
A Methodology of Security Pattern Classification and of Attack-Defense
Tree Generation

Loukmen Regainia and Sébastien Salva
LIMOS - UMR CNRS 6158, Auvergne University, Aubière, France

{loukmen.regainia, sebastien.salva}@udamail.fr

Keywords: Security Patterns, Classification, CAPEC Attacks, CWE Weaknesses, Attack-Defense Trees.

Abstract: Security at the design stage of the software life cycle can be performed by means of security patterns, which
are viable and reusable solutions to regular security problems. Their generic nature and growing number make
their choice difficult though, even for experts in system design. To guide them through the appropriate choice
of patterns, we present a methodology of security pattern classification and the classification itself, which
exposes relationships among attacks, weaknesses and security patterns. Given an attack of the CAPEC (Com-
mon Attack Patterns Enumeration and Classification) database , the classification expresses the security pattern
combinations that overcome the attack. The methodology, which generates the classification is composed of
five steps, which decompose patterns and attacks into sets of more precise sub-properties that are associated.
These steps provide the justifications of the classification and can be followed again to upgrade it. From the
classification, we also generate Attack-Defense Trees (ADTtrees), which depict an attack, its sub-attacks and
the related defenses in the form of security pattern combinations. Without loss of generality, this classification
has been established for Web applications and covers 215 attacks, 136 software weaknesses and 26 security
patterns.

1 INTRODUCTION

Design patterns are recurrent solutions to software de-
sign problems proposed and used by skilled applica-
tion or system designers. They are more and more
considered in the industry since they may accelerate
the design stage of the software life cycle and help in
the code readability and maintenance. As the inter-
est in software security continuously grows for a few
years, specialised patterns were also proposed to im-
prove the security properties of models.

Security patterns are reusable (design) elements
to design secure applications which will enable soft-
ware architects and designers to produce a system
which meets their security requirements and which is
maintainable and extensible from the smallest to the
largest systems (Rodriguez, 2003).

Security patterns relates countermeasures (stated
in the solution) to threats and attacks in a given con-
text (Schumacher and Roedig, 2001).

Hence, these patterns are often presented with
UML (Unified Modelling Language) class and se-
quence diagrams.

Since 1997, the number of security patterns is
continuously growing and around 170 security pat-

terns are available at the moment (Slavin and Niu,
2016). Security patterns are often presented with a
high level of abstraction to be reusable in different
kinds of context and are described with textual doc-
uments. Because of this abstract nature and because
the documents are not structured in the same man-
ner, the choice of the most appropriate security pat-
tern to mitigate a security problem is sensitive and
somehow perilous to novice designers (Yskout et al.,
2012; Alvi and Zulkernine, 2011). As designers can-
not be experts in all the fields of software engineering,
they clearly lack of guidance in the choice of patterns
during the design phase. As a consequence, security
pattern taxonomies were proposed in the literature to
lead them towards good practices.

Several classifications were proposed to arrange
security patterns in different kinds of categories, e.g.,
by security principles (Yskout et al., 2006; Alvi and
Zulkernine, 2012), by application domains (Bunke
et al., 2012) (software, network, user, etc.)., by vul-
nerabilities (Anand et al., 2014; Alvi and Zulkernine,
2011) or by attacks (Wiesauer and Sametinger, 2009;
Alvi and Zulkernine, 2011). Despite the improve-
ments in the pattern choice brought by these classi-
fications, several issues still remain open. Among

136
Regainia, L. and Salva, S.
A Methodology of Security Pattern Classification and of Attack-Defense Tree Generation.
DOI: 10.5220/0006198301360146
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 136-146
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



them, we noticed that these classifications are all man-
ually devised by directly comparing the textual de-
scriptions of patterns with those of the other security
artifacts (vulnerabilities, attacks, etc.). As these de-
scriptions are generic and have different levels of ab-
straction, the categorisation of a pattern can be done
only when there is an evident relation between it and
a security property. Furthermore, it is often delicate
to upgrade these classifications since no strict pro-
cess to follow is available. Finally, the navigability
among a set of patterns is rarely taken into consider-
ation by theses classifications (Alvi and Zulkernine,
2012). This important quality criterion is defined as
the ability to guide the choice of designers among col-
laborative and related patterns. We believe that this
criterion must be examined and exposed in security
pattern classifications since we often observed that
several patterns may meet the same security property.

