
Where is that Button Again?! – Towards a Universal GUI Search Engine

Sven Hertling1, Markus Schröder1, Christian Jilek1 and Andreas Dengel1,2
1German Research Center for Artificial Intelligence (DFKI) GmbH, Trippstadter Straße 122,

67663 Kaiserslautern, Germany
2Knowledge-based Systems Group, Department of Computer Science, University of Kaiserslautern,

P.O. Box 3049, 67653 Kaiserslautern, Germany

Keywords: Information Retrieval, GUI automation, Accessibility Interface.

Abstract: In feature-rich software a wide range of functionality is spread across various menus, dialog windows, tool
bars etc. Remembering where to find each feature is usually very hard, especially if it is not regularly used.
We therefore provide a GUI search engine which is universally applicable to a large number of applications.
Besides giving an overview of related approaches, we describe three major problems we had to solve, which
are analyzing the GUI, understanding the users’ query and executing a suitable solution to find a desired UI
element. Based on a user study we evaluated our approach and showed that it is particularly useful if a not
regularly used feature is searched for. We already identified much potential for further applications based on
our approach.

1 INTRODUCTION

“Where is that button again?!” – this and other com-
plaints are very common among users of feature-rich
software. Typically in such software a high amount of
features is spread across various menus, dialog win-
dows, tool bars etc. in the graphical user interface
(GUI). Remembering where to find each feature is
usually very hard especially if it is not regularly used.
The GUI, consisting of graphical elements like but-
tons, checkboxes, input fields etc., provides some tex-
tual clues of the functionality it offers. For example,
a button’s label reveals its utility and an additional
tooltip may give detailed information about its usage.
Depending on the implementation there may be many
or just few of such hints. In order to find a certain
software function, the user has to browse its graphi-
cal front-end as well as read and understand the tex-
tual representations. (Cockburn and Gutwin, 2009)
show that novice users need more time to retrieve el-
ements within hierarchical menus. Using software
having such complex graphical interfaces can lead to
despair. One approach to help expert users is Com-
mandMaps (Scarr et al., 2012). Like the name sug-
gests, it unfolds several menus in order to cover the
whole screen. Users may then find the demanded
menu items with the help of their spatial memory.

In this paper, we concentrate on helping novice
users finding the corresponding software features.

Figure 1: A user wants to rotate an upside down video. Our
search engine retrieves a list of graphical elements by the
given search term “rotate” (left-hand side). By selecting the
first entry, the system preforms necessary steps like mouse
and keyboard interactions automatically to get the element
visible. Therefore it traverses the appropriate menu item
as well as several tab controls to finally present the Rotate
feature (right).

This is done by a search engine for widgets within the
GUI. After the user clicks on a search result, the ap-
propriate mouse and keyboard actions are performed
to make the element visible on screen.

To offer such a support, an approach first has to
grasp information and structure of the user interface.
Since a graphical interface is rendered for humans, an
obvious solution could be based on image processing
(Yeh et al., 2009). However, in order to also extract
the texts of the graphical elements, OCR-based ap-

Hertling S., SchrÃűder M., Jilek C. and Dengel A.
Where is that Button Again?! âĂŞ Towards a Universal GUI Search Engine.
DOI: 10.5220/0006201402170227
In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), pages 217-227
ISBN: 978-989-758-220-2
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

217



proaches have to be applied. Beside the error rate,
they also lack the ability to get hidden information
like texts in tooltips.

Even if this is solved, we are still facing the chal-
lenges of understanding which feature the user is cur-
rently looking for (handled by (Adar et al., 2014)) and
how to guide them there. Concerning the latter, an
obvious solution would be to provide a textual ex-
planation what has to be done in order to navigate
to the element in question. For even higher conve-
nience we offer a fully automated execution of the
necessary steps. Figure 1 shows an example scenario
of our application. The user searches for a software
functionality called “rotate”. As a result the search
engine provides several user interface elements. They
are rendered like typical search results but also con-
tain images and more detailed descriptions of the UI
element. The right hand side shows the correspond-
ing application. All necessary steps like mouse and
keyboard interactions are performed automatically.

For the proposed approach we identify three main
problems: The need for a sufficiently detailed GUI
representation, a possibility to derive what the user is
currently looking for and a method for searching the
GUI model for it. Finally, the system has to perform
the necessary steps to reach the desired graphical ele-
ment. Additionally, we also focus on covering a wide
range of software, not depending on any specific im-
plementation details. Therefore 16 of the most fre-
quently used software application are tested with our
approach.

This paper is structured as follows: The next sec-
tion contains an overview of related work. Next, we
present our method in more detail according to the
various subtasks it solves in order to implement a uni-
versal GUI search engine (Section 3). Section 4 is
about a user study that was conducted to evaluate our
approach. In Section 5 we conclude this paper and
give an outlook on possible future work.

