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Abstract: In this paper, a Computer-Aided Diagnosis (CAD) system for endotracheal tube position confirmation, and 
detection of errors in intubation positioning is presented. Endotracheal intubation is a complex procedure 
which requires high skills and the use of secondary confirmation devices to ensure correct positioning of the 
tube. Our novel confirmation approach is based on video images classification and specifically on 
identification of specific anatomical landmarks, including esophagus, upper trachea and main bifurcation of 
the trachea into the two primary bronchi (“carina”), as indicators of correct or incorrect tube insertion and 
positioning. Classification of the images is performed using a neural network classifier. The performance of 
the proposed approach was evaluated using a dataset of cow-intubation videos and a dataset of human-
intubation videos. Each one of the video images was manually (visually) classified by a medical expert into 
one of three categories: upper tracheal intubation, correct (carina) intubation and esophageal intubation. The 
image classification algorithm was applied off-line using a leave-one-case-out method. The results show that 
the system correctly classified 1567 out of 1600 (97.9%) of the cow intubations images, and 349 out of the 
358 human intubations images (97.5%).  

1 INTRODUCTION 

Intubation is a common medical procedure in 
hospitals as well as in emergency medical units. 
During intubation, a flexible tube is used to secure 
passage of air to and from the lungs. The procedure is 
performed by manually opening the mouth, lifting the 
tongue using a device called laryngoscope in order to 
reveal the vocal cords, and inserting an endotracheal 
tube (ETT) through the vocal cords. The ETT should 
be positioned between 2 and 5 cm above the 
bifurcation of the trachea into the two primary 
bronchi (“carina”).  

The anatomy of the patient does not always allow 
easy insertion of the ETT and consequently it might 
be incorrectly positioned, usually either in the 
esophagus or in the right main bronchus. Both of 
these conditions can produce catastrophic results, as 
the patient might be deprived of oxygen. 
Unintentional esophageal intubation has been 
associated with high mortality rate (Silvestri et al., 
2005; Timmermann et al., 2007). In cases of right 
lung intubation (also termed one-lung intubation 
(OLI)), only one lung is ventilated. Prolonged one 
lung ventilation might cause serious pulmonary 

complications such as collapse of the contralateral 
lung and hyperinflation of the ventilated lung, which 
might eventually result in hypoxia and 
pneumothorax, respectively, and has been associated 
with a significant increase in morbidity (Owen et al., 
1987; Zwillich et al., 1974) and Pneumonia (Wang et 
al., 2009). Both esophageal and OLI may occur after 
the ETT was positioned correctly (“dislodgement”) 
from many reasons, for example, due to neck flexion 
during general anesthesia (Vergese et al., 2004; Yap 
et al., 1994).  

Confirmation of correct tube positioning is a 
challenging task. It requires high skills and the use of 
secondary objective devices. 

Numerous studies, which investigated 
endotracheal misplacement rates in hospital and pre-
hospital settings, reported rates between 0% and 25%, 
depending among others, on study design (Jacobs et 
al., 1983; Jemmet et al., 2003; Jones et al., 2004; Katz 
et al., 2001; Pointer, 1988; Silvestri et al., 2005; 
Steward et al., 1984; Timmermann et al., 2007; Wang 
et al., 2009).  

In this paper, we present a computer-aided 
diagnosis (CAD) system for endotracheal intubation 
confirmation. The system is based on identification of 
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specific anatomical landmarks as indicators of correct 
or incorrect tube positioning.  

Based on our previous preliminary work (e.g. 
(Lederman, 2011)), we further developed and tested 
our novel approach for automatic endotracheal 
intubation confirmation. The approach is based on 
direct visual cues, i.e., identification of specific 
anatomical landmarks as indicators of correct or 
incorrect tube positioning.  In this study, the system 
is further developed and evaluated using animal and 
human tissue model.  

The paper is arranged as follows. Section 2 
reviews the relevant work in this field. Section 3 
presents the proposed confirmation system. The 
experimental results are presented in Section 3. The 
results appear in Section 4, followed by discussion. 
The conclusions appear in Section 5. 

