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Abstract: Time series forecasting is an important type of quantitative method in which past observations of a set of 
variables are used to develop a model describing their relationship. The Autoregressive Integrated Moving 
Average (ARIMA) model is a commonly used method for modelling time series. It is applied when the data 
show evidence of nonstationarity, which is removed by applying an initial differencing step. Alternatively, 
for time series in which the long-run average decays more slowly than an exponential decay, the 
Autoregressive Fractionally Integrated Moving Average (ARFIMA) model is used. One important issue on 
time series forecasting is known as the short and long memory dependency, which corresponds to how 
much past history is necessary in order to make a better prediction. It is not always clear if a process is 
stationary or what is the influence of the past samples on the future value, and thus, which of the two 
models, is the best choice for a given time series. The objective of this research is to have a better 
understanding this dependency for an accurate prediction. Several datasets of different contexts were 
processed using both models, and the prediction accuracy and memory dependency were compared. 

1 INTRODUCTION 

Time series forecasting is one of the most important 
types of quantitative models in which past 
observations of same variables are collected and 
analyzed to develop a model describing their 
underlying relationship (Aryal and Wang, 2003). 
These models have been used to forecast various 
phenomena in many fields, such as agriculture, 
economics, environment, tourism and meteorology.  

These methods are constantly being improved 
and adapted for each particular context in order to 
obtain a better prediction of future events (Khashei 
and Bijari, 2011). 

One example of such adaptations is the classic 
case of long and short memory dependence, which 
corresponds to how much past history is necessary 
in order to make a better prediction, i.e. the 
correlation between the data and the model 
parameters, which can deviate along time 
(Gourieroux and Monfort, 1997). 

When modelling a time series, a commonly used 
method is the Autoregressive Integrated Moving 
Average (ARIMA) model, which is a generalization 
of the Autoregressive Moving Average (ARMA) 

model.  
These methods are applied in the cases where 

data show evidence of short memory nonstationarity, 
which can be removed by an initial differencing. The 
model is generally referred to as an ARIMA(p,d,q) 
model, where p, d and q are non-negative integers 
that correspond to the order of the autoregressive, 
integrated and moving average parts of the model, 
respectively. 

Alternatively, for modelling time series in the 
presence of long memory dependency, the 
Autoregressive Fractionally Integrated Moving 
Average (ARFIMA) model is used (Granger and 
Joyeux, 1980; Hosking, 1984). The ARFIMA(p,d,q) 
model generalizes the ARIMA model by allowing 
non-integer values of the differencing parameter d. 
The main objective of the model is to explicitly 
account for long term correlations in the data. It is 
useful to model time series in which deviations for 
the long-run mean decay more slowly than an 
exponential decay. 

In this research, we identify the short and long 
dependence of ARIMA and ARFIMA models, 
estimate their parameters and compare their 
forecasting performance in different types of 
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databases in order to know the better model for each 
different scenario.  

The paper is organized as follows. In Section 2, 
we briefly present some background on the 
mentioned models. The methodology of this 
research is discussed in Section 3, and Section 4 
present experimental results. Finally the conclusions 
are presented in Section 5. 

2 BACKGROUND 

The particular details of the aforementioned models 
in the analysis of correlation and memory 
dependency are described in details as follows. 

2.1 ARIMA 

The ARIMA method is one of the most important 
and widely used linear time series models. The 
popularity of ARIMA model is due to its statistical 
properties as well as the well-known Box-Jenkins 
methodology (Box and Jenkins, 1976) in the model 
building process. It is an important forecasting 
approach that goes through model identification, 
parameter estimation and model validation. The 
main advantage of this method relies on the 
accuracy over a wider domain of series. 