2 RELATED WORK

In the past, several approaches of analyzing and pro-
viding assistance in the GUI have been proposed. We
therefore concentrate on four topics: GUI represen-
tation & testing, mapping user queries to commands,
GUI assistance and product-specific GUI search en-
gines.

2.1 GUI Representation & Testing

In the area of GUI testing, which verifies specifica-
tions in graphical front-ends, there is a need for gener-

ating GUI models motivated by model-based testing.
As a consequence there are already solutions regard-
ing the extraction of information and structure from
the graphical user interface. Writing GUI test cases is
an expensive task making their automation a worth-
while goal. For that reason (Memon et al., 2003) show
an approach for reverse engineering graphical user in-
terfaces which is called GUI Ripping. Memon et al.
use the Windows API to crawl the complete GUI in-
formation. In (Memon, 2007) the extracted informa-
tion is used to build an event-flow model of the GUI
for testing purposes.

(Aho et al., 2013) and (Aho et al., 2014) trans-
ferred GUI testing to the industrial domain. They in-
troduce the platform-independent Murphy tool set for
extracting state models of GUI applications. (Grilo
et al., 2010) cope with incomplete models and add an
additional manual step to complete and validate them.

There is also a .NET-based framework to auto-
mate rich client applications which can be based on
Win32, WinForms, WPF, Silverlight and SWT plat-
forms (TestStack, 2016). It hides some of the com-
plexity of the used frameworks like Microsoft UI Au-
tomation and windows messages. Commercial vari-
ants for GUI testing are Ranorex ((Ranorex GmbH,
2016) and (Dubey and Shiwani, 2014)) as well as
TestComplete (SmartBear Software, 2016).

All previously described approaches use APIs for
user interface accessibility like UI Automation. But
there are also others that rely only on the graphi-
cal representation of UI widgets. Sikuli (Yeh et al.,
2009), for example, retrieves elements by screen-
shots. If the corresponding position is found, the tool
will execute mouse and keyboard events. Moreover
they provide a visual scripting API to easily create
GUI automation tasks. Another approach called Pre-
fab (Dixon and Fogarty, 2010) reverse engineers the
user interface on a pixel-based level. In (Dixon et al.,
2011) they extended their solution to also model hier-
archical structures of complex widgets.

2.2 Mapping User Queries to
Commands

In some cases the user describes their tasks in a
different vocabulary than the actual applications do-
main language. For finding these mappings, (Four-
ney et al., 2011) introduce query-feature graphs (QF-
graphs). Search queries and system features are both
represented as vertices. Each edge symbolizes a map-
ping between them. QF-graphs are constructed using
search query logs, search engine results, web page
content, and localization data from interactive sys-
tems.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

218



In addition, the CommandSpace system (Adar
et al., 2014) finds these matches based on a large cor-
pus of Web documents about the application. They
use deep learning techniques to create them and eval-
uated their approach on a single application, Adobe
Photoshop.

ShowMeHow (Ramesh et al., 2011) translates
user interface instructions between similar applica-
tions. Since software rapidly changes, tutorials are
often out of date or not available at all. Thus, the goal
is to locate commands in one application using the in-
terface language of a similar application.

2.3 GUI Assistance

Regarding assistance in the graphical user interface
there exist several approaches: CommandMaps (Scarr
et al., 2012; Scarr et al., 2014) is a command selection
interface which makes use of the user’s spatial mem-
ory to faster interact with UI elements. They demon-
strated that their approach is significantly faster than
Ribbon and menu interfaces for experienced users.
Another strategy seeks for preventing false feedfor-
ward in menus (Lafreniere et al., 2015) and propose a
task-centric interface (Lafreniere et al., 2014) which
shows a textual workflow with actionable commands
included. Both approaches share the intention of get-
ting the user to the desired graphical element faster.

PixelTone (Laput et al., 2013) provides a mul-
timodal interface for photo editing. With their ap-
proach it is possible to select a region of an image and
label it, e.g. “This is a shirt”. GEKA (Hendy et al.,
2010) created a graphically enhanced keyboard accel-
erator which enables users to call software functions
by entering commands like in a typical command line
interface.

(Ekstrand et al., 2011) developed an approach for
finding better software learning resources (documen-
tation, tutorials and the like), in particular by exploit-
ing the user’s current context in a specific application.

The Process Guide (IMC Information Multimedia
Communication AG, 2016) by IMC directs the user
through a graphical front-end by giving practical us-
age hints in a context sidebar. These hints are gener-
ated manually for each workflow.