2 RELATED WORK 

There are various methods and techniques for 
endotracheal intubation confirmation. The most 
common technique is auscultation to lung sounds 
using a stethoscope. This technique requires high 
attention, and its reliability has been questioned in 
many studies (Brunel et al., 1989; Howells, 1985; 
Klepper et al., 1993; Linko et al., 1983; Peterson et 
al., 1973; Wang et al., 2006; Wodicka et al., 1994). 
The use of exhaled carbon dioxide detection (CO2) 
measurements (termed end-tidal CO2 (ETCO2)), has 
become the gold standard-de-facto for confirming 
correct tube positioning. However, the method has 
been found to be unreliable in many emergencies 
(Bhende et al., 1995; Gravenstein et al., 2004; Li, 
2001; Nolan et al., 2005; Webb et al., 1993). In 
addition, the method can not be used to detect OLI 
incidents as in such cases the capnogram is generally 
typical in shape and shows normal ETCO2 values 
(Gravenstein et al., 2004; Webb et al., 1993). Other 
techniques have been proposed (e.g., (Lederman, 
2006; O'connor et al., 2005; Tejman-Yarden et al., 
2006; Tejman-Yarden et al., 2007; Weizman et al., 
2008)), but none of them has been proven effective. 
Therefore, attempts to find the ultimate technique for 
correct tube position confirmation have been 
continued.  

Our proposed approach is based on direct visual 
cues, i.e., identification of specific anatomical 
landmarks as indicators of correct or incorrect tube 
positioning.  In the following, we describe the method 

and report its performance, evaluated using intubation 
videos acquired on animals and human beings.  

 

3 MATERIALS AND METHODS 

The correct position of an ETT tip is 2-5 cm above 
the carina. The image of the carina is therefore used 
as the definitive anatomical landmark for confirming 
correct endotracheal intubation. Hence, identifying 
the carina in the acquired video images, and 
discriminating between the carina and other 
anatomical structures, is the main idea of the 
proposed method. The method combines an artificial 
neural network scheme which is employed in a 
textural-based feature space. A general block diagram 
of the proposed system appears in Figure 2.  

3.1 The Video-stylet 

Intubation is usually performed using an intubating 
stylet, used to control and guide the ETT. We 
designed and assembled a designated video-stylet. 
The tip of the stylet comprises a miniature 
complementary metal oxide silicon (CMOS) sensor. 
The inner part of the stylet contains wires to transfer 
the image and a narrow lumen to spray water or air in 
order to clear blood and secretions away from the 
camera sensor (Figure 1).  

 

Figure 1: A schematic drawing of the video-stylet which 
includes the stylet and complementary metal oxide silicon 
(CMOS) sensor connected to a digital signal processor 
(DSP). 

The image sensor is connected to a processor with 
an integrated image acquisition component. During 
intubation, this rigid stylet is inserted into a standard 
ETT with its camera at the tip. Video signals are 
continuously acquired and processed by the 
confirmation algorithm implemented on the 
processor.  
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Figure 2: A general scheme of the proposed confirmation system. The system consists of three classes, one representing the 
upper-trachea, one representing the carina and one representing the esophagus. 

3.2 Pre-processing and Features 
Extraction 

The confirmation algorithm is based on classification 
of specific anatomical landmarks, including the 
carina, tracheal rings (upper trachea) and esophagus. 
We use textural features (Haralick et al., 1973) that 
contain important information about the structural 
arrangement of surfaces and their relationship to the 
surrounding environment. In particular, features 
based on grey level co-occurrence matrices (GLCM) 
are utilized. These features are based on the 
assumption that texture information on an image is 
contained in the overall or “average” spatial 
relationship, which the grey tones in the image have 
to one another. More specifically, it is assumed that 
this texture information is adequately specified by a 
set of grey tone spatial dependence matrices which 
are computed for various angular relationships and 
distances between neighboring resolution cell pairs 
on the image. One of the advantages of these features 
is that they are robust to imaging angles and scaling. 
This property is of great importance to the task in 
hand, as during intubation the tube may be inserted in 
different angles and directions, depending on the 
technique employed by the person performing the 

procedure. It was therefore hypothesized that textural 
features will allow reliable classification of the 
images, independently of the angle at which the tube 
was inserted. 

A brief description of the textural features is now 
given. Let : *f Lx Ly I  be an image with 
dimensions Lx  and Ly , and grey levels     

= 0,1, , 1g G  . Let d  be the distance (offset) between 
two pixel positions 1 1( , )x y and 2 2( , )x y . Angles 

quantized to 45  intervals are considered, such that 
the neighbors of any pixel can lie on four possible 
directions: = 0 ,45 ,90  and 135     . A resolution cell is 
considered to have eight nearest-neighbor resolution 
cells. The co-occurrence matrix is constructed by 
observing pairs of image cells at distance d  from 
each other and incrementing the matrix position 
corresponding to the grey level of both cells. The un-
normalized frequencies for direction of 45 , for 
instance, are defined by:  ܲሺ݅, ݆, ݀, 45∘ሻ = #{ሺ݇, ݈ሻ, ሺ݉, ݊ሻ∈ ൫ܮ௬, ௫൯ܮ ∗ ൫ܮ௬, ݇|௫൯ܮ − ݉|= ݀, |݈ − ݊|= −݀ ݎ ሺ݇ −݉ = −݀, ݈ − ݊= ݀ሻ, ,ሺ݇ܫ ݈ሻ = ݅, ,ሺ݉ܫ ݊ሻ = ݆}, (1)
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Figure 3: Two examples of carina images (left column) and the calculated textural features: correlation (middle column) and 
contrast (right column).  

where #  denotes the number of elements in the set. 
Measures of the other directions, as well as the 
normalized measures, can be easily obtained 
(Haralick et al., 1973).  

