). Efficient algo-
rithms for web services selection with end-to-end QoS
constraints. ACM Trans. Web, 1(1).

Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M.,
Kalagnanam, J., and Chang, H. (2004). QoS-aware
middleware for web services composition. IEEE
Trans. on Software Engineering, 30(5):311–327.

Generating and Instantiating Abstract Workflows with QoS User Requirements

283


