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Abstract: We extend Multi-agent Plan Recognition as Planning (MAPRAP) to Probabilistic MAPRAP (P-MAPRAP), 
which probabilistically identifies teams and their goals from limited observations of on-going individual 
agent actions and a description of actions and their effects. These methods do not rely on plan libraries, as 
such are infeasibly large and complex in multi-agent domains. Both MAPRAP and P-MAPRAP synthesize 
plans tailored to hypothesized team compositions and previous observations. Where MAPRAP prunes team-
goal interpretations on optimality grounds, P-MAPRAP directs its search base on a likelihood ranking of 
interpretations, thus effectively reducing the synthesis effort needed without compromising recognition. We 
evaluate performance in scenarios that vary the number of teams, agent counts, initial states, goals, and 
observation errors, assuming equal base-rates. We measure accuracy, precision, and recall online to evaluate 
early stage recognition. Our results suggest that compared to MAPRAP, P-MAPRAP exhibits improved 
speed and recognition accuracy. 

1 INTRODUCTION 

The focus of Multi-Agent Plan Recognition (MAPR) 
research is to observe the actions of individual 
agents and from those actions infer which agents are 
working together as teams and what these teams are 
attempting to accomplish. MAPR is a subset of the 
Plan, Activity, and Intent Recognition (PAIR) 
research topic (Sukthankar et. at., 2014). Most 
current MAPR solutions target recognizing activities 
in specific domains, rely on matching observations 
to human generated libraries, and/or forensically 
analyzing the structures of complete synchronized 
traces. Our contributions avoid these simplifications 
of the MAPR challenge while focusing on persistent 
teams and goal-oriented plans. 

In this paper, we describe Probabilistic Multi-
agent Plan Recognition as Planning (P-MAPRAP), 
an online recognizer that probabilistically ranks 
interpretations of team compositions and goals based 
on observed actions. We compare P-MAPRAP with 
previous results of discrete versions of MAPRAP by 
Argenta and Doyle (2015). Both discreet and 
probabilistic implementations extend Ramirez and 
Geffner’s (2009, 2010 respectively) Plan 

Recognition as Planning (PRAP) approaches into 
multi-agent domains by developing methods that 
dynamically reduce the exponential search space 
that results from all potential partitionings of agents 
into teams. We evaluate performance on the well-
established Blocks World domain (e.g., Ramiaz and 
Geffner, 2009; Zhou et al., 2012; Banerjee et al., 
2010).  

P-MAPRAP is a general plan recognition 
technique that does not depend on prior domain 
knowledge in the same manner that the General 
Game Playing (GPP) community (Genersereth and 
Love, 2005) and International Planning Competition 
(IPC) provide problem specifications at the time of 
testing. The planning domain used by P-MAPRAP 
to specify problems is the Plan Domain Description 
Language (PDDL) (McDermott et al., 1998) 
annotated for multiple agents. This specification is 
similar to MA-PDDL (Kovacs, 2012) converted via 
(Muise et al., 2014) to support classical planners. 
This domain includes a complete initial state, list of 
agents, list of potential goals, and action model. 

In contrast, most plan recognition techniques 
match observables to patterns within a plan library 
(often human generated). P-MAPRAP does not 
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depend on human expertise to create a plan library 
or rely on domain-specific recognition strategies. 
Likewise, this approach does not require a training 
set of labeled traces or a priori base rates. Instead we 
are provided a list of possible goals to recognize. 

Figure 1 shows our high level architecture for 
staging and evaluating recognition problems. We 
first simulate a given scenario to produce a full 
action trace and ground truth interpretation of goals 
and team composition. Under the keyhole observer 
model (Cohen, Perrault, and Allen, 1981) used here, 
the recognizer has no interaction with the observed 
agents, and any observations can be randomly 
dropped to simulate errors and hidden actions. P-
MAPRAP is an online recognizer that infers the 
team’s agents are affiliated with and that team’s goal 
(with a corresponding total-ordered plan). Finally, 
we evaluate the performance of recognition using 
precision, recall, and accuracy by comparing the 
recognizer’s interpretation with the simulator’s 
ground truth interpretation. We compare P-
MAPRAP’s results to those of discrete MAPRAP, 
and parametrically vary the observation error to 
determine sensitivity. 

 

Figure 1: Our evaluation framework allows us to generate 
and evaluate many cases, varying key parameters to 
achieve reliable evaluation. 

In Section 2, we place this work in the context of 
related research in plan recognition. We describe our 
recognizer in Section 3, and evaluation in Section 4. 
Section 5 compares P-MAPRAP results with those 
of MAPRAP for efficiency and recognition 
performance. This is followed by future work and 
conclusions. 