2.4 Product-specific GUI Search
Engines

The following approaches already solved the prob-
lem of finding graphical elements in their application
by providing an embedded search engine. They are,
however, product-specific and do not work in other
applications. One example is the settings search of

the Chrome web browser (Google Inc., 2016). All
content of the settings pages can be searched for,
even deeply nested pages (e.g. search for “cookies”).
In Microsoft Visual Studio, QuickLaunch (Microsoft
Corporation, 2016b; Naboulsi, 2012) is embedded for
fast retrieval of commonly used functionality. An-
other similar search engine called Search Commands
(Microsoft Corporation, 2011) is an add-in for the Mi-
crosoft Office product suite. The successor Tell Me
(Microsoft Corporation, 2016a) is available since Mi-
crosoft Office 2016. A more general approach is Help
Menus in Apple’s OS X operating system (Miser,
2008, p. 62), (Ness, 2011, p. 13), (Pogue, 2012, p.
67). It allows for searching menu items in the menu
bar in all OS X applications. Unfortunately, all other
graphical elements are not searchable. This is also the
case for the settings search in Windows 10 and Ap-
ple iOS. Cortana (Microsoft Corporation, 2016c) can
search for application names but not texts or names
within them.

3 APPROACH

Helping the user in finding the graphical elements
they are looking for, several problems have to be tack-
led. As a basis we first have to grasp the structure and
information of the GUI. Then, the appropriate func-
tionality has to be derived from terms entered by the
user when conducting a search. Additionally, the sys-
tem has to perform all mouse and keyboard interac-
tions to navigate to the UI element in question.

3.1 Software Basis

As a basis for the approach, a good sampling of
most often used software is necessary. Therefore we
analyzed websites which offer commonly used soft-
ware for downloading. A collection of 35 websites is
reduced to the 11 most accessed ones based on web
traffic analyzers like Alexa, Compete, Semrush(de),
Semrush(en) and PageRank. The resulting set of
download websites is

• amazon.com • amazon.de
• cnet.com • sourceforge.net
• softonic.com • zdnet.com
• chip.de • computerbild.de
• heise.de • netzwelt.de
• filehippo.com

We chose software which is among the top ten in
the ranking of at least two sites. After the removal
of programs like “Flash Player” (web-plugin) and
“Minecraft” (game) which are irrelevant for our use

Where is that Button Again?! âĂŞ Towards a Universal GUI Search Engine

219



case the resulting set is:

• Word 2013 (Trial) • Excel 2013 (Trial)
• PowerPoint 2013 (Trial) • Open Office Writer
• Open Office Calc • Open Office Impress
• VLC media player • CCleaner
• Google Chrome • Mozilla Firefox
• 7-Zip • WinRAR
• Skype • PhotoScape
• AntiVir 2014 - Avira • NortonInternetSecurity
• Adobe Reader • avast! Free Antivirus

Unfortunately, “Norton Internet Security” as well
as “avast! Free Antivirus” (2 of 18 applications or
11.11 % of the sample set) do neither support the UI
Automation framework nor the MSAA framework.
The remaining 16 applications are used in this paper
to build software models and conduct the evaluation.

Figure 2 shows a more detailed analysis of the
download count of cnet.com (depicted as a log-log
plot). We see that it best fits a log-normal distribu-
tion with the parameters of xmin = 554, µ = 3.656 and
σ= 3.499. The best fitting parameters for a power law
distribution are xmin = 57033 and α= 1.813. They are
all calculated using the poweRlaw package (Gillespie
et al., 2015). The log-normal distribution also applies
for the chip.de website. Unfortunately all other pages
don’t provide absolute download counts. This anal-
ysis validates that there are only few software tools
which are often downloaded and a large number of
those that are demanded less frequently. Thus, with an
appropriate selection of applications, a huge amount
of users could benefit from an approach like ours.

3.2 GUI Analysis

Analyzing the graphical user interface is a difficult
task. OCR or other image-based approaches did not
fulfill our needs due to the rudimentary amount of in-
formation and error-proneness. We therefore utilize
accessibility interfaces since they provide precise and
detailed information about an application’s content
and structure. They are typically used in screen read-
ers which help visually impaired people navigating
their applications. In particular, we use “Microsoft
Active Accessibility” (MSAA) (Microsoft Corpora-
tion, 2000) and its successor “Microsoft UI Automa-
tion” (UIA) (Microsoft Corporation, 2016d) which
are two prominent accessibility APIs. Based on this
powerful technology we are able to exploit a lot of
software applications without further ado.

The graphical user interface of Microsoft Win-
dows is represented as a tree providing a hierarchical
structured list of graphical elements. The APIs al-
low access to these elements’ structure (i.e. child and

Figure 2: Log-log plot of downloaded software from
cnet.com.

parent relations) and properties (i.e. name, position,
size, etc). However, they do not offer functionality
which extracts a complete software model. In particu-
lar, they only allow for crawling the currently visible
UI tree. Consequently, parts of the graphical front-
end have to be made visible in order to capture them.
To make further elements visible one has to interact
with another element, for example a menu is opened if
the corresponding menu item is clicked. That is why
we decided to observe GUI interactions (i.e. mouse
clicks or keyboard shortcuts) to detect appearing ele-
ments and thereby grasp the complete software. As a
benefit we recognize which element is responsible to
make other elements visible. This insight is later use-
ful to execute appropriate interactions automatically
to navigate to a certain element.

