
A Study on Cooperative Action Selection Considering Unfairness in

Decentralized Multiagent Reinforcement Learning

Toshihiro Matsui and Hiroshi Matsuo

Nagoya Institute of Technology, Gokisyo-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan

Keywords: Multiagent System, Reinforcement Learning, Distributed Constraint Optimization, Unfairness, Leximin.

Abstract: Reinforcement learning has been studied for cooperative learning and optimization methods in multiagent sys-

tems. In several frameworks of multiagent reinforcement learning, the system’s whole problem is decomposed

into local problems for agents. To choose an appropriate cooperative action, the agents perform an optimiza-

tion method that can be performed in a distributed manner. While the conventional goal of the learning is the

maximization of the total rewards among agents, in practical resource allocation problems, unfairness among

agents is critical. In several recent studies of decentralized optimization methods, unfairness was conside-

red a criterion. We address an action selection method based on leximin criteria, which reduces the unfairness

among agents, in decentralized reinforcement learning. We experimentally evaluated the effects and influences

of the proposed approach on classes of sensor network problems.

1 INTRODUCTION

Reinforcement learning has been studied as coopera-

tive learning and optimization methods in multiagent

systems (Hu and Wellman, 2003; Zhang and Lesser,

2011; Nguyen et al., 2014). In several frameworks of

multiagent reinforcement learning, the system’s en-

tire problem is decomposed into local problems for

agents. To choose an appropriate cooperative action,

the agents perform an optimization method that can

be performed in a distributed manner.

A class of networked distributed POMDPs was

defined for a sensor network domain (Zhang and Les-

ser, 2011), and in the reinforcement learning for such

problems, the joint actions of agents are selected

using the max-sum algorithm (Farinelli et al., 2008),

which is a solution method for distributed constraint

optimization problems (DCOPs).

Similarly, Markovian dynamic DCOPs and their

solution method were proposed (Nguyen et al., 2014),

where distributed RVI Q-learning and R-learning al-

gorithms employed DPOP (Petcu and Faltings, 2005),

which is also a solution method of DCOPs, to select

the joint actions of agents.

While the learning’s conventional goal is the max-

imization of total rewards among agents, in practi-

cal resource allocation problems, unfairness among

agents is crucial. In several recent studies of decen-

tralized optimization methods including DCOPs, un-

fairness is deemed an important criterion (Netzer and

Meisels, 2013a; Netzer and Meisels, 2013b).

As a criterion of unfairness, leximin has been stu-

died (Moulin, 1988; Bouveret and Lemaı̂tre, 2009).

The leximin defines the relationship between two vec-

tors in multi-objective optimization problems. Max-

imization on the leximin improves unfairness among

objectives. Extended classes of DCOPs applying lex-

imin criterion and solution methods have been propo-

sed (Matsui et al., 2014; Matsui et al., 2015).

In this study, we address an action selection met-

hod based on leximin criteria, which reduces the un-

fairness among agents, in decentralized reinforcement

learning. We experimentally evaluated the effects and

influences of the proposed approach on classes of sen-

sor network problems.

The remainder of this paper is organized as fol-

lows. The next section shows the background of our

study including reinforcement learning with a dis-

tributed setting and criteria for the cooperative acti-

ons of agents. Section 3 describes a class of sen-

sor network problems for our motivating domain.

Our proposed approach is shown in Section 4. In

Section 5, our proposed methods are experimentally

evaluated. Related works and discussions are ad-

dressed in Section 6, and the study is concluded in

Section 7.

88
Matsui T. and Matsuo H.
A Study on Cooperative Action Selection Considering Unfairness in Decentralized Multiagent Reinforcement Learning.
DOI: 10.5220/0006203800880095
In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), pages 88-95
ISBN: 978-989-758-219-6
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 BACKGROUND

2.1 Reinforcement Learning with

Distributed Setting

Several types of reinforcement learning have been ap-

plied to multiagent systems to optimize cooperative

policies among agents. In several recent studies, mul-

tiagent reinforcement learning is modeled and solved

using a distributed manner (Zhang and Lesser, 2011;

Nguyen et al., 2014). Basically, these approaches re-

semble standard settings, while the learning tables are

distributed among agents. The optimal joint action is

determined using a distributed optimization method.