From these observations, we propose to contribute
in the security pattern classification by proposing a
classification methodology, composed of several suc-
cessive steps, which lead to a pattern classification
based upon security attacks, since the notion of at-
tacks is usually well-known by designers and devel-
opers. More precisely, the contributions of this paper
can be summarised by the following points:
• we propose a classification, which is based upon

relationships among attacks, weaknesses, secu-
rity principles and security patterns, expressing
the pattern combinations that can be used to mit-
igate an attack. The classification is composed
of security properties found in well established
security bases i.e. the CAPEC (Mitre corpora-
tion, 2015a) and CWE (Mitre corporation, 2015b)
bases. The classification is stored in a database
available in (Regainia et al., 2016b). For read-
ability purposes and to illustrate the navigability
among patterns, the classification is illustrated by
means of Attack-Defence Trees (ADTrees (Kordy
et al., 2012)), which illustrate for a given attack its
(more concrete) sub-attacks and the defenses, ex-
pressed here with security patterns combined with
logic operations,

• our classification reveals the combinations of pat-
terns that should be chosen to block an attack,
and particularly it provides inter-pattern relations.
We indeed take advantage of the studies about the
inter-pattern relations (Yskout et al., 2006; Fer-
nandez et al., 2008) and include them in the classi-
fication. For instance, these inter-pattern relations
offer the advantage to make apparent the conflict-
ing or alternative patterns,

• we propose a methodology, built on five steps,
which infer relationships between attacks, weak-

nesses, security principles and patterns to gener-
ate the classification and Attack Defence Trees.
The methodology takes as inputs CAPEC attacks,
builds a hierarchical tree of attacks showing the
sub-attacks of a given attack and links them with
the targeted weaknesses found in the CWE base.
Afterwards, we reuse an earlier work, proposed
in (Regainia et al., 2016a), to build relationships
among weaknesses, security principles and secu-
rity patterns. All these steps provide the detailed
justifications of the resulting classification. As
most of the steps are automatic, this methodology
can be followed again to update the classification.

We have limited our classification to the field of
Web applications, which means that our pattern clas-
sification includes 215 CAPEC attacks, 136 CWE
weaknesses, and 26 security patterns covering varied
security aspects.

The remainder of the paper is organised as fol-
lows: Section 2 presents some related work and the
motivations of the proposed approach. Section 3 re-
calls some security notions used in the paper. We in-
troduce the methodology in Section 4 and illustrate
its steps with the attack “CAPEC-39: Manipulating
Opaque Client-based Data Tokens“. We give a short
presentation of the classification and discuss about its
advantages and limitations in Section 5. We tradition-
ally conclude and give some perspectives for future
work in Section 6.

2 RELATED WORK

Some taxonomies and classifications were proposed
in the literature to help designers in the choice of the
most appropriate security patterns with regard to a
given context.

Bunke et al. presented a systematic literature
review of the papers dealing with security patterns
between 1997 and 2012. They finally proposed a
classification based upon the application domains of
patterns (software, network, user, etc.)(Bunke et al.,
2012), but the notions of attacks or vulnerabilities are
not mentioned. Vulnerabilities are taken into con-
sideration for pattern classification in (Anand et al.,
2014; Alvi and Zulkernine, 2011). This gives another
point of view helping designers in the choice of pat-
terns to fix software vulnerabilities. This vulnerability
based classification seems meaningful since vulnera-
bilities are the natural causes of attacks on software
systems, but the vulnerability concept is not the most
known by designers.

This is why other authors proposed security pat-
tern classifications, which refer to the attack concept

A Methodology of Security Pattern Classification and of Attack-Defense Tree Generation

137



(Wiesauer and Sametinger, 2009; Tøndel et al., 2010;
Alvi and Zulkernine, 2011; Uzunov and Fernandez,
2014). Wiesauer et al. initially presented in (Wiesauer
and Sametinger, 2009) a short taxonomy of security
design patterns made from links found in the textual
descriptions of attacks and the purposes and intents of
security patterns. Tondel et al. presented in (Tøndel
et al., 2010) the combination of three formalisms of
security modelling (misuse cases, attack trees and se-
curity activity models) in order to give a more com-
plete security modelling approach. In their methodol-
ogy of building attack trees, they linked some activ-
ities of attack trees with CAPEC attacks; they also
connected some activities of SAGs (security activ-
ity diagrams) with security patterns. The relation-
ships among security activities and security patterns
are manually extracted from documentation and are
not explained. Shortly after, Alvi et al. presented
a natural classification scheme for security patterns
putting together CAPEC attacks and security patterns
for the implementation phase of the software life cy-
cle (Alvi and Zulkernine, 2011). They analysed some
security pattern templates available in the literature
and proposed a new template composed of the essen-
tial elements needed for designers. They manually
augmented the CAPEC attack documentation with a
section named “Relevant security patterns“ composed
of some patterns (Alvi and Zulkernine, 2011). Af-
ter inspecting the CAPEC base, we observed that this
section is seldom available, which limits its use and
interest. Finally, Uzunov et al. proposed in (Uzunov
and Fernandez, 2014) a taxonomy of security threats
and patterns specialised for distributed systems. They
proposed a library of threats and their relationships
with security patterns in order to reduce the expertise
level required for the design of secure applications
(Uzunov and Fernandez, 2014). They considered that
the use of the CAPEC base is cumbersome and as-
sumed that their threat patterns are abstract enough to
encompass security problems related to the specific
context of distributed systems (Uzunov and Fernan-
dez, 2014).