To construct the feature set utilized in the 
proposed system, various textural features were 
extracted from the GLCM. Let ( , )p i j  denote the 
( , )i j th entry in a normalized grey-tone spatial 
dependence matrix, such that ( , ) ( , ) /p i j P i j R , 
where R  is a normalization constant, which was set 
in this work to the sum of all values of ( , )P i j , i.e., 

1 1
= ( , )

G G

i j
R P i j

   , and ( )xp i  and ( )yp i  denote the 

i th entry in the marginal-probability matrix, obtained 
by summing the rows and columns of ( , )p i j , 

respectively, i.e. 
1

( ) ( , )
G

x j
p i P i j


 , 

1
( , )( )

G

iy P i jp j


 . Then, the following features are 

used to construct the feature set:   

Contrast:  1 2
1 0 1 1 | |=

= ( , )
G G G

n i j i j n
f n p i j



   
   .  

Correlation:  2 = 1 / ( , )x y x y
i j

f ijp i j    ,   

where x  and y  are the means, x  and y  are the 

standard deviations of the marginal distributions 
associated with ( , )p i j . 

Two information measures of correlation: 

 3 1= / max{ , }f HXY HXY HX HY
 
and  

  1/2

4 2= 1 exp 2.0f HXY HXY     , where HX  and 

HY
 

are the entropies of xp  and yp ,  

 ( , )log ( , )
i j

HXY p i j p i j  , 

 1 ( , ) log ( ) ( )x y
i j

HXY p i j p i p j   and  

 2 ( ) ( ) log ( ) ( )x y x y
i j

HXY p i p j p i p j  . 

Maximal correlation coefficient:  

 1/ 2

5 second largest eigvenvalue of f Q , where  

( , ) ( , ) ( , ) / ( ) ( )x y
k

Q i j p i k p j k p i p j . 

The four values that each feature takes on in the four 
directions are averaged to produce a rotation-
invariant feature which is employed by the 
classification system. Figure 3 shows typical 
examples of carina images and the corresponding 
calculated features. 

3.3 Classification  

In order to classify the video frames, we utilized a 
feed-forward artificial neural network classifier 
(ANN) which consists of three layers. The first 
(input) layer includes neurons that connect to selected 
features, the second layer includes hidden neurons, 
and the third (decision) layer includes one neuron that 
generates a likelihood score of a test case belonging 
to one of the three categories. To minimize over-
fitting and maintain robustness of the ANN 
performance, a limited number of training iterations 
(1000), and a large ratio between the momentum (0.9) 
and learning rate (0.01), is used. The likelihood scores 
obtained by the ANN classifier in leave-one-subject- 
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out tests are used to make the classification decision.  

4 RESULTS 

4.1 Classification of Cow Intubation 
Video Images 

In order to perform a preliminary evaluation of the 
proposed system, we recorded two datasets. The first 
dataset includes a total of 10 intubation videos that 
were recorded from animal (cow) models, out of 
which 1600 images were extracted, visually inspected 
by a medical expert and classified into one of the 
following categories: upper-trachea (490 images), 
carina (550 images) and esophagus (560 images).  

The second dataset includes 358 images, extracted 
from intubations performed on 8 human subjects that 
were downloaded from various web sites1. These 
images were also categorized into the three categories 
mentioned above.  

Evaluation of the proposed approach was 
performed using a leave-one-subject-out validation 
method: in each iteration, the images extracted from 
all videos (for a particular dataset) but one were used 
to train the models, i.e. estimate the network 
parameters, and the images from the remaining video 
were used to test system performance. This process 
was repeated such that each image participated once 
in the testing phase. 

The classification results are summarized in 
Tables 1 and 2, for the two datasets, respectively, 
where the rows represent the predicted (recognized) 
classes and the columns represent the actual classes. 
The system achieved an overall classification rate of 
97.9% (1567 out of 1600 images) for the cow 
intubation database, and 97.5% (349 out of 358 
images) for the human intubation database.  