The model is based on a linear combination of 
past values (AR components) and errors (MA 
components). Mathematically, the ARIMA predicted 
value ݕ௧ is given by: 							ݕ௧ = ௗ(1(ܮ)ܣ + ௧) (1)ߝ(ܮ)ܤ

where ݀ is the order of differencing, ߝ௧ is the error, ܮ 
is the lag operator, (ܮ)ܣ is given by: (ܮ)ܣ = 1 − ܮଵߩ − ଶܮଶߩ  (2)ܮߩ− … −

where ߩ are the parameters of the AR terms on the 
polynomial of order , and (ܮ)ܤ is given by: (ܮ)ܤ = 1 + ܮଵߠ + ଶܮଵߠ  (3)ܮߠ … +

where ߠ indicate the parameters of the MA terms on 
the polynomial of order ݍ. 

In this model, a nonstationary time series is 
differentiated ݀  times until it becomes stationary, 
where ݀  is an integer. Such series are said to be 
integrated of order ݀, denoted ܫ(݀), with the non-
differentiated (0)ܫ  being the option for stationary 
series. Is important to notice that many series exhibit 
too much dependence to be (0)ܫ	but are not (1)ܫ. In 
these cases, there is a persistence in the 
observations, which requires the use of prediction 
methods that take into consideration the slowly 

decaying autocorrelations, among which is the 
ARFIMA model (Contreras-Reyes and Palma, 2013; 
Dickey and Fuller, 1979), which will be explained 
further in this section. 

2.1.1 Auto-Correlation Function (ACF) 

There are two phases to the identification of an 
appropriate ARIMA model (Box and Jenkins, 1976): 
changing the data, if necessary, into a stationary 
time series and determining the tentative model by 
observing the behaviour of the autocorrelation and 
partial autocorrelation functions.  

A time series is considered stationary when it 
does not contain trends, that is, it fluctuates around a 
constant mean (Hosking, 1984). The autocorrelation 
coefficient ݎ measures the correlation between a set 
of observations and a lagged set of observation in a 
time series: ݎ = ∑ ௧ݔ) − ௧ାݔ)(ݔ̅ − ∑௧ୀଵ(ݔ̅ ௧ݔ) − ଶ௧ୀଵ(ݔ̅  (4)

where ݔ௧  is the ݇௧  sample of the stationary time 
series, ݔ௧ା is the sample from ݇ time period ahead 
of ݐ and ݔ is the mean of the stationary time series. 

Box and Jenkins suggest the number of pairs 
used to calculate the autocorrelation to be no more 
than ݊ = 4. The sample autocorrelation coefficient ݎ is an initial estimate of ρ. 

2.1.2 Partial Auto-Correlation Function 
(PACF) 

The estimated Partial Autocorrelation Function 
(PACF) is used as a guide, along with the estimated 
ACF, in choosing one or more ARIMA models that 
might fit the available data.  

The objective of the partial autocorrelation 
analysis is to measure how	ݔ௧  and ݔ௧ା  are related. 
The equation that gives a good estimate of the partial 
autocorrelation ߮ is: ߮, = ݎ − ∑ ߮ିଵ,	ݎିିଵୀଵ1 − ∑ ߮ିଵ,	ݎିଵୀଵ  (5)

where: ߮, = ିଵ,ݎ − ߮,߮ିଵ,ି ߮ଵ,ଵ =  ଵݎ
(6)

2.1.3 Stationary Process 

The ARIMA model is intended to be used with 
stationary time series, i.e. time series in which their 

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

576



statistical properties are constant over time 
(Hosking, 1984). 

The stationarity of a time series can be evaluated 
by accuracy measures, such as the Sum Squared 
Error (SSE) or the Mean Absolute Percentage Error 
(MAPE), given by:  

SSE = ∑ ݕ) − )ଶேୀଵݔ  (7)

MAPE = 
ଵே ∑ ቚ௫ି௬௫ ቚ × 100%ேୀଵ  (8)

where N is the number of predicted values and ݔ 
and ݕ are, respectively, the ݅௧ actual and predicted 
values. 

However, is not always clear if a given process is 
stationary or not. In this cases, the ARFIMA model 
can be used, since can work with nonstationary time 
series (Granger, 1989). 