Open Issues and Contributions

Alvi et al. outlined 24 of these classifications in (Alvi
and Zulkernine, 2012) and established a comparative
study to point out their positive and negative aspects.
They chose 29 classification attributes (purpose, ab-
straction levels, life-cycle, etc.) and compared the
classifications against a set of desirable quality cri-
teria (navigability, completeness, usefulness, etc.).
They observed that several classifications were built
in reference to a unique classification attribute, which

appears to be insufficient. They indeed concluded that
the use of multiple attributes enables the pattern selec-
tion in a faster and more accurate manner.

We also observed that the main issue of the above
works lies in the lack of a precise methodology to
build the classification. All of them are based upon
the interpretation of different documents, which are
converted to abstract relationships. The first conse-
quence is that understanding the structure of cate-
gories and relationship is sometimes tricky. In addi-
tion, it becomes very difficult to extend these classifi-
cations.

Furthermore, we noticed that these classifications
lack of navigability among patterns, which is an im-
portant property defined as the ability to guide the
choice of designers among related patterns (Alvi and
Zulkernine, 2012). We believe that a security pat-
tern classification must be built from several security
properties e.g., weaknesses, security principles, etc.
to make the pattern choice more precise. The inter-
pattern relationships should also be given: for in-
stance, the conflicts among patterns, which may lead
to inconsistencies in an application, must be notice-
able.

In (Regainia et al., 2016a), we proposed a first
semi-automatic methodology of classification and
the classification itself, which exposes relationships
among 185 software weaknesses of the CWE base
(Mitre corporation, 2015b), security principles and 26
security patterns. It expresses which patterns partially
mitigate a given weakness with respect to the security
principles that have to be addressed to fix the weak-
ness. This methodology is composed of some manual
steps subdividing weaknesses and patterns into de-
tailed security properties. Then, these are automati-
cally associated together with respect to security prin-
ciples. We organised the latter into a hierarchy to pre-
cisely express the security objectives of these proper-
ties.

In this paper, we continue the line of work pre-
viously initiated and present a methodology of clas-
sification to categorise the security patterns that can
be used to mitigate attack patterns of the CAPEC
base. Our classification aims at proposing a precise
and accurate mapping between security patterns and
CAPEC attacks: it is more accurate in the sense that
we focus on the sub-properties of the security patterns
and attacks and establish relations among these prop-
erties. In addition, the classification is completed with
the inter-pattern relationships found in (Yskout et al.,
2006). This is why we claim that the proposed classi-
fication is more precise.

But, the strong contribution of this paper lies in
the presentation of the methodology itself. This one is

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

138



based on several automatic steps that can be followed
again to complete the classification. We also propose
the generation of Attack-Defense trees (ADTrees)
putting CAPEC attacks as attack nodes and security
patterns as defense nodes. These trees illustrate two
points of view: they show the choice of an attacker
(choice of attack, achieved with more concrete at-
tacks) and the available mitigations that a designer
can choose to devise its application. These are gen-
erated after the choice of an attack in the classifica-
tion and are hence up-to-date w.r.t. the latter. Our
ADTrees also express the relation among patterns (de-
pendence, conflicts, etc.).

3 BACKGROUND

The proposed classification methodology is mainly
based upon three security concepts: security patterns,
CAPEC attacks and CWE weaknesses. We recall ba-
sics on these concepts below.

3.1 Security Patterns

A security pattern is a generic solution to a recur-
rent security problem, which is characterised by a set
of structural and behavioural properties (Fernandez,
2007). It can be presented textually or with schema,
e.g. UML diagrams. The quality of a pattern and its
classification can be established with strong points,
which correspond to sub-properties of the pattern.
These properties characterize the forces and the con-
sequences brought by the use of the pattern against a
security problem (Harb et al., 2009). Strong points are
manually extracted from the forces and consequences
of a security pattern.

In addition, a security pattern can be documented
to express its relationships with other patterns. Such
annotations may noticeably help combine patterns
and not to devise unsound composite patterns. Ysk-
out et al. proposed the following annotations between
two patterns p1 and p2 (Yskout et al., 2006):

• “depend“means that the implementation of p1 re-
quires the implementation of p2,

• “benefit“ expresses that implementing p2 com-
pletes p1 with extra security functionalities or de-
creases the development time. However, p1 can
be correctly implemented despite the absence of
p2,

• “impair“ means that the functioning of p1 can be
obstructed by the implementation of p2,

• “alternative“ expresses that p2 is a different pat-
tern fulfilling the same functionality as p1,

• “conflict“ encodes the fact that if both p1 and p2
are implemented together then it shall result in in-
consistencies.

Figure 1: Application Firewall pattern.

For example, Figure 1 portrays the UML class dia-
gram of the pattern “Application Firewall“ whose pur-
pose is to filter requests and responses to and from an
application, based on access control policies. This se-
curity pattern structures an application in such a way
that the inputs filtering logic is centralised and decou-
pled from the functional logic of the application.