We consider two observable interaction sources:
On the one hand we can observe users solving daily
tasks using the graphical front-end. We can thereby
understand GUI usage behavior, but fail in obtaining a
complete software model which would be preferable.
To solve this we implemented an algorithm called
click monkey that automatically explores a given ap-
plication. This is done by clicking all graphical ele-
ments in a depth-limited traversal strategy ensuring a
high UI element coverage of the software. We imple-
mented an observer which is able to capture UI inter-
actions regardless whether they are performed by the
user or the click monkey. In each record we consider
(a) the causing action, (b) an application software’s
GUI tree and (c) the graphical element corresponding
to the current cursor location. By collecting a lot of
records over time we thus receive a detailed interac-
tion log serving as a basis for an expressive software
model.

Gathering GUI data is only a preliminary step.
Next, we have to understand what the user is cur-
rently looking for by interpreting their search query
and matching it to known UI elements.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

220



3.3 Interpreting User Queries

To solve the problem of having to browse software
manually, we have to construct a searchable GUI
model. We therefore make use of information re-
trieval technologies indexing all observed graphical
elements, especially their names and metadata. Us-
ing this textual information we try to match given
user queries to suitable UI elements. A document in
the search index consists of a field which contains
concatenated values of the properties Name, Lega-
cyIAccessibleDescription, HelpText and Localized-
ControlType of the corresponding element. We call
this field “UI text”. Additionally, information like
ProductName, CompanyName, FileDescription of the
corresponding software is added.

Three approaches for searching UI elements are
developed. The baseline approach analyzes the “UI
text” field based on the StandardAnalyzer of Lucene
which generates tokens based on a Unicode Text Seg-
mentation algorithm (specified in Unicode Standard
Annex #29 (Davis and Iancu, 2016)) and lowercases
all tokens.

The second approach called “language” further
analyzes the “UI text” field resulting in three addi-
tional fields in the index:

(1) standard tokenizer, HTMLStripCharFilter (be-
cause HTML is contained in UI elements’ text
or description) and the following filters: lower-
case, synonyms (English: WordNet (Fellbaum,
1998; Miller, 1995), German: OpenThesaurus
(Naber, 2004; Naber, 2005)), ASCIIFolding
(Lucene), stopword removal (based on list of elas-
ticsearch (Elasticsearch reference, 2016)), lan-
guage dependent filter like GermanNormaliza-
tionFilter (Lucene), stemming (based on (Savoy,
2006) for French, Portuguese, German and Hun-
garian languages and (Porter, 1980) for English),

(2) standard tokenizer and the following filters: low-
ercase, NGramTokenFilter (min:1, max:20),

(3) same as (2) but with EdgeNGramTokenFilter.

The query is a boolean should clause query of
“baseline” and three “language” fields. This implies
that terms which do not fully match a term in the in-
dex are still counted using for example their stemmed
version (and thus increase recall). Nevertheless we
also consider precision because more matching fields
will increase the score.

The “context” approach uses the result of the pre-
vious one and re-ranks the documents considering the
overall desktop context. In particular, search results
corresponding to already opened (i.e. currently in
use) applications receive a higher score.

For all approaches TF-IDF is used as a similarity
metric. (Okapi BM25 has also been tested but was
omitted due to not having a considerable difference
compared to TF-IDF).

In the current implementation the mapping be-
tween user queries and application vocabulary is
based on term matching and synonyms. It would
also be possible to include other approaches like
QF-graphs (Fourney et al., 2011) or CommandSpace
(Adar et al., 2014) as additional resources for syn-
onyms.

The information retrieval system we described so
far still lacks the ability of executing mouse and key-
board interactions to get the graphical element visible.
That is why the next section covers another software
model which is able to derive such information.

3.4 Solution Execution

As already mentioned, one has to interact with an el-
ement to make further elements visible. This relation
plays a key role in the following graph-based software
model. By using a graph of connected UI elements, a
navigation is reduced to a shortest path between two
elements. For explaining a step by step solution a path
is appropriate: Ideally, it starts with an already visible
element and describes what has to be done in order to
open them successively. The final element will be the
one the user is looking for.

In particular, our model is a directed, weighted
graph having graphical element vertices and inter-
action edges. In short, an edge encodes what ele-
ment causes another one’s occurrence. Because of
this property we call this model a Show New Ele-
ment Graph (SNEG). The edge weight is used to store
the reliability that the interaction will correctly lead
to the promised graphical element. (This is induced
by the observation process not being completely reli-
able.) Based on evidences the model can learn which
paths have proven to be correct.

Models like the one just described explain how to
reach elements. Users still have to read and under-
stand the explanation and navigate though the GUI
on their own. Although it helps them to learn about
the software’s structure, we additionally want to pro-
vide an automation for convenience. Thus, we im-
plemented an algorithm which executes interactions
automatically. To do this, it uses the path acquired
from the previous model, which encodes two types of
information: the expected graphical elements and the
interactions which have to be executed on them. Ac-
cordingly, the algorithm has to master two subtasks:
a reliable recovery of graphical elements and the exe-
cution of the interactions.