2.2 ARFIMA 

The ARFIMA model is one of the best-known 
classes of long-memory models (Contreras-Reyes 
and Palma, 2013). It provide a solution for the 
tendency to over-differentiate stationary series that 
exhibit long-run dependence, allowing a continuum 
of fractional differencing parameter −0.5 < ݀ <+0.5 (Souza, and Smith, 2004; Zhang, 2003). 

This generalization to fractional differences 
makes possible to handle processes that are neither (0)ܫ nor (1)ܫ, to test for over-differentiation, and to 
model long-run effects that only die out at long 
horizons (Baum, 2000; Fildes and Makridakis, 
1995). 

The ARFIMA model is described as follow: 1)(ܮ)ܣ − ௧ݕௗ(ܮ = ௧ (9)ߝ(ܮ)ܤ

where: (1 − ௗ(ܮ = (݇	 − 	݇)(݀−)ܮ(݀	 + 	1)ஶ
ୀ  (10)

The stochastic process ݕ௧ is both stationary and 
invertible if all the roots of (ܮ)ܣ and (ܮ)ܤ present ݀ < 0.5. 

In recent years, studies about long memory 
dependency have received the attention of 
statisticians and mathematicians. This phenomenon 
has grown rapidly and can be found in many fields, 
such as hydrology, chemistry, physics, economics 
and finances (Boutahar and Khalfaoui, 2011; 
Moghadam and Keshmirpour, 2011). 

2.2.1 Long and Short Memory Dependency 

A times series with long memory dependence is 
often referred to the concept of fractional 
integration, since there is the necessity to expand the 
differentiation order, spreading the use of past 
values.  

An stationary time series can be considered a 
short memory process, since the AR(p) model has 
infinite memory, as all the past values of ߝ௧  are 
embedded in ݕ௧ . However, the effects on the past 
values, rapidly decreasing geometrically to near 
zero. The MA(q) model uses a memory of order q; 
consequently, the effects of the moving average 
component also diminish fast (Palma, 2007; 
Anderson, 2000).  

In comparison, the autocorrelation of the 
ARFIMA model has a hyperbolical decay, in 
contrast to the faster, geometric decay of a stationary 
ARMA process. Consequently, a series with long 
memory dependency has an autocorrelation function 
that decline more slowly than the decrease exhibited 
on the short memory process (Hurvich and Ray, 
1995; Geweke and Porter-Hudak, 1983). 

This was observed in other works, in which some 
datasets present better accuracy with the ARIMA 
model with short memory (Shitan et al., 2008), 
while other datasets perform better with the 
ARFIMA model with long memory (Amadeh  et al., 
2013). 

Thus, an ARFIMA process may be predictable at 
longer horizons. A survey of long memory models 
applied in economics and finance is given by Baillie 
(Baillie, 1996). 

2.2.2 Spectral Density  

Inverting the ARFIMA model described in equation 
(7) gives: ݕ௧ = (1 − ௧ (11)ߝ(ܮ)ܤଵି((ܮ)ܣ)ௗି(ܮ

After the parameter estimation, the short-run 
effects are obtained by setting ݀ = 0  in equation 
(11), and describe the behaviour of the fractionally 
differenced process (1 −  ௧. The long-run effectsݕௗ(ܮ
use the estimated value of d from equation (9), and 
describe the behaviour of the fractionally integrated ݕ௧. 

Granger and Joyeux (Granger and Joyeux, 1980) 
motivate the use of ARFIMA models by noting that 
their implied spectral densities for ݀ > 0 are finite 
except at null frequency, whereas stationary ARMA 
models have finite spectral densities at all 
frequencies. The ARFIMA model is able to capture 
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the long-range dependence, which cannot be 
expressed by stationary ARMA models. 

The two models imply different spectral 
densities for frequencies close to zero when ݀ > 0. 
The spectral density of the ARMA model remains 
finite, but is pulled upward by the model's attempt to 
capture long-range dependence. The short-run 
ARFIMA parameters can capture both low-
frequency and high-frequency components in the 
spectral density (Sowell, 1992; Priestley, 1981). In 
contrast, the ARMA model confounds the long-run 
and short-run effects.  