Here we address a standard Q-learning as a base

of such a distributed version. The problem of Q-

learning consists of a set of states S, a set of actions

A, a function table of Q-values Q, reward function R,

and an update rule:

Qt+1(st ,at) = (1−α)Qt +α(r+ γmax
a

Qt(st+1,a)). (1)

st ∈ S and at ∈ A denote a joint state and a joint action

among agents at time step t. r is the reward that is

received from reward function R in an environment

when agents perform joint action at at joint state st .

The learning is adjusted by learning rate α and dis-

count rate γ. In each time step t, agents sense current

joint state st and choose joint action at from A. Af-

ter the agents perform action at , they sense next state

st+1 and obtain reward r from the environment. Ba-

sed on the reward and the next state, agents update

the Q-values for st and at . In this computation, op-

timal joint action a at joint state st+1 is chosen and

the corresponding Q-value is propagated with the dis-

count rate. The above processing is repeated until the

agents learn the environment’s information.

To choose the next joint action at joint state st ,

several heuristics are employed based on the trade-

off between exploration and exploitation. With ε-

greedy heuristic, agents perform random walk with

probability ε and optimal joint action a∗ such that

a∗ = argmaxaQt(st ,a) with probability 1− ε.

In a distributed setting, each agent i has a part of

states Si and actions Ai, where ∪iSi = S and ∪iAi = A.

Note that, for i 6= j, Si ∩ S j and Ai ∩A j can be non-

empty sets. Local problems are related by this over-

lap. Each agent i has a function table of Q-values Qi

for Si and Ai. Also, partial reward function Ri is de-

fined for Si and Ai. An advantage of this setting is

that huge global joint states and actions are approxi-

mated as sets of local joint states and actions. Howe-

ver, cooperation is necessary to choose an appropriate

global joint action, while each agent i updates Qi in-

dependently.

2.2 Cooperation based on Distributed

Constraint Optimization

To choose an appropriate global joint action, an op-

timization method that resembles distributed problem

solving is necessary. In the case of a ε-greedy heu-

ristic, agents perform random walk or choose the glo-

bally optimal action. The latter case is represented as

a distributed constraint optimization problem (Modi

et al., 2005; Petcu and Faltings, 2005; Farinelli et al.,

2008; Zivan, 2008), which is a fundamental problem

in multiagent cooperation.

A distributed constraint optimization problem

(DCOP) is defined by (A ,X ,D,F). Here A is a

set of agents, X is a set of variables, D is a set of

domains of variables, and F is a set of objective

functions. The variables and functions are distri-

buted to the agents in A . Variable xn ∈ X ta-

kes its values from its domain Dn ∈ D. Function

fm ∈ F defines the utility values on several variables.

Xm ⊂ X defines the set of variables in the scope of

fm. Fn ⊂ F defines a set of functions, where xn is

in their scope. fm is defined as fm(xm0, · · · ,xmk) :

Dm0 × ·· · × Dmk → R, where {xm0, · · · ,xmk} = Xm.

fm(xm0, · · · ,xmk) is also denoted by fm(Xm). Aggre-

gation F(X) of all the objective functions is defined

as F(X) = ∑m s.t. fm∈F,Xm⊆X fm(Xm). The goal is to

find a globally optimal assignment that maximizes the

value of F(X).
Consider the problem for optimal joint action a∗

such that a∗ = argmaxaQt(st ,a). In distributed set-

tings, since the Q-values are approximated with local

Q-values, each agent i has Qi,t at time step t. Here

variable xn of a DCOP is defined for An ⊂ Ai and Dn

corresponds to An. Note that agent i’s Ai (and Si) can

overlap with different agent j’s A j (and S j). In this

case, partial set An = Ai ∩A j is shared by both agents

and defined as domain Dn of variable xn. On the ot-

her hand, function fm is defined for Qi,t . Namely,

fm(Xm) = Qi,t(si,t ,ai), where si,t is a vector of con-

stant values. While Xm corresponds to Ai, Xm overlaps

with the scopes of the functions in other agents.