Where is that Button Again?! âĂŞ Towards a Universal GUI Search Engine

221



UI Element Recovering. For recovering a UI el-
ement, an evaluation with the 16 selected software
tools was conducted (see Section Software Basis). All
UI elements and all their properties from each start
screen are recorded. In total there are 714 elements
which should clearly be differentiated. Table 1 shows
those properties that best distinguish these elements.

Each property is tested separately and the count
of resulting equivalence classes is used to find out
which feature combination is best suited. Most of
them are volatile and thus change over time like the
BoundingRectangle, ProcessId etc. The following set
can be used to rediscover UI elements:

• Name • HelpText
• AutomationId • AccessKey
• ClassName • LocalizedControlType
• ControlType • LegacyIAccessibleRole
• LegacyIAccessibleChildId
• LegacyIAccessibleDescription

In GUI testing also UI elements are identified.
The identification characteristics are determined at
test recording time. Since the playback is executed in
the very same environment, this is sufficient. For the
proposed approach the environment can change dras-
tically and it is therefore necessary to collect suitable
properties for identification.

It is possible that the values of one or more of the
properties stated above can change over time. Each
element can thus also have dynamic properties which
can not be used for identification. Dynamic properties
are automatically detected when UI elements with the
same RuntimeId are compared.

4 EVALUATION

To evaluate our approach we conducted a user study
with 10 participants (5 male, 5 female, average age
35.2, std. deviation 16.3). First, the participants were
asked about their computer usage ranging from “al-
most no use” (1) to “very frequent use” (4) which
resulted in a mean of 3.3 with a standard deviation
of 0.67. In order to classify the participants in two
classes, they were asked for each application if they
frequently use it (expert), or if they rarely use it
(novice).

In order to test our GUI search engine under real
conditions we extracted 16 most frequently used soft-
ware applications from the most commonly visited
download sites (see Section Software Basis). For
each of them a fictional task and a corresponding pic-
togram is defined which illustrates the task at hand

Table 1: All UIA properties sorted by their resulting equiv-
alence classes (table shows only properties with 10 or more
classes). In total there are 714 elements which should be
distinguished.

Property name ID Count of
equi-
valence
classes

RuntimeId 30000 583
BoundingRectangle 30001 570
Name 30005 299LegacyIAccessibleName 30092
ProviderDescription 30107 156
NativeWindowHandle 30020 139
HelpText 30013 100LegacyIAccessibleHelp 30097
AutomationId 30011 92
AccessKey 30007 66LegacyIAccessible-
KeyboardShortcut

30098

ClassName 30012 62
LegacyIAccessible-
Description

30094 45

LegacyIAccessibleState 30096 35
LegacyIAccessibleRole 30095 32
LocalizedControlType 30004 31
LegacyIAccessibleValue 30093 28
ControlType 30003 27
ValueValue 30045 25
ProcessId 30002 15
LegacyIAccessible-
DefaultAction

30100 13

LegacyIAccessibleChildId 30091 10

without influencing the user’s search terms. They are
listed in Table 2.

The evaluation setup for each participant was re-
alized as follows: In a random sequence a participant
processed one task after the other. For each task four
subtasks had to be accomplished:

(Subtask 1) Initially, the task’s pictogram as well
as the related program’s icon and name were dis-
played. Without influencing the user’s search terms,
the pictogram helps them to derive the envisioned
task. This method wants to simulate an intention to
perform a specific task in a certain application.

(Subtask 2) Afterwards, the participant had to
formulate a textual query describing the task. Us-
ing our proposed information retrieval system a list
of retrieved graphical element was shown to the
participant. This randomized list consists of the
top 15 graphical elements of the three introduced
search strategies (pooling strategy of TREC evalua-

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

222



Table 2: Table of programs, tasks and corresponding pictograms used in the user study.

Word 2013
Change paragraph

Exel 2013
Sort

PowerPoint 2013
Insert video

OpenOffice Writer
Double underline

OpenOffice Calc
Insert frame

OpenOffice Impress
Change orientation

VLC media player
Rotate video

CCleaner
Update

Google Chrome
Zoom

Mozilla Firefox
Print page

7Zip File manager
Delete file

WinRar
Rename file

Skype
Change sound

Photoscape
Red eye effect

Adobe Reader
Fullscreen

Avira Free Antivirus
Password

tion (Buckley and Voorhees, 2005)). Based on the
participant’s relevance feedback we later evaluated
the strategies’ precision and recall with the trec eval
evaluation package (Buckley, 2004).

(Subtask 3) Then, the participant is supposed to
search for the graphical element on their own in the
graphical front-end. We encouraged them to use any
form of external assistance (e.g. internet, manual,
etc.). While doing so, time and click count is cap-
tured. The user had to indicate if the element was
found.