This pattern is related to two other security pat-
terns (Yskout et al., 2006): it is an alternative to the
patterns “Input Guard“ and “Output Guard“ since the
application firewall is able to filter input calls, and
also output responses from the application.

3.2 CWE Weaknesses

The CWE base (Mitre corporation, 2015b) provides
an open catalogue of software weaknesses, which are
software or design mistakes that can lead to vulnera-
bilities. At the moment, this database includes around
1000 software weaknesses but this number is still
growing. A weakness is documented with a panoply
of information, including a full description, its causes,
detection methods, and relations with CAPEC attacks
or vulnerabilities. In addition, a set of potential miti-
gations are often proposed.

3.3 Capec Attacks

The Common Attack Pattern Enumeration and Clas-
sification (CAPEC) is an open database offering a cat-
alogue of attacks in a comprehensive schema (Mitre
corporation, 2015a). Attack patterns are descriptions
of common approaches that attackers take to attack
software. An attack pattern, which we refer here as a
document, consists of several sections; among them,
a section describes the attack execution flow on vul-
nerable systems, other sections give the prerequisites,

A Methodology of Security Pattern Classification and of Attack-Defense Tree Generation

139



the severity, the impact, the required attacker skills,
etc.

In our context, three sections sound particularly
interesting for starting a classification: the section
“Related attack patterns“ shows some relationships
among attacks, the section “Related Weaknesses“
lists the CWE weaknesses targeted by the attack and
the section “Relation security principles“ catalogues
some principles defined as desirable properties tar-
geted by the attacks.

The attacks of the section “Related attack pat-
terns“, are characterised by a type and a relation. The
former expresses a level of abstraction of the attacks.
Different levels can be found, giving a hierarchical
structure: We list them from the more to less abstract
as follows:
1. Category: at this level, an attack pattern ex-

presses the attack mechanisms/domains from a
high point of view (Injection, Target analysis, So-
cial engineering, etc.),

2. Meta Pattern: as a refinement of Category, meta
patterns express the possible specialisations of at-
tack mechanisms without giving details neither
the steps of the attack, nor the possible counter-
measures,

3. Standard Pattern: gathers more detailed attacks,
i.e. the attack steps, countermeasures and the re-
lated CWE weaknesses of the attacks,

4. Detailed Attack Pattern: this lowest level of ab-
straction gathers the specialisations of standard at-
tacks in some specific contexts or needs. For ex-
ample, the “CAPEC-7 Blind SQL Injection“ is a
special case and therefore a child of the standard
attack “CAPEC-66: SQL Injection“.
The section “Related attack patterns“ gives binary

relations between two attacks (a,b). These relations
can be:
• “a“ is member of/child of “b“: when the attack

“a“ is a refinement of the attack “b“,
• “a“ has member/parent of “b“: when the attack

“a“ is more abstract than the attack “b“,
• “a“ can precede/can follow “b“: when the attack

“a“ and “b“ are put in sequence.

4 CLASSIFICATION
METHODOLOGY

This methodology aims at inferring relationships
among security attacks and security patterns, express-
ing which set of patterns can mitigate a given at-
tack, completed with the relations among the patterns.

Without loss of generality, we applied the following
methodology on Web application attacks, but it can
be applied on other kinds of applications.

After having studied the CAPEC base, we ob-
served that attacks are described with a set of CWE
weaknesses, a set of security principles and poten-
tial solutions and mitigations. These security activ-
ities can also be found in our previous classification
(Regainia et al., 2016a), connecting weaknesses with
security patterns. However, we noticed that the miti-
gations and security principles available in the attack
documents often have a high level of abstraction mak-
ing their use difficult. Furthermore, these are seldom
supplied with attacks. As a consequence, to devise
this classification with precision, we chose to decom-
pose attacks into sub-properties, i.e. every attack is
associated to its targeted weaknesses. We hence con-
sider that a security pattern (or a set of patterns) is a
solution to protect an application against a given at-
tack if it is also the solution of a weakness targeted by
the attack.

Our methodology is divided into five automatic
steps, illustrated in Figure 2. In the first one, we col-
lect the attacks of the CAPEC base and organise them
into a hierarchy, from the more to the less abstract
ones. In Step 2, we collect the relationships between
every attack and CWE weaknesses, reflecting which
weakness is targeted by an attack. In Step 3, we reuse
our earlier classification (Regainia et al., 2016a) to
extract for every CWE weakness, the security prin-
ciples, mitigations and security patterns which fix
the weakness. After the consolidation of the differ-
ent databases built in the previous steps, we obtain a
database DBf from which the classification is auto-
matically extracted in Step 4. Finally, for a given at-
tack, we depict with an ADTree the attack associated
with its sub-attacks and with defenses in the form of
security patterns, which are themselves combined by
means of logic operations.

Each step of our proposed methodology is de-
tailed below and illustrated with the attack “CAPEC-
39: Manipulating Opaque Client-based Data Tokens“,
which expresses a threat on applications using tokens,
e.g. cookies, which hold client data.