3 METHODOLOGY 

In this study, the standard modelling time series 
methodologies ARIMA and ARFIMA have been 
employed. These models require the following steps 
in order to be trained: identification, parameters 
estimation, validation, modelling and prediction. 
Specific details are described on the literature 
(Granger and Joyeux, 1980; Box and Jenkins, 1976). 

The modelling tools for time series forecast were 
developed in-house using MATLAB, given special 
attention to the monitoring of some particular 
aspects of each dataset. 

Although both methods have been widely 
applied in several different contexts and long and 
short memory dependency analysed for independent 
datasets, the forecasting process still requires both 
methods to be applied and their performance 
compared in order to determine the best model for 
each case (Chan, 1992; Chan 1995). 

Thus, the objective of this research is to have a 
better understanding of the level of dependency and 
how much historical data is necessary for an 
accurate prediction, considering the follow aspects: 
 spectral density and statistical properties; 
 differences on stationary series behaviour; 
 impact of long and short memory dependency; 

This aspects were analysed on several different 
datasets described in the following section. 

3.1 Datasets 

The datasets used in the experiments were obtained 
from the UCI Machine Learning Repository 
(Lichman, M., 2013) and Sugar Price Database from 
the Brazilian Stock Market BM&F Bovespa (BM&F 
Bovespa, 2016).  

Datasets of a wide variety of contexts were 
selected in order to generalize the analysis of the 
different models to several different scenarios. The 

datasets are listed in Table 1, while the details of 
each dataset are shown in Tables 2-9. 

Table 1: Time Series Datasets. 

Dataset Table 
Sugar Price Database 2 

Greenhouse Gas Observing Network 3 
Electricity Load Diagrams 4 

Individual Household Power Consumption 5 
Combined Cycle Power Plant  6 

Solar Flare 7 
Istanbul Stock Exchange 8 

Dow Jones Index 9 
 

Table 2 describes the Ibovesp Stock Market 
database, which tracked the evolution of the price of 
50kg sugar bag from November 2003 to May 2009. 

Table 2: Sugar Price Database. 

Datasets Characteristics Time Series 
Number of Instances 3346 
Number of Attributes 3 

Associated Task Classification / Regression 
Area Business 

 

The dataset in Table 3 contains values of 
greenhouse gas (GHG) concentrations at 2921 grid 
cells in California, created using simulations of the 
Weather Research and Forecast model with 
Chemistry (Lucas et al., 2015). 

Table 3: Greenhouse Gas Observing Network. 

Datasets Characteristics Multivariate, Time Series 
Number of Instances 2921 
Number of Attributes 5232 

Associated Task Regression 
Area Physical 

 

Table 4 describes a datasets of electricity 
consumption from 370 points per clients from 2011 
to 2014 period. 

Table 4: Electricity Load Diagrams. 

Datasets Characteristics Time Series 
Number of Instances 370 
Number of Attributes 140256 

Associated Task Regression / Clustering 
Area Computer 

The dataset in Table 5 contains measurements of 
electric power consumption in one household with a 
one-minute sampling rate over a period of almost 4 
years. It also contains different electrical quantities 
and sub-metering values. 

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

578



Table 5: Individual Household Power Consumption. 

Datasets Characteristics Multivariate, Time Series 
Number of Instances 2075259 
Number of Attributes 9 

Associated Task Regression / Clustering 
Area Physical 

 

Table 6 describes a dataset of points collected 
from a combined cycle power plant over 6 years 
(2006-2011), when the plant was set to work with 
full load (Tüfekci, 2014; Kaya et al., 2012). 

Table 6: Combined Cycle Power Plant. 

Datasets Characteristics Multivariate 
Number of Instances 9568 
Number of Attributes 4 

Associated Task Regression 
Area Computer 

 

The dataset in Table 7 contains the number of 
solar flares of 3 potential classes that occurred in a 
24 hour period. 

Table 7: Solar Flare. 