(Subtask 4) Finally, our GUI Search Engine must
be used to find the correct graphical element. Again,
time and click count was recorded while using the
tool. In particular, this also includes the formulation
of the query, the selection of an element and the exe-
cution of the tool. Once more, the user has to state if
the tool found the graphical element in question.

Finally each participant had to fill out a user expe-
rience questionnaire (UEQ) (Laugwitz et al., 2008).

Based on the user study’s acquired data, we an-
alyzed the usefulness of our approach and the usage
experience.

Users can mainly benefit in two ways: The GUI
search engine may find the UI elements faster and it
may retrieve results when the user has already given
up manual search. In particular, a confusion matrix
describing the dependencies is shown in Table 4(b).

It distinguishes whether the tool and/or the user found
the desired UI element or not. In case both found it,
the matrix further shows in how many cases using the
tool was faster. We differentiate 160 observations –
10 participants performing 16 tasks each with another
application.

The measured number of clicks and the time to
complete the tasks are visualized in Figure 3. We or-
dered the tasks according to their difficulty, i.e. the
average user time to fulfill the task. We assume that
easier tasks are solved faster while more difficult ones
need more time. Figure 4(a) especially focuses on
those cases in which the tool was helpful. It shows
that the search engine helped users coping with the
most difficult and moderately difficult tasks. The
green bars indicate the fraction of participants per task
for whom the tool was particularly helpful, since they
could either find elements faster (green) or they were
able find the elements after manual search failed (dark
green). If the tool was not helpful, we differentiate the
following three cases: The user was faster when not
using the tool (orange), tasks could not be completed
at all – whether the tool was used or not – (red) and
only participants not using the tool could find the el-
ement (dark red). Unexpectedly, the tool could not
efficiently support participants in Tasks 5, 4 and 1. In
case of Task 5 the GUI search engine could not find
any graphical element at all due to an incorrect ob-

Where is that Button Again?! âĂŞ Towards a Universal GUI Search Engine

223



(a) Average number of clicks to complete each task differentiating between tool, expert and novice users.

(b) Average time in seconds to complete each task differentiating between tool, expert and novice users.

Figure 3: Analysis of the average click count and time to successfully execute a task (ordered by the tasks’ difficulties).

served software model. Although the tool found the
elements in Tasks 4 and 1, it took more time than a
manual search. Regardless of the necessary time, our
GUI search engine could find the desired elements in
55.6% of all 160 cases.

In order to evaluate the users’ perceptions of the
search engine, we additionally conducted a user expe-
rience questionnaire (UEQ) (Laugwitz et al., 2008).
Please note that there might be a slight bias since
the participants are personally known to the authors.
Based on the collected data it derives the following
six factors: attractiveness, perspicuity, efficiency, de-
pendability, stimulation, and novelty. The results are
depicted in Figure 5 and are discussed in the follow-
ing. The excellent average value in novelty shows
that the participants consider the approach as cre-
ative, innovative and leading-edge. Although there
are product-specific search engines, presented in re-
lated work section, they seem to be unknown to the

users. Ergonomic quality aspects like efficiency, per-
spicuity and dependability are rated above average,
whereas the latter two achieve a slightly higher score.
We assume that the slightly lower rating of efficiency
is due to the technical immaturity of the current pro-
totype. However, there is still potential for improve-
ment.

Another minor criterion of the evaluation is the
performance of the graphical element retrieval sys-
tem which lists suitable UI elements based on a user’s
search term. Since this is information retrieval tech-
nology, we will investigate its recall and precision.

Based on relevance feedback in the user study, we
created recall-precision-curves for each of the three
search strategies that are depicted in Figure 6. We see
that more analytical effort results in higher recall and
precision values.

In the next section we conclude this paper and give
an outlook on possible future work.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

224



(a) The colored bars indicate the fraction of participants per task for five aspects: The tool helped the users because they could
not find the element on their own (dark green) or because using the tool was faster (green). In cases the tool was not helpful we
differentiate three cases: Not using the tool was faster (orange), element could not be found at all (whether the tool was used
or not, red) and only participants not using the tool found the element (dark red).

User with tool
successful failed Total

User w/o tool successful 33,1% 15,0% (tool faster) 31,9% 80%
failed 7,5% 12,5% 20%

Total 55,6% 44,4% 100%
(b) Confusion Matrix depicting in how many cases the tool and/or user found the UI element
in question. Please note that we split up the case of both groups being successful: we
additionally record whether using the tool was faster or not.

Figure 4: Analysis of the approach’s usefulness.

-1,00

-0,50

0,00

0,50

1,00

1,50

2,00

2,50

Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty

Excellent

Good

Above Average

Below Average

Bad

Mean

Figure 5: User experience questionnaire results.

5 CONCLUSION AND OUTLOOK

In this paper we presented the first universal GUI
search engine, i.e. one that works for a wide range
of applications.