4.1 Step 1: CAPEC Attack Extraction
and Organisation

In this step, we want to extract the attacks found in
the CAPEC base and organise them into a single tree,
which describes a hierarchy of attacks from the most
abstract to the most concrete ones so that, we can
have, for a given attack, all its sub-attacks. To reach
that goal, we rely on the relationships among attack

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

140



Figure 2: Classification methodology.

Figure 3: Hierarchical organisation of attacks for the attack
CAPEC 39.

patterns found in the CAPEC section “Related At-
tack Patterns“ (CAPEC base, Version 2.8). Figure 3
presents an example for the attack CAPEC-39. The
abstraction level of the attack is expressed in the col-
umn “Type“ (C stands for Category, S for Standard
pattern), the links with other attacks by “Nature“.

By scrutinising all the CAPEC documents, it be-
comes possible to develop a hierarchical tree whose
root node is unlabelled and connected to the attacks
of the type “Category“. These nodes may also be par-
ent of attacks that belong to the type “Meta Attack
pattern“ and so on. The leaves are the most concrete
attacks of the type “Detailed attack pattern“.

We implemented this step with the tool Talend, 1

an ELT (Extraction, Load, Transform) tool which al-
lows an automated processing of data independently
from the type of its source or destination, by scanning
the CAPEC attacks from the more abstract (those of
the type “Category“) to the most concrete ones (in the
type “Detailed Attack Patterns“) and we stored the re-
sulting hierarchical tree into a database DB1. This tree
is currently composed of 215 attacks. The tree is com-
posed of five levels w.r.t. the current CAPEC struc-
ture. If new attacks are added, our implementation
can automatically take them into account to generate
another tree.

4.2 Step 2: CWE Weakness Extraction
from Attacks

We automatically extract for every CAPEC attack of
the database DB1 the CWE weaknesses targeted by
the attack. These can be found in the section “Related
Weaknesses“ of the CAPEC documents. Weaknesses

1https://talend.com/

are grouped into two categories, “Targeted“ and “Sec-
ondary“ ranking the impact degree of the attack on a
weakness. We only focused on the type “Targeted“
even though it could also be relevant to consider both
types.

The outcome of this systematic extraction is
stored in a database DB2, which encodes a mapping
from the 215 attacks to 136 CWE weaknesses. Unsur-
prisingly, we observed that the attacks having a high
level of abstraction (those of Category and Meta Pat-
tern) are not related to any CWE weakness.

The attack CAPEC-39, taken as example, tar-
gets six CWE weaknesses, which illustrates here that
the attack is indeed segmented into security sub-
properties. Among them, we have “Reliance on
Cookies without Validation and Integrity Checking“
or “Improper Authorization“, which reflect more pre-
cise sub-properties than the attack itself. These can
be mitigated by several security patterns, which are
revealed by means of the next step.

4.3 Step 3: Connection between CWE
Weaknesses and Security Patterns

We proposed in (Regainia et al., 2016a) a classifi-
cation, which exposes relationships among software
weaknesses, security principles and security patterns.
More precisely, for a given weakness, it provides its
mitigations, the security principles that have to be fol-
lowed to fix the weakness, the strong points (sub-
properties) of security patterns that meet these princi-
ples and finally the security patterns allowing to cor-
rect the weakness. From this classification, we auto-
matically extract, for every weakness found in DB2
the following information:

• the complete hierarchy of security principles Sp
related to a weakness, i.e. the arrangements of
principles from the most abstract ones to the most
concrete principles,

• for every principle sp in Sp, the set Psp of security
patterns associated with sp, the set P2sp of pat-
terns not in Psp that have relations with any pattern

A Methodology of Security Pattern Classification and of Attack-Defense Tree Generation

141



of Psp, and the nature of these relations defined for
couples of patterns by the annotations in {depend,
benefit, impair, alternative, conflict}.
This automatic step produces the database DB3.

4.4 Step 4: Data Consolidation and
Classification Extraction

The databases obtained in the previous steps are inte-
grated with the tool Talend into a single one, denoted
DBf , which is available on-line in (Regainia et al.,
2016b). With DB1, we have a hierarchical representa-
tion of attacks, which are eventually related to a set of
CWE weaknesses given in DB2. DB3 encodes the re-
lations among these weaknesses, the related security
principles and security patterns. Hence, DBf includes
all the required information to expose several kinds
of relations and classifications. For example, for a
given attack, we can extract a hierarchical tree show-
ing its sub-attacks. From this kind of extraction, at-
tack trees (Schneier, 1999), could be generated. These
show how a generic attack can be realised by more
concrete attacks. Furthermore, the set of weaknesses
targeted by an attack as well as the security principles
that have to be followed to fix the weaknesses can also
be selected from DBf .