Since this problem resembles the computation of

maxa Qt(st+1,a) in Eq. (1), the same solution method

can be applied to both computations of a joint action

and learning.

Each agent locally knows the information of its

own variables and the related functions in the initial

state. An optimization method in a distributed man-

ner computes the globally optimal solution. Several

solution methods have been proposed for DCOPs.

Here we employ a dynamic programming method that

computes the exact optimal solution.

A Study on Cooperative Action Selection Considering Unfairness in Decentralized Multiagent Reinforcement Learning

89



2.3 Optimization Criteria

In conventional multiagent reinforcement learning,

the goal of the problem is to optimize the global sum

of the rewards. On the other hand, different studies

address the individuality of each agent, such as the

Nash equilibrium (Hu and Wellman, 2003).

In several recent DCOP studies, fairness among

agents was addressed (Netzer and Meisels, 2013a;

Netzer and Meisels, 2013b; Matsui et al., 2014; Mat-

sui et al., 2015). Since the solution methods for such

classes of problems are designed as distributed algo-

rithms, the problem of joint actions can be replaced

by problems based on fairness. In particular, optimi-

zation with the leximin criterion (Moulin, 1988; Bou-

veret and Lemaı̂tre, 2009; Matsui et al., 2014; Matsui

et al., 2015) shown below improves fairness among

agents. Here we refer the definitions in (Matsui et al.,

2015).

To address multiple objectives for agents, ob-

jective vectors are defined. Each value of an objective

vector corresponds to a utility value for an agent. Ob-

jective vector v is defined as [v0, · · · ,vK ], where v j is

an objective value. Vector F(X) of objective functi-

ons is defined as [F0(X0), · · · ,FK(XK)], where X j is

the subset of X on which F j is defined. F j(X j) is an

objective function for objective j. For assignment X ,

vector F(X ) of the functions returns an objective vec-

tor [v0, · · · ,vK ]. Here v j = F j(X j). In addition, the

objective vector is sorted to employ leximin. Based

on objective vector v, in a sorted objective vector, all

the values of v are sorted in ascending order.

Based on the sorted objective vectors, the lexi-

min is defined as follows. Let v and v′ denote the

vectors of identical length K + 1. Let [v0, · · · ,vK ]
and [v′0, · · · ,v′K ] denote the sorted vectors of v and v′.
Also, let ≺leximin denote the relation of the leximin

ordering. v ≺leximin v′ if and only if ∃t,∀t ′ < t,vt′ =
v′

t′ ∧ vt < v′t .
The maximization on leximin reduces the unfair-

ness among the utility values among the agents by im-

proving the worst case utilities. Also, this criterion

chooses a Pareto optimal objective vector.

In several resource allocation problems, reducing

unfairness among agents is an important criterion,

while such joint actions may not be compatible with

conventional reinforcement learning.

3 MOTIVATING DOMAIN

Considering several related works (Zhang and Les-

ser, 2011; Nguyen et al., 2014), we define an example

problem motivated by sensor networks, as shown in

1

32

x
1

f
3

x
3

x
2

f
1

f
2

Sensor Variable

FunctionArea/Agent
1

2

3

Targets

Figure 1: Sensor network problem.

Fig. 1. The system consists of sensors, areas, and tar-

gets. Each sensor adjoins a few areas, and each area

adjoins a few sensors. Here we assume for simplicity

that an area is related to two sensors, each of which

can be simultaneously allocated to one of the adjoi-

ning areas.

While a target stays in one of the areas, multiple

targets can be in the same area. The sensing event

is active and detected by targets. A target randomly

moves to one of the other neighborhood areas of sen-

sors adjoining the current staying area when sensors

are allocated to the residing area. We only consider

whether an area is occupied by at least one target.

When an area is occupied by targets and allocated

with sensors, a reward is given that corresponds to

the combination of allocated sensors. However, if an

empty area is allocated by sensors, a small negative

reward is given. The goal of the problem is to improve

the global reward aggregated for all the areas.