For 16 of 18 very frequently used programs we
showed that our approach supports users in easily
finding software functionality, especially if it is a fea-
ture that is not used regularly. We provide the auto-
matic execution of required steps like mouse and key-

Where is that Button Again?! âĂŞ Towards a Universal GUI Search Engine

225



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Recall

P
re

ci
si

on

Baseline
Language
Context

Figure 6: Recall/precision curves of the three search strate-
gies based on relevance feedback in the user study.

board actions. To obtain the necessary software mod-
els we implemented the click monkey, a mechanism
to automatically explore the user interfaces of given
applications. Concerning our information retrieval
system we implemented a first version and identified
some potential for improvement. We also showed that
rather minor enhancements already resulted in notice-
able positive effects.

In the two remaining cases our solution could not
be used, since the applications did not support the
Windows accessibility API. Using the Java Access
Bridge in these cases seems promising and will be im-
plemented in future versions.

We also intend to build an in-application tutor-
ing system based on our approach. Additionally, the
possibility of deriving usability implications from the
given software models could be investigated. Porting
our approach to mobile platforms like Android is an-
other future task.

The GUI usage behavior can further be exploited
in order to share expert knowledge about software
which is contained therein.

ACKNOWLEDGEMENTS

This research was funded in part by the German Fed-
eral Ministry of Education and Research under grant
no. 01IS12050 (project SuGraBo). The responsibility
for this publication lies with the authors.

REFERENCES

Adar, E., Dontcheva, M., and Laput, G. (2014). Com-
mandspace: modeling the relationships between tasks,
descriptions and features. In Proceedings of the 27th
annual ACM symposium on User interface software
and technology, pages 167–176. ACM.

Aho, P., Suarez, M., Kanstren, T., and Memon, A. (2013).
Industrial adoption of automatically extracted GUI
models for testing. In Proceedings of the 3rd Interna-
tional Workshop on Experiences and Empirical Stud-
ies in Software Modelling. Springer Inc.

Aho, P., Suarez, M., Kanstren, T., and Memon, A. (2014).
Murphy tools: Utilizing extracted GUI models for in-
dustrial software testing. In Software Testing, Verifica-
tion and Validation Workshops (ICSTW), 2014 IEEE
Seventh International Conference on, pages 343–348.

Buckley, C. (2004). Trec eval ir evaluation package.
http://trec.nist.gov/trec eval/. accessed on 2016-10-
25.

Buckley, C. and Voorhees, E. M. (2005). Retrieval system
evaluation. TREC: Experiment and evaluation in in-
formation retrieval, pages 53–75.

Cockburn, A. and Gutwin, C. (2009). A predictive model
of human performance with scrolling and hierarchical
lists. Human Computer Interaction, 24(3):273–314.

Davis, M. and Iancu, L. (2016). Unicode text segmentation.
http://unicode.org/reports/tr29/. accessed on 2016-10-
25.

Dixon, M. and Fogarty, J. (2010). Prefab: implementing
advanced behaviors using pixel-based reverse engi-
neering of interface structure. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 1525–1534. ACM.

Dixon, M., Leventhal, D., and Fogarty, J. (2011). Content
and hierarchy in pixel-based methods for reverse en-
gineering interface structure. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 969–978. ACM.

Dubey, N. and Shiwani, M. S. (2014). Studying and
comparing automated testing tools; ranorex and test-
complete. International Journal Of Engineering And
Computer Science, 3:5916–5923.

Ekstrand, M., Li, W., Grossman, T., Matejka, J., and Fitz-
maurice, G. (2011). Searching for software learning
resources using application context. In Proceedings
of the 24th annual ACM symposium on User interface
software and technology, pages 195–204. ACM.

Elasticsearch reference (2016). Stop token filter.
http://www.elasticsearch.org/guide/en/elasticsearch/
reference/current/analysis-stop-tokenfilter.html.
accessed on 2016-10-25.

Fellbaum, C. (1998). WordNet – An Electronic Lexical
Database. MIT Press.

Fourney, A., Mann, R., and Terry, M. (2011). Query-feature
graphs: bridging user vocabulary and system func-
tionality. In Proceedings of the 24th annual ACM
symposium on User interface software and technol-
ogy, pages 207–216. ACM.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

226



Gillespie, C. S. et al. (2015). Fitting heavy tailed distribu-
tions: The powerlaw package. Journal of Statistical
Software, 64(i02).

Google Inc. (2016). Chrome-browser features.
https://www.google.com/chrome/browser/features.
html. accessed on 2016-10-25.

Grilo, A. M., Paiva, A. C., and Faria, J. P. (2010). Reverse
engineering of gui models for testing. In 5th Iberian
Conference on Information Systems and Technologies,
pages 1–6. IEEE.

Hendy, J., Booth, K. S., and McGrenere, J. (2010). Graph-
ically enhanced keyboard accelerators for guis. In
Proceedings of Graphics Interface 2010, pages 3–10.
Canadian Information Processing Society.

IMC Information Multimedia Communication AG
(2016). Electronic performance support system imc
process guide. https://www.im-c.de/en/learning-
technologies/performance-support. accessed on
2016-10-25.