Datasets Characteristics Multivariate 
Number of Instances 1389 
Number of Attributes 10 

Associated Task Categorical 
Area Physical 

 

Table 8 details a datasets that includes returns of 
the Istanbul Stock Exchange with seven other 
international indexes, from June 2009 to February 
2011 (Akbilgic et al., 2013). 

Table 8: Istanbul Stock Exchange. 

Datasets Characteristics Multivariate, Time Series 
Number of Instances 536 
Number of Attributes 8 

Associated Task Classification / Regression 
Area Business 

 

Finally, the dataset described in Table 9 contains 
weekly data from the Dow Jones Industrial Index. 
(Brown et al., 2013). 

Table 9: Dow Jones Index. 

Datasets Characteristics Time Series 
Number of Instances 750 
Number of Attributes 16 

Associated Task Classification / Clustering 
Area Business 

 

As shown in Tables 2-9, the selected datasets 
present a wide range of instances and attributes, as 

well as different areas of application. 

3.2 Time Series Modelling Procedures 

The standard approach to temporal series prediction 
is to apply different methods (e.g. ARIMA and 
ARFIMA), and compare their performances in order 
to select the method with the minimal average 
forecasting error. 

In this paper, not only the performance of the 
methods but also the influence of the use of short 
and long memory dependency was evaluated for 
each different datasets in several scenarios. 

4 EXPERIMENTS AND RESULTS 

Considering the several different types of databases, 
the analysis was made in order to show the impact of 
memory dependency on the forecasting accuracy in 
different areas. In all cases, the models were 
simulated with both methodologies (ARIMA and 
ARFIMA). Table 10 shows the best fit (p, q and d) 
for both model in each dataset. 

Table 10: Best fit for each model (p, q, d). 

Database ARIMA ARFIMA 
Sugar Price Database (1, 1, 3) (2, 0.23, 4) 

Greenhouse Gas  
Observing Network 

(1, 0, 2) (2, 0.17, 1) 

Electricity Load Diagrams (2, 1, 1) (3, 0.5, 2) 
Individual Household  
Power Consumption 

(4, 0, 1) (1, -0.34, 5) 

Combined Cycle 
Power Plant 

(3, 1, 5) (1, 0.47, 3) 

Solar Flare (1, 1, 6) (2, 0.33, 1) 
Istanbul Stock Exchange (2, 0, 1) (3, 0.29, 5) 

Dow Jones Index (3, 0, 5) (4, -0.42, 3) 
 

In a typical ARIMA process, the patterns of ACF 
and PACF indicate the structure of the model. A 
long autocorrelation imply that the process is non-
linear with time variance, implying that the 
properties of memory dependency between two 
distance observations are still visible. 

In order to maintain the correlation between the 
observed values and their lag, and consequently the 
influence of the past value in the current 
observation, the value of the lag is suggested to be 
no greater than 4. This value, however, was 
exceeded in some cases, as shown in Table 11. 
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Table 11: Memory Dependency based on the 
Autocorrelation Function. 

Database Lag 
Sugar Price Database - 

Greenhouse Gas Observing Network Exceeded 
Electricity Load Diagrams - 

Individual Household Power Consumption - 

Combined Cycle Power Plant Exceeded 
Solar Flare - 

Istanbul Stock Exchange Exceeded 
Dow Jones Index Exceeded 

 

In some time series, these larger lag values 
indicate that the ACF do not decay exponentially 
over time, but rather decay much slower and show 
no clear periodic pattern. 

The memory dependency can also be estimated 
by observing the statistical properties of the data, 
such as MAPE and SSE, as demonstrated by Alireza 
and Ahmad (Alireza and Ahmad, 2009). In this 
work, the percentage average absolute error (PAAE) 
for both models was calculated and the results 
shown in Table 12. 

Table 12: Percentage of Average Absolute Error. 