This system is represented as a problem of multia-

gent reinforcement learning. To represent cooperative

action, agent i corresponds to area i. In actual settings,

such an agent will be operated by a sensor node that

adjoins the area. States Si of agent i correspond to the

states of sensors adjoining area i. Each pair of sta-

tes (sa
k ,s

o
k) ∈ Si is defined by the states of sensor k.

sa
k represents the area to which sensor k is allocated.

so
k represents whether sensor k detects that an area is

occupied by the targets. Similarly, actions Ai are ba-

sed on the areas to which the sensors are allocated.

Each action ak ∈ Ai represents the area to which sen-

sor k is allocated. Qi is defined for Si and Ai. The

values of reward function Ri are defined for area i, as

shown above.

The DCOP for a joint action at time step t is re-

presented as follows. Variable xk is defined for ak of

sensor k. Function fi(Xi) is defined for Qi,t(si,t ,a),
where xk ∈ Xi corresponds to ak ∈ Ai.

In the example shown in Fig. 1, the sensor network

consists of three sensors and three areas. The agent

of area 1 has states S1, actions A1, and Q-values Q1.

Since the states and actions are related to sensors 1

and 2, the local problem partially overlaps with those

of other agents. In a DCOP, a variable corresponds to

the actions of a sensor, and a function corresponds to

a part of a table of Q-values.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

90



4 COOPERATIVE ACTION

CONSIDERING UNFAIRNESS

4.1 Applying Leximin Optimization

In this study, we apply a leximin operator for action

selection based on the unfairness among agents. In

a sensor network, when an occupied area is observed

by multiple sensors, a higher reward is given for more

information. On the other hand, such a concentration

decreases the number of observed areas. Namely, se-

veral occupied areas can be ignored even if smaller

rewards are given.

Since the global sum of utilities among agents

does not consider individual utilities, other criteria are

required in this situation. A comparison of unfairness

based on leximin is expected to handle this case. On

the other hand, this action selection might be incom-

patible with the original reinforcement learning. As

the first study, we experimentally evaluate the effect

and influence of such action selection.

For multiple objective problems, each objective

for agent i of area i corresponds to function fi. The-

refore, a sorted objective vector consists of the values

of fi for all agents, but the conventional case employs

the value’s total summation.

4.2 Solution Method

To solve the DCOPs for action selection, we employ

a dynamic programming approach that can be per-

formed in a distributed manner (Matsui and Matsuo,

2014; Matsui et al., 2015). Since the solution met-

hod’s basic framework is the same for both criteria,

we first briefly sketch the solution method for the

summation. A DCOP is represented as a factor graph,

which is a bipartite graph that consists of variable no-

des, function nodes, and edges. For the factor graph, a

pseudo-tree, which is a tree-like graph structure defi-

ning the (partial) order of nodes, is generated (Fig. 2).

Here we assume that the root node is one of variable

nodes. If the topology of the original sensor network

is static, a single pseudo-tree can be reused for each

problem solving. The problem is decomposed based

on pseudo-trees. As a result, each node has a partial

problem consisting of the subtree rooted at the node.

The partial problem of the subtree is only related to its

higher nodes with cut edges between the subtree and

higher nodes. The variables that correspond to the cut

edges are called separators.

Based on these relations, each node performs part

of the dynamic programming that consists of two pha-

ses. The first phase is performed in a bottom-up man-

ner. Each node aggregates function tables from its

x
1

f
3

x
3

x
2

f
1

f
2

Variable

Function

f
4

x
4

x
1

f
1

x
2

f
2

x
3

f
3 f

4

x
4

x
1

x
1
, x

2

x
1
, x

2

x
1
, x

3

x
1
, x

3 x
3

x
4

(1) DCOP (2) Pseudo Tree

Separator

Figure 2: Solution method.

child nodes, if they exist, and generates a function ta-

ble by adding the function values for each assignment

to the related variables. In addition, a function node

also aggregates its function with the function table

and maximizes the aggregated function table for non-

separator variables. As a result, a smaller function

table for just the separators is generated and sent to

the parent node.

The second phase is performed in a top-down

manner. In the root (variable) node, the optimal as-

signment for the variable is determined from the ag-

gregated function table. Then the root agent sends

its optimal assignment to its child nodes. The child

nodes determine the optimal assignment to the rela-

ted non-separator variables, if necessary, and propa-

gate the optimal assignment, including those of hig-

her nodes, to its child node. The computational and

space complexity of the solution method is exponen-

tial with the number of separators for each partial pro-

blem. However, we prefer the exact solution method

to choose one optimal solution.