Lafreniere, B., Bunt, A., and Terry, M. (2014). Task-centric
interfaces for feature-rich software. In Proceedings
of the 26th Australian Computer-Human Interaction
Conference on Designing Futures: the Future of De-
sign, pages 49–58. ACM.

Lafreniere, B., Chilana, P. K., Fourney, A., and Terry, M. A.
(2015). These aren’t the commands you’re looking
for: Addressing false feedforward in feature-rich soft-
ware. In Proceedings of the 28th Annual ACM Sympo-
sium on User Interface Software & Technology, pages
619–628. ACM.

Laput, G. P., Dontcheva, M., Wilensky, G., Chang, W.,
Agarwala, A., Linder, J., and Adar, E. (2013). Pixel-
tone: a multimodal interface for image editing. In Pro-
ceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pages 2185–2194. ACM.

Laugwitz, B., Held, T., and Schrepp, M. (2008). Con-
struction and evaluation of a user experience ques-
tionnaire. Springer.

Memon, A. M. (2007). An event-flow model of GUI-based
applications for testing. Software Testing, Verification
and Reliability, 17(3):137–157.

Memon, A. M., Banerjee, I., and Nagarajan, A. (2003). Gui
ripping: Reverse engineering of graphical user inter-
faces for testing. In WCRE, volume 3, page 260.

Microsoft Corporation (2000). Microsoft active accessi-
bility: Architecture. http://msdn.microsoft.com/en-
us/library/ms971310.aspx. accessed on 2016-10-25.

Microsoft Corporation (2011). Office labs: Search com-
mands. http://www.microsoft.com/en-us/download/
details.aspx?id=28559. accessed on 2016-10-25.

Microsoft Corporation (2016a). Do things quickly with
tell me. https://support.office.com/en-us/article/Do-
things-quickly-with-Tell-Me-f20d2198-17b8-4b09-
a3e5-007a337f1e4e. accessed on 2016-10-25.

Microsoft Corporation (2016b). Quick launch.
http://msdn.microsoft.com/en-us/library/
hh417697.aspx. accessed on 2016-10-25.

Microsoft Corporation (2016c). What is cortana?
https://support.microsoft.com/en-us/help/17214/
windows-10-what-is. accessed on 2016-10-25.

Microsoft Corporation (2016d). Windows automa-
tion api. http://msdn.microsoft.com/en-us/library/win
dows/desktop/ff486375(v=vs.85).aspx. accessed on
2016-10-25.

Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.

Miser, B. (2008). Mac OS X Leopard in Depth. Que Pub-
lishing.

Naber, D. (2004). Openthesaurus: Building a thesaurus
with a web community. Citeseer, 3:2005.

Naber, D. (2005). OpenThesaurus: ein offenes deutsches
Wortnetz. Beiträge zur GLDV-Tagung, pages 422–
433.

Naboulsi, Z. (2012). Visual studio 2012 new fea-
tures: Quick launch. http://blogs.msdn.com/b/
zainnab/archive/2012/06/26/visual-studio-2012-new-
features-quick-launch.aspx. accessed on 2016-10-25.

Ness, R. (2011). Mac OS X Lion in Depth. Que Publishing.
Pogue, D. (2012). OS X Mountain Lion: The Missing Man-

ual. O’Reilly Media.
Porter, M. F. (1980). An algorithm for suffix stripping. Pro-

gram, 14(3):130–137.
Ramesh, V., Hsu, C., Agrawala, M., and Hartmann, B.

(2011). Showmehow: translating user interface in-
structions between applications. In Proceedings of the
24th annual ACM symposium on User interface soft-
ware and technology, pages 127–134. ACM.

Ranorex GmbH (2016). Ranorex hompage. http://www.
ranorex.com. accessed on 2016-10-25.

Savoy, J. (2006). Light stemming approaches for the french,
portuguese, german and hungarian languages. In Pro-
ceedings of the 2006 ACM symposium on Applied
computing, pages 1031–1035. ACM.

Scarr, J., Cockburn, A., Gutwin, C., and Bunt, A. (2012).
Improving command selection with commandmaps.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 257–266. ACM.

Scarr, J., Cockburn, A., Gutwin, C., Bunt, A., and
Cechanowicz, J. E. (2014). The usability of com-
mandmaps in realistic tasks. In Proceedings of the
32nd annual ACM conference on Human factors in
computing systems, pages 2241–2250. ACM.

SmartBear Software (2016). TestComplete hompage.
https://smartbear.com/product/testcomplete/overview/.
accessed on 2016-10-25.

TestStack (2016). White. https://github.com/Test
Stack/White. accessed on 2016-10-25.

Yeh, T., Chang, T.-H., and Miller, R. C. (2009). Sikuli:
using gui screenshots for search and automation. In
Proceedings of the 22nd annual ACM symposium on
User interface software and technology, pages 183–
192. ACM.

Where is that Button Again?! âĂŞ Towards a Universal GUI Search Engine

227