But, first and foremost, security patterns can be
classified against attacks. We have chosen to cata-
logue the combinations of patterns that aim to miti-
gate a given attack, i.e. all the patterns that offer a
mitigation for any weakness exploited by the attack.
This step also automatically collects these combina-
tions of patterns for every attack found in DBf . More
precisely, for a given attack, we extract:

• the information about the attack (name, identifier,
description, etc.),

• the set of patterns P that are related to all the
weaknesses targeted by the attack and the set of
patterns P2 not in P that have relations with any
pattern of P, and the nature of these relations.

Figure 4 depicts an extraction example for the
attack CAPEC-39. The tabular gives the at-
tack name, the security pattern allowing to block
the attack (column 3), another alternative pattern
(columns 4,5) and its sub-attack “CAPEC-31 Access-
ing/Intercepting/Modifying HTTP Cookies“. The last
columns give the security patterns allowing to over-
come the attack CAPEC-31 and their relations with
other patterns.

4.5 Step 5: Attack-Defense Tree
Generation

We propose to greatly improve the readability of the
classification, given in tabular form, by generating
ADTrees, organising the attacks and the related se-
curity patterns. With ADTrees, attacks are illustrated
with red nodes, which can be interconnected with the
logic operations and,/or. An attack node can be mit-
igated with one defense node (in green squares) com-
posed of sub defenses or one attack themselves com-
bined the operations and/or.

In our context, an ADTree shall be rooted by an at-
tack chosen by a designer. This root node can be con-
nected to other attack nodes, expressing sub-attacks,
which can be connected to defense nodes, represent-
ing security patterns. Figure 5(a) illustrates a general
example of ADTree. The “OR“ operation is depicted
with a group of classical edges, whereas “AND“ is de-
picted with a group of classical edges connected with
an arc.

ADTrees are generated by the following steps:

1. every CAPEC attack found in DBf has its own
ADTree whose root node is labelled by its identi-
fier. This root node is linked to other attack nodes
if the attack has sub-attacks and so on until there
is no more sub-attack. We obtain a sub-tree of
the original hierarchical tree extracted in Step 1.
All the attack nodes are here combined with the
“OR“ operation meaning that an attack can be ac-
complished if one of its sub-attacks is successfully
done,

2. for every attack node A, we collect the set P of
security patterns that mitigate the attack as well
as the set P2 of security patterns having relations
with some patterns of P. Given a couple of pat-
terns (p1,p2) ∈ P∪P2, we illustrate these rela-
tions with new nodes and logic operations. If we
have:

• (p1 depend p2) or (p1 benefit p2), we build
three defense nodes, one parent node labelled
by p1 AND p2 and two nodes labelled by p1, p2
combined with this parent defense node by the
AND operation,

• (p1 alternative p2), we build three nodes, one
parent node labelled by p1 OR p2 and tw nodes
labelled by p1, p2 combined with the parent de-
fense node by the OR operation,

• (p1 impair p2) or (p1 conflict p2), we want
to use (p1 XOR p2) since the presence of
p2 decreases the efficiency or conflicts with
p1. Unfortunately, the XOR operation is
not available with ADTrees. Therefore, we

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

142



Figure 4: Data extraction for the attack CAPEC-39.

(a) Generic example of
ADTree

(b) Conflicting pattern rep-
resentation with ADTree

Figure 5.

replace the operator by the classical formula
(A xor B)−→ ((A or B) and not (A and B)).
The NOT operation is here replaced by an
attack node meaning that two conflicting
security patterns used together constitute a
kind of attack. The generic sub-tree is depicted
in Figure 5(b),
• p1 having no relation with any pattern p2 in

P∪P2, we add the parent defense node labelled
with p1.

We may denote that “Depend“ and “Benifit“ re-
lationships are presented two of them with the
same “and“and this is explained by the fact that
ADtrees do not allow to make contrast between
these two types of relationships. The parent de-
fense nodes, resulting from the above steps, are
combined to a defense node labelled by “Pattern
Composition“ with AND. This last defense node
is linked to the attack node A.

If we take back our example of attack, we obtain
the ADTree of Figure 6, which shows that the attack
CAPEC-39 has 1 sub-attack named “CAPEC-31 Ac-
cessing/Intercepting/Modifying HTTP Cookies“. Be-

Figure 6: ADTree of the attack CAPEC-39.

cause of lack of room, we presented in this example
the security patterns directly related to the attack. An
ADtree generated by our tool (Regainia, 2016) illus-
trates the patterns of the set P but also the set P2 of
patterns having a relation with those of P. Both of the
two attacks target 17 weaknesses (6 for the CAPEC-
39 and 11 for the CAPEC-31, which is more detailed).
The attack and all its concrete forms can be mitigated
by several combinations over 15 security patterns. For
instance, the attack CAPEC-39 can be mitigated by
two pattern combinations because the pattern “Appli-
cation Firewall“ can be replaced with “Input Guard“.
The number of security patterns related to both at-
tacks CAPEC-39 and CAPEC-31 is explained here
by the diversity of the targeted weaknesses. We as-
sume for the classification generation that all of them
have to be mitigated. As these ones cover different
security issues here, e.g., input validation problems,
privilege management, encryption problems, external
control of the application state, etc., several patterns
are required to fix the weaknesses and hence block the
attacks.