By replacing the objective values and the addi-

tion/maximization operators to the sorted objective

vectors and extended operators, the solution method

solves the maximization problem on leximin crite-

rion. The addition operator is replaced by a couple

of concatenate and resorting operators for objective

vectors. The maximization is based on leximin. Since

we use real values as Q-values, the opportunities for

tiebreaks in leximin comparisons will be less than the

case of integer values. However, the leximin operator

continues to work.

4.3 Selection of Action in Learning

Equations

Since action selection based on leximin criterion is

different from the original one, it may be incompa-

tible with reinforcement learning. In particular, the

selection of an optimal joint action in Eq. (1) might

A Study on Cooperative Action Selection Considering Unfairness in Decentralized Multiagent Reinforcement Learning

91



Sensor

Area/Agent

(1) grid (2) tree

Figure 3: Topologies of problems.

be corrupted, but the actual action selection can be

considered an exploration strategy.

To remove such influence from the learning equa-

tion, discount rate γ can be set to zero. Another ap-

proach is to employ the original optimization criterion

for the learning equation. In this case, how the explo-

ration strategy based on leximin affects the original

method will be evaluated.

5 EVALUATION

5.1 Problem Settings

We experimentally evaluated the effects and the in-

fluences of our proposed approach and evaluated the

following topologies of sensor network problems.

• grid: We placed sensors at the grid vertices and

the areas at the edges (Fig. 3 (1)). Since this to-

pology easily increases the number of separators,

we limit the size to 3× 3 sensors.

• tree: A small tree is designed based on the capa-

city of the sensor resources. Similar to the grids,

sensors and areas are placed at the tree’s verti-

ces and edges. When two sensors are allocated to

an area in the center of this network, at least one

sensor can be allocated to all of the other areas

((Fig. 3 (2)).

• tree-like: In addition to a randomly generated

tree, a few edges/areas are contained to compose

cycles.

To reduce the size of the state and action spaces, we

limited the problems so that an area adjoins two sen-

sors. The number of targets was set to the number

of areas based on the average occupancy ratio for the

areas.

We set the rewards for the areas as follows.

• 0-2: When an occupied area is sensed by one sen-

sor, no reward is given, and in the case of two sen-

sors a reward of 2 is given.

• 1-2: When an occupied area is sensed by one and

two sensors, rewards of 1 and 2 are given.

50

100

150

200

250

0 5000 10000

g
lo

b
a

l 
re

w
a

rd
s

steps

sum

leximin

Figure 4: Global reward (grid, 0-2, γ = 0).

Table 1: Global reward and allocated sensors to occupied
areas in last quarter steps (grid, 0-2, γ = 0).

alg. rwd. num. of rwd. num. of alc. sns. rate. of

≤0 2 0 1 2 occ.

sum 10722 24636 5364 5997 2332 5364 0.46

leximin 9006 25494 4506 6546 2918 4506 0.47

• 2-2 0-2: The areas are categorized into two types.

In most occupied areas, when one is sensed by

one or two sensors, a reward of 2 is given. On the

other hand, in one area, the reward is defined as

0-2.

• 2-2 1-2: Similar to 2-2 0-2, the areas are catego-

rized, and the reward is defined as 1-2 in one area.

When a non-occupied area is sensed, a small negative

reward −1.0−3 is given.

We compared the following solution methods for

action selection.

• sum: the summation is employed for both actual

actions and learning.

• leximin: the leximin is employed for both action

selections.

• lxmsum: the leximin and the summation are used

for the actual actions and the learning.

In addition, we compared cases where discount rate γ
is 0 and 0.5. The probability ε of random walk and

learning rate α were set to 0.2 and 0.2. These para-

meters are chosen based on preliminary experiments

so that several typical cases are shown. We performed

ten trials for the same problem. Each trial consisted of

10000 steps of joint actions. The results were avera-

ged for the trials.