Specifically, most of the errors are due to 
incorrect classification of carina images as upper-
trachea (e.g., 12 cases (2.2%), in the cow dataset and 
2 cases (2%) in the human dataset), and incorrect 
classification of upper-trachea images as carina and 
esophagus (8 cases (1.7%), and 9 cases (1.8%), 
respectively, for the cow dataset; 2 cases (1.05%), and 
2 cases (1.05%), respectively, for the human dataset). 
For both datasets, in two cases, an esophagus image 
was mistakenly classified as either upper-tracheal or 
carina. 

 
 

1University of Florida:  
http://vam.anest.ufl.edu/airwaydevice/videolibrary/index.html 
and http://www.youtube.com 

Table 1: Summary of classification results for the cow 
intubations dataset. 

 
Recognized 

Actual 
Upper-
trachea 

Carina Esophagus 

Upper-
trachea 

473 
(96.5%) 

12 
(2.2%) 

1 (0.2%) 

Carina 8 (1.7%) 536 
(97.5%) 

1 (0.2%) 

Esophagus 9 (1.8%) 2 (0.3%) 558 
(99.6%) 

Total 490 550 560 

Table 2: Summary of classification results for the human 
intubations dataset. 

 
Recognized 

Actual 
Upper-
trachea 

Carina Esophagus 

Upper-
trachea 

185 
(97.9%) 

2 (2%) 1 (1.5%) 

Carina 2 
(1.05%) 

98 
(97.0%) 

1 (1.5%) 

Esophagus 2 
(1.05%) 

1 (1.0%) 66 (97.0%) 

Total 189 101 68 

4.2 Discussion 

A novel approach for automatic endotracheal 
intubation confirmation was introduced. According to 
the approach, direct physical determination of the 
tube position with respect to the relevant anatomical 
structures is performed based on image classification. 
Images are represented using textural features which 
are utilized by the ANN classifier. The proposed 
scheme is simple and computationally efficient.  

The proposed confirmation method was evaluated 
using cow and human intubations videos, out of 
which images were extracted and classified by a 
medical expert into one of three categories: upper 
tracheal, carina and esophagus. The method achieved 
a high precision of 97.9% (1567 out of 1600 images) 
using the cow intubations dataset, and 97.5% (349 out 
of the 358 images) using the human intubation 
dataset. 

The method has a number of advantages over 
existing endotracheal intubation confirmation 
devices, including reliability in any medical 
condition, suitability for both esophageal intubation 
detection and one-lung intubation detection (although 
not tested in this preliminary study), and the fact that 
it is fully automatic and may be used, with a 
designated endotracheal tube, for continuous and 
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long-distance screening of tube misplacement and 
dislodgment. The method can be easily integrated in 
all patient monitoring systems. Moreover, the system 
can be used to improve medical professionals 
training.  

The proposed method is computationally 
efficient. Specifically, all of the algorithms used in 
this work were implemented in Matlab R2016a 64bit. 
Using a conventional PC equipped with Dual Intel 
Xeon 3.4 GHz with a 16 GBytes of RAM, feature 
extraction requires less than 1 second for each image.  
Future improvements are the inclusion of other 
anatomical landmarks, such as vocal cords, and the 
development of a video-analysis algorithm, which are 
expected to improve confirmation performances.  

The results are encouraging, but clearly much 
work is needed to further validate the proposed 
approach. The available database consists of only 10 
cow intubation videos and 8 human intubation videos. 
A much larger database is required in order to reliably 
validate system performance. Various factors might 
challenge the system performance, especially fog and 
secretions, which could result in poor image quality. 
In addition, the effect of possible physiological 
variability between patients on system performance is 
yet to be evaluated.  

Our ultimate goal is to develop a reliable, cost-
effective, easy to use and fully automatic device for 
confirmation of correct tube positioning. For this 
purpose, we plan to develop an advanced prototype, 
which will be thoroughly evaluated in pre-clinical 
trials and, upon receiving the appropriate regulatory 
approvals, on humans. Based on this preliminary 
study, we believe that implementation of the 
proposed method into a real-time confirmation 
system will lead to a major improvement in the ability 
to detect intubation incidents as they occur, while the 
patient is still well oxygenated and stable. 

5 CONCLUSIONS 

The ANN-based classification system achieved a 
high precision of 97.9% and 97.5% for the cow and 
human datasets, respectively. The results are 
encouraging but as mentioned above, more research 
is needed in order to reliably validate system 
performance. With these challenges in mind, 
successful implementation of the proposed method 
into a real-time confirmation system can serve as a 
major contribution to patient safety. 
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