Database ARIMA ARFIMA 
Sugar Price Database 31.67% 32.23% 

Greenhouse Gas  
Observing Network 

18.47% 17.26% 

Electricity Load Diagrams 10.98% 11.56% 
Individual Household  
Power Consumption 

15.64% 17.12% 

Combined Cycle Power Plant 21.05% 19.22% 
Solar Flare 9.68% 10.42% 

Istanbul Stock Exchange 29.12% 28.41% 
Dow Jones Index 30.05% 29.85% 

 

When ARFIMA was used on data with small 
variance, the observed PAAE was low. By contrast, 
when ARIMA was used on data with high variance, 
the observed PAAE was high. This is because the 
accumulative error per sampling will be greater on a 
high variance data with smaller order of integration. 

The analysis performed so far enable the 
comparison of the forecast precision (high or low), 
as well as how much dependency each dataset 
presents (short or long). It must be noticed that some 
of the datasets have particular behaviour or external 
influences (e.g. stock market) that affect the quality 
of the prediction. The results are shown in Table 13. 

 
 

 

 

Table 13: Memory Dependency and Forecast Precision. 

Database 
Dependenc

y 
Precision 

Sugar Price Database Short *Low 
Greenhouse Gas Observing 

Network 
Long High 

Electricity Load Diagrams Short *High 
Individual Household 
Power Consumption 

Short High 

Combined Cycle  
Power Plant 

Long *High 

Solar Flare Short *High 
Istanbul Stock Exchange Long *Low 

Dow Jones Index Long *Low 
 

Some datasets, marked with *, denoted an 
unexpected behaviour when considering the 
properties of the time series. For instance, it is 
usually considered that a linear series with small 
number of samples and short dependency will result 
in a high precision (Yule, 1926). However, the 
obtained results show that this is not always the case 
(e.g. Sugar Price). 

The databases related with stock market 
(Istanbul Stock Exchange and Dow Jones Index) 
have a long memory dependency, but present low 
accuracy. This is due to the fact that these are highly 
volatile processes and are difficult to predict with 
linear modelling tools (Engle and Smith, 1999). In 
the other hand, the Solar Flare dataset is a classic 
example of seasonal behaviour, but the 
measurements need to be carefully made on a 
correct window of time.  

Datasets related with electricity and power 
consumption usually have a linear behaviour, 
achieving high precision (Taylor et al., 2006). The 
Electricity Load Diagrams dataset, however, has a 
very large number of attributes, resulting in a large 
variance. Although it presents short dependency 
characteristics, this dataset requires a careful 
selection of the most relevant attributes on the 
quantification of electricity consumption. 

On the Combined Cycle Power Plant, the data 
was acquired only at full-load times. Thus, the data 
presents characteristics of long memory dependence, 
leading to a high forecast precision. 

5 CONCLUSIONS 

This paper analyses the effects of memory 
dependency in several different time series datasets 
and the influence on the forecast accuracy. Two 
commonly used methods, ARIMA and ARFIMA, 
were used for this analysis. 
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For some datasets, the ARIMA model presented 
better forecast results (smaller PAAE) when 
compared with the ARFIMA model. This might be 
because the ARFIMA model is based on a long 
memory process, while some datasets are less 
affected by external activities and other processes. 

However, that does not imply that having more 
historical data will always result in a better forecast. 
In a linear model scenario, independently of the used 
statistical properties and the monitoring of memory 
dependency values, the data itself should still be 
carefully analysed in order to achieve an accurate 
prediction. 

This indicates that it is not always clear how 
much impact the past values have on the 
accumulative error and what is their influence in the 
future values. A possible solution for this is to 
increase the lag in the ACF and observe the effect of 
the prediction accuracy of future values. Different 
time windows can also be used to achieve a better 
fitting, as observed in the course of this study. 

Specific pre-processing operations can be 
applied to each dataset in order to reduce the 
accumulative error, but only in situations in which a 
clear objective exists.  

The obtained results motivate the development 
of a combined methodology compatible with both 
fractional and integer integration values along the 
time series prediction, in order to account for short 
and long memory dependencies. Future work also 
include the use of more and larger datasets in order 
to further understand the memory dependency 
effects on time series forecasting. 
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