5.2 Results

First we evaluated the case of grid with a set of reward

0-2. Here discount rate γ was set to zero. Fig. 4 shows

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

92



50

100

150

200

250

0 5000 10000

g
lo

b
a

l 
re

w
a

rd
s

steps

sum lxmsum leximin

Figure 5: Global reward (grid, 0-2, γ = 0.5).

Table 2: Global reward and allocated sensors to occupied
areas in last quarter steps (grid, 0-2, γ = 0.5).

alg. rwd. num. of rwd. num. of alc. sns. rate. of

≤0 2 0 1 2 occ.

sum 10830 24582 5418 6209 2255 5418 0.47

lxmsum 6880 26556 3444 7101 2976 3444 0.47

leximin 7163 26415 3585 7027 4494 3585 0.50

Table 3: Global reward and allocated sensors to occupied
areas in last quarter steps (grid, 1-2, γ = 0).

alg. rwd. num. of rwd. num. of alc. sns. rate. of

≤0 1 2 0 1 2 occ.

sum 15270 17976 8773 3251 4863 8773 3251 0.56

leximin 14261 16205 13322 474 3696 13322 474 0.58

the global reward among the agents for 50 steps. Ta-

ble 1 shows the summation of the global rewards in

the last 2500 steps (rwd.), the histograms of the re-

wards (num. of rwd.), the histograms of the number of

allocated sensors to the occupied areas (num. of alc.

sns.), and the occupancy ratio for all the areas (rate. of

occ.). Since this problem contains only single types of

rewards, conventional summation well works. In ad-

dition, a few areas can be covered by two sensors, but

rewards are given only for two allocated sensors. In

such cases, a leximin strategy is less effective.

Next we evaluated the same problem with γ = 0.5.

Fig. 5 and Table 2 show the results. The result also

contains the case of lxmsum. In this case, the reward

of leximin decreased less than the case of γ = 0. This

reveals that action selection based on leximin in lear-

ning did not improve the result. Also, lxmsum, which

employed conventional summation for learning, was

not effective in average.

The next case is grid with 1-2. In this problem,

sensors can cover most areas earning at least a reward

of 1. Fig. 6, Table 3, Fig. 7, and Table 4 show the re-

sults. leximin improved the coverage of the areas by

200

220

240

260

280

300

320

340

0 5000 10000

g
lo

b
a

l 
re

w
a

rd
s

steps

sum

leximin

Figure 6: Global reward (grid, 1-2, γ = 0).

200

250

300

350

0 5000 10000

g
lo

b
a

l 
re

w
a

rd
s

steps

sum lxmsum leximin

Figure 7: Global reward (grid, 1-2, γ = 0.5).

Table 4: Global reward and allocated sensors to occupied
areas in last quarter steps (grid, 1-2, γ = 0.5).

alg. rwd. num. of rwd. num. of alc. sns. rate. of

≤0 1 2 0 1 2 occ.

sum 15454 18513 7516 3972 5206 7516 3972 0.56

lxmsum 13787 17899 10408 1693 4861 10408 1693 0.56

leximin 13401 17699 11192 1108 4688 11192 1108 0.56

decreasing the global rewards. In this case, lxmsum

was slightly closer to sum than leximin. From this

result, action selection based on leximin is relatively

effective in simple cases, where the rewards are ea-

sily decreased to improve the worst case agents. For

this kind of settings, similar results were obtained in

several other topologies including tree-like.

As a different setting, we evaluated tree with 2-

2 0-2. In this problem, an area in the center of the net-

work obtains rewards of 0 2, while other areas obtain

rewards of 2 2. Table 5 shows that leximin improved

the coverage of the areas. In addition, the total reward

of the area in the center improved. On the other hand,

for γ = 0.5, the leximin result is worse than sum, as

shown in Table 6.

Similarly, we evaluated tree with 2-2 1-2. Ta-

bles 7 and 8 show the results. In this case, the number

of reward 1 increased, although we expected that the

total reward of the area in the center would improve.