This example illustrates that a designer can fol-
low the concrete materialisations of an attack in an
ADTree. He/she can choose the most appropriate at-
tack with respect to the context of the application be-
ing designed. The ADTree provides the different se-
curity pattern combinations that have to be used to
mitigate this attack. In the worst case, an attack node

A Methodology of Security Pattern Classification and of Attack-Defense Tree Generation

143



is not linked to a defense node, which means that ei-
ther the classification is incomplete or the attack is
relatively new and cannot be yet overcame by secu-
rity patterns.

5 CLASSIFICATION DISCUSSION

Our current classification is an exemplary taxonomy
built on a non exhaustive set of 215 CAPEC attacks,
26 security patterns and 136 CWE weaknesses related
to Web applications. The classification and its com-
plete list of elements is available in (Regainia et al.,
2016b). Presented in tabular form, as illustrated in
Figure 4, it enables multi-attribute based decisions in-
sofar as patterns can be classified according to secu-
rity principles, weaknesses and attacks.

The proposed classification complies with sev-
eral quality criteria defined in (Alvi and Zulkernine,
2012). Among them, we have noted Navigability, Un-
ambiguity and the Usefulness of the classification:

• Navigability, which is defined as the ability to
direct designers among related patterns, is sat-
isfied since we illustrate the classification with
ADTrees. They indeed expose the hierarchical
refinements of attacks and a combination of de-
fenses that have to be applied to protect the ap-
plication to design. The links between nodes ex-
hibit the relationships considered in each step of
the methodology,

• Unambiguity is taken into account since the
classification is clearly defined by means of
the methodology steps, which provide relations
among attacks, weaknesses, security principles
and security patterns. All these steps and those
given in (Regainia et al., 2016a) justify the sound-
ness of the classification. In addition, the clas-
sification provides the relationships among pat-
terns, which help choose a correct combination
of patterns, i.e. a conflicting combination can be
avoided, the required patterns of another pattern
are given,

• we believe the classification can be used in prac-
tice since it is based upon the CAPEC and CWE
bases and of several security patterns presented
in (Fernandez, 2007; Slavin and Niu, 2016). In
addition, the ADTree formalism is one of the
most prominent security formalism for analysing
threats, it is supported by tools (Kordy et al.,
2013) for editing, analysing and transforming
them. Our ADTree generator actually generates
XML files taken as inputs by these tools.

Figure 7: Number of fixed attacks per pattern.

Furthermore, a variety of statistical information
can be automatically extracted from our classification,
e.g., the ratio of weaknesses to attacks, of patterns to
attacks, etc. For instance, Figure 7 also shows the
number of attacks at least partially mitigated per pat-
tern. Keeping in mind, that the set of patterns taken
into consideration is not exhaustive, we can observe
that 2 patterns seem to emerge for partly fixing a large
part of the 210 attacks covered by the classification:
“Input Guard“ and “Application firewall“, can over-
come 113 and 109 attacks respectively. This kind of
information shows that, from our classification, some
useful outcomes can be extracted to guide designers
towards security analysis and good practices. For in-
stance, with the above chart and ADTrees, a designer
can deduce that the patterns “Input Guard“ and “Ap-
plication firewall“ are alternative security patterns and
that one of them should be used in software design
since they both partially block numerous attacks.

Our classification and methodology present some
limitations, which could lead to some research future
work. We did not envisaged the notion of attack com-
bination. Such a combination could be seen as sev-
eral attacks or as one particular attack. In the first
case, an attack combination can be represented in the
CAPEC base as a sequence, which is given in a spe-
cific CAPEC section called “Attack execution Flow“.
Our classification does not yet store and use the notion
of ordered events. In the second case, if the attack has
its own identification in the CAPEC base, it can be
used with our methodology.

The classification is not exhaustive: it includes
215 attacks out of 569 (for any kind of application),
210 CWE weaknesses out of around 1000 and 26 se-
curity patterns out of around 176. It can be completed
with new attacks automatically. But it worth mention-
ing that the addition of new security patterns or weak-
nesses requires some manual steps. Our previous
classification, proposed in (Regainia et al., 2016a), as-

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

144



sociates weaknesses and security patterns from docu-
mentation: if a new security pattern has to be added,
two steps have to be manually done (mapping be-
tween the pattern and its strong points, and mapping
between strong points and security principles). In the
same way, if a new CWE weakness is added, two
other steps must be manually completed (mitigation
extraction, mapping between mitigations and security
principles). The re-generation of the whole classifica-
tion, which includes new attacks, weaknesses or se-
curity patterns is automatically performed. It could
relevant to investigate whether some text mining tech-
niques would help partially automate these manual
steps without adding ambiguity.