A Study on Cooperative Action Selection Considering Unfairness in Decentralized Multiagent Reinforcement Learning

93



Table 5: Global reward and allocated sensors to occupied
areas in last quarter steps (tree, 2-2 0-2, γ = 0).

alg. rwd. num. of rwd. num. of alc. sns. rate. of

≤0 2 0 1 2 occ.

sum 20288 7353 10147 447 8148 2246 0.62

leximin 21176 6909 10591 268 8561 2204 0.61

alg. rwd. of

cnt. area

sum 2951

leximin 3454

Table 6: Global reward and allocated sensors to occupied
areas in last quarter steps (tree, 2-2 0-2, γ = 0.5).

alg. rwd. num. of rwd. num. of alc. sns. rate. of

≤0 2 0 1 2 occ.

sum 20889 7052 10448 320 8477 2214 0.63

lxmsum 19953 7520 9980 490 8121 2203 0.61

leximin 20076 7459 10041 469 8128 2231 0.62

alg. rwd. of

cnt. area

sum 3220

lxmsum 2671

leximin 2764

Table 7: Global reward and allocated sensors to occupied
areas in last quarter steps (tree, 2-2 1-2, γ = 0).

alg. rwd. num. of rwd. num. of alc. sns. rate. of

≤0 1 2 0 1 2 occ.

sum 20052 7084 774 9642 420 8356 2060 0.62

leximin 20148 6648 1550 9303 237 9098 1754 0.63

alg. rwd. of

cnt. area

sum 2707

leximin 2318

Instead, the coverage of the areas improved by decre-

asing the rewards of the center area. The result reveals

that simple action selection based on leximin does not

easily adapt to relatively complex cases.

Table 9 shows the computational cost of the so-

lution method. Here the maximum degree of sen-

sors in tree-like was limited to three. Five instan-

ces were also averaged for each setting of tree-like.

For grid, a pseudo tree was generated using a zig-

zag order from the left-top variable, while a maxi-

mum degree heuristic was employed for other graphs.

The experiments were performed on a single compu-

ter with Core i7-3930K CPU @ 3.20GHz, 16GB me-

Table 8: Global reward and allocated sensors to occupied
areas in last quarter steps (tree, 2-2 1-2, γ = 0.5).

alg. rwd. num. of rwd. num. of alc. sns. rate. of

≤0 1 2 0 1 2 occ.

sum 20863 6754 623 10123 293 8661 2085 0.63

lxmsum 20317 6751 1174 9575 279 8864 1885 0.63

leximin 20338 6752 1151 9597 278 8836 1912 0.63

alg. rwd. of

cnt. area

sum 3126

lxmsum 2610

leximin 2616

Table 9: Computational cost.

prb. alg. max. sz. of separator comp.

variables combinations time [s]

grid sum 4 72 7.37

lxmsum 4 72 10.59

leximin 4 72 13.77

tree sum 1 4 0.56

lxmsum 1 4 0.67

leximin 1 4 0.77

tree-like sum 4 103 8.83

15 sns. lxmsum 4 103 13.28

20 areas leximin 4 103 18.01

tree-like sum 4 92 9.58

20 sns. lxmsum 4 92 15.15

25 areas leximin 4 92 20.63

tree-like sum 3 23 8.62

50 sns. lxmsum 3 23 13.80

55 areas leximin 3 23 19.47

mory, Linux 2.6.32 and g++ 4.4.7. Note that our cur-

rent experimental implementation can be improved.

The bottleneck of the solution methods is the optimi-

zation method for action selection. Since the time and

space complexity of dynamic programming exponen-

tially increases with the number of separators, large

and dense problems will need relaxations.

6 RELATED WORKS AND

DISCUSSIONS

This study was motivated by several previous studies

that addressed sensor network domains (Zhang and

Lesser, 2011; Nguyen et al., 2014). Since those stu-

dies employed dedicated problems, we designed a re-

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

94



lative simple one. Our setting of learning methods

relatively depends on the random walk of ε-greedy

heuristics because of the activities of targets. In ad-

dition, we set a number of targets so that almost half

of the areas are occupied, since unfairness depends on

resource capacities. Investigations of different classes

of problems will be future works.

Several studies such as Nash-Q learning (Hu and

Wellman, 2003) have addressed the individuality of

agents. While such studies mainly focus on selfish

agents, we are interested in cooperative actions by

considering unfairness. As a first study, we addressed

the effects and influence of action selection based on

leximin that can be applied in a decentralized manner.

On the other hand, the results reveal the necessity

of dedicated learning rules; in simple cases our pro-

posed approach has some effects. Since unfairness

depends on the values in Q-tables, more discussions

for the case of leximin are necessary. In particular,

some normalization methods, for different progresses

of leaning in individual agents, are possibly important

for the case of fairness.

We employed an exact solution method to select

joint actions. However, for large and complex pro-

blems, approximation methods are necessary, since

the time and space complexity of the exact method ex-

ponentially increases with the number of separators.

Such approximation is also considered as a challen-

ging problem.

7 CONCLUSIONS

We addressed action selection based on unfairness

among agents in a decentralized reinforcement lear-

ning framework and experimentally investigated the

effect and the influence of leximin criterion in action

selection. Even though the proposed approach ef-

fectively worked in relatively simple settings, our re-

sults uncovered several exploration and learning is-

sues. Our future works will analyze the relationship

between the proposed cooperative action and learning

rules and applications to other problem domains. Im-

provement of learning rules to manage information

of unfairness, and scalable solution methods for joint

action selection will also be important challenges.

ACKNOWLEDGEMENTS

This work was supported in part by JSPS KAKENHI

Grant Number JP16K00301.

REFERENCES

Bouveret, S. and Lemaı̂tre, M. (2009). Computing leximin-
optimal solutions in constraint networks. Artificial In-
telligence, 173(2):343–364.

Farinelli, A., Rogers, A., Petcu, A., and Jennings, N. R.
(2008). Decentralised coordination of low-power em-
bedded devices using the max-sum algorithm. In 7th
International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 639–646.

Hu, J. and Wellman, M. P. (2003). Nash q-learning for
general-sum stochastic games. J. Mach. Learn. Res.,
4:1039–1069.

Matsui, T. and Matsuo, H. (2014). Complete distributed
search algorithm for cyclic factor graphs. In 6th In-
ternational Conference on Agents and Artificial Intel-
ligence, pages 184–192.

Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., and Mat-
suo, H. (2014). Leximin multiple objective optimiza-
tion for preferences of agents. In 17th International
Conference on Principles and Practice of Multi-Agent
Systems, pages 423–438.

Matsui, T., Silaghi, M., Okimoto, T., Hirayama, K., Yokoo,
M., and Matsuo, H. (2015). Leximin asymmetric mul-
tiple objective DCOP on factor graph. In Principles
and Practice of Multi-Agent Systems - 18th Internati-
onal Conference, pages 134–151.

Modi, P. J., Shen, W., Tambe, M., and Yokoo, M. (2005).
Adopt: Asynchronous distributed constraint optimi-
zation with quality guarantees. Artificial Intelligence,
161(1-2):149–180.

Moulin, H. (1988). Axioms of Cooperative Decision Ma-
king. Cambridge : Cambridge University Press.

Netzer, A. and Meisels, A. (2013a). Distributed Envy Mi-
nimization for Resource Allocation. In 5th Internati-
onal Conference on Agents and Artificial Intelligence,
volume 1, pages 15–24.

Netzer, A. and Meisels, A. (2013b). Distributed Local Se-
arch for Minimizing Envy. In 2013 IEEE/WIC/ACM
International Conference on Intelligent Agent Techno-
logy, pages 53–58.

Nguyen, D. T., Yeoh, W., Lau, H. C., Zilberstein, S., and
Zhang, C. (2014). Decentralized multi-agent reinfor-
cement learning in average-reward dynamic dcops. In
28th AAAI Conference on Artificial Intelligence, pages
1447–1455.

Petcu, A. and Faltings, B. (2005). A scalable method for
multiagent constraint optimization. In 19th Internati-
onal Joint Conference on Artificial Intelligence, pages
266–271.

Zhang, C. and Lesser, V. (2011). Coordinated multi-
agent reinforcement learning in networked distributed
pomdps. In 25th AAAI Conference on Artificial Intel-
ligence, pages 764–770.

Zivan, R. (2008). Anytime local search for distributed con-
straint optimization. In Twenty-Third AAAI Confe-
rence on Artificial Intelligence, pages 393–398.

A Study on Cooperative Action Selection Considering Unfairness in Decentralized Multiagent Reinforcement Learning

95