6 CONCLUSION

In this paper, we have presented a classification
methodology putting together CAPEC attacks, CWE
weaknesses and security patterns to guide designers in
their pattern choices. Given an attack, the classifica-
tion provides a hierarchical tree of its sub-attacks (up
to the most concrete ones), the targeted weaknesses,
the security principles that have to be addressed to
fix the weaknesses and the combinations of patterns
that overcome the attacks. The classification is avail-
able in (Regainia et al., 2016b). ADTrees are auto-
matically generated from the classification to ease its
readability. For each attack of the classification, they
portray its sub-attacks and combinations of security
patterns. These ADTrees can be taken as a first step
of other security processes, e.g., threat modelling.

Our most immediate line of future work is related
to a specific section of the CAPEC base, called “At-
tack execution Flow“, listing the sequences of attacks
(not the sets) that have to be followed to execute a
meta-attack. We intend to take this section into con-
sideration to extend the classification and the gener-
ation of extended ADTrees so that the latter explic-
itly show these attack sequences. The resulting trees
(called SAND trees) shall increase the expressive-
ness of the ADTrees by adding the notion of ordered
events. Then, from these SAND trees and the infor-
mation included in the classification, we will focus on
the generation of (generic) test cases to check whether
an implementation is protected against the attacks or
if security patterns are correctly contextualised and
implemented w.r.t. the application context.

REFERENCES

Alvi, A. K. and Zulkernine, M. (2011). A Natural Classi-
fication Scheme for Software Security Patterns. 2011
IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing, pages 113–120.

Alvi, Aleem, K. and Zulkernine, M. (2012). A Com-
parative Study of Software Security Pattern Classifi-
cations. 2012 Seventh International Conference on
Availability, Reliability and Security, pages 582–589.

Anand, P., Ryoo, J., and Kazman, R. (2014). Vulnerability-
Based Security Pattern Categorization in Search of
Missing Patterns. 2014 Ninth International Confer-
ence on Availability, Reliability and Security, pages
476–483.

Bunke, M., Koschke, R., and Sohr, K. (2012). Organiz-
ing security patterns related to security and pattern
recognition requirements. International Journal on
Advances in Security, 5.

Fernandez, E. B. (2007). Security patterns and secure sys-
tems design.

Fernandez, E. B., Washizaki, H., Yoshioka, N., Kubo, A.,
and Fukazawa, Y. (2008). Classifying security pat-
terns. In Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 4976
LNCS, pages 342–347.

Harb, D., Bouhours, C., and Leblanc, H. (2009). Using an
Ontology to Suggest Software Design Patterns Inte-
gration, pages 318–331. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Kordy, B., Kordy, P., Mauw, S., and Schweitzer, P. (2013).
ADTool: Security Analysis with Attack–Defense Trees,
pages 173–176. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Kordy, B., Mauw, S., Radomirović, S., and Schweitzer, P.
(2012). Attack–defense trees. Journal of Logic and
Computation, page exs029.

Mitre corporation (2015a). Common attack pattern enumer-
ation and classification, url:https://capec.mitre.org/.

Mitre corporation (2015b). Common weakness enumera-
tion, url:https://cwe.mitre.org/.

Regainia, L. (2016). Attack defence trees generator,
url:http://regainia.com/adtreegen.zip.

Regainia, L., Salva, S., and Bouhours, C. (2016a). A
classification methodology for security patterns to
help fix software weaknesses. In Proceedings of the
13th ACS/IEEE International Conference on Com-
puter Systems and Applications AICCSA.

Regainia, L., Salva, S., and Bouhours, C.
(2016b). Security pattern classification url:
http://regainia.com/research/database.html.

Rodriguez, E. (2003). Security Design Patterns, volume 49.
Schneier, B. (1999). Attack trees: Modeling security

threats. Dr. Dobb’s journal.
Schumacher, M. and Roedig, U. (2001). Security Engineer-

ing with Patterns. Engineering, 2754:1–208.
Slavin, R. and Niu, J. (2016). Security patterns repository,

url: http://sefm.cs.utsa.edu/repository/.

A Methodology of Security Pattern Classification and of Attack-Defense Tree Generation

145



Tøndel, I. A., Jensen, J., and Røstad, L. (2010). Combin-
ing misuse cases with attack trees and security activ-
ity models. In Availability, Reliability, and Security,
2010. ARES’10 International Conference on, pages
438–445. IEEE.

Uzunov, A. V. and Fernandez, E. B. (2014). An extensible
pattern-based library and taxonomy of security threats
for distributed systems. Computer Standards & Inter-
faces, 36(4):734–747.

Wiesauer, A. and Sametinger, J. (2009). A security design
pattern taxonomy based on attack patterns. In Inter-
national Joint Conference on e-Business and Telecom-
munications, pages 387–394.

Yskout, K., Heyman, T., Scandariato, R., and Joosen, W.
(2006). A system of security patterns.

Yskout, K., Scandariato, R., and Joosen, W. (2012).
Does organizing security patterns focus architectural
choices? Proceedings - International Conference on
Software Engineering, pages 617–627.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

146