2 RELATED RESEARCH 

Multi-agent Plan Recognition (MAPR) solutions 
attempt to make sense of a temporal stream of 
observables generated by a set of agents. The 
recognizer’s goal is to infer both the organization of 
agents that are collaborating on a plan, and the plan 

each team is pursuing. (While not addressed here, 
some have also included identifying dynamic teams 
that change over time (e.g., Banerjee, Kraemer, and 
Lyle 2010; Sukthankar and Sycara, 2006, 2013).) To 
accomplish this goal, solutions must address two 
challenges noted by Intille and Bobick (2001). First, 
the combination of agents significantly inflates state 
and feature spaces making exhaustive comparisons 
infeasible. Second, detecting coordination patterns in 
temporal relationships of actions is critical for 
complex multi-agent activities. 

One approach is to use domain knowledge to 
identify activities indicative of team relationships. 
For example, Sadilek and Kautz (2010) recognized 
tagging events in a capture-the-flag game by 
detecting co-location followed by an expected effect 
(tagged player must remain stationary until tagged 
again). Sukthankar and Sycara (2006) detected 
physical formations in a tactical game domain and 
inferred cooperation to prune the search space. 
While practical and effective for the given domains, 
discovering exploitable characteristics has been a 
human process and similar patterns may not exist in 
other domains. 

Generalized MAPR solutions use domain-
independent recognition algorithms along with a 
description of the domain. Most commonly, a plan 
library is created that provides patterns for which a 
recognizer searches. For example, Banerjee, 
Kraemer, and Lyle (2010) matched patterns in 
synchronized observables, for all combination of 
agents, to a flattened plan library. Sukthankar and 
Sycara (2008) detected coordinated actions and used 
them to prune the multi-agent plan library using a 
hash table that mapped key observerable sequences 
for distinguishing sub-plans (i.e., last action of 
parent and first of sub-plan). However, it may be 
difficult to build a full plan library for complex 
domains, so others use a planning domain to guide 
the recognizer. Zhuo, Yang, and Kambhampati 
(2012) used MAX-SAT to solve hard (observed or 
causal) and soft (likelihood of various activities) 
constraints derived from the domain (action-model). 
In an effort to replicate the spirit of general game 
playing and IPC planning competitions where the 
algorithm is only given a general description of the 
problem at run-time, we use no a priori domain-
specific knowledge or manually tuned libraries. 

Plan Recognition as planning (PRAP) was 
introduced by Ramirez and Geffner in (2009) as a 
generative approach to single agent plan recognition 
that uses off-the-shelf planners and does not require 
a plan library. They convert observations to interim 
subgoals that the observed agent has accomplished. 
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They synthesize plans for each goal with and 
without the observed subgoals, if the costs are equal 
then observations could be interpreted as pursuing 
that goal. In (Ramirez and Geffner 2010), they 
extended PRAP to probabilistic recognition. In the 
case of uniform priors, the most likely goals are 
those that minimize the cost difference for achieving 
the goal with and without explicitly meeting the 
observed subgoals. P-MAPRAP extends discrete 
MAPRAP (Argenta, Doyle 2015) in a similar way 
but for the MAPR problem. 

3 PROBABLISTIC MAPRAP 

The primary problem addressed by P-MAPRAP is 
correctly inferring both the teams of agents that are 
working together towards a common goal, and 
identify which goal each team is pursuing. A 
recognizer makes this inference given information 
about the scenario and a sequence of observations. 

3.1 Inputs for Recognizer 

Domain Description (D) defines all of the possible 
actions, their preconditions, and effects on the 
current state. We use Plan Domain Description 
Language (PDDL) to describe domains. 

Scenario Description (P) details the specific 
initial state. In Blocks World P includes the list of 
blocks and agents in the scene, and the initial state. 
This is a PDDL problem file without goals. 

Agents are uniquely identifiable actors capable 
of performing actions. For each scenario instance we 
are given a set of ݊ agents, ܣ = ,ܣ} ,	…,ଵܣ  {ିଵܣ
with ݊ > 0. The list of agents does not change 
within a problem instance. All potential actions are 
specified in the domain with each action 
parameterized by the performing agent (in our case 
the first parameter of any action). Agents can be 
differentiated in the domain by type or by predicate 
in the initial conditions. Agents are presumed to be 
members of some team, but no information is given 
as input about the team composition. 

Team Goals describe the ultimate objective of 
the agents on a team. We are given a set of all ݃ 
possible goals ܩ = ൛ܩ, ,ଵܩ … ,  ିଵൟ. Each team ௫ܶܩ

is assigned a single unknown goal ܩ௫ ∈ ݃ and ܩ ≥݉ (usually much larger). In this research, each team 
has exactly one goal, and we do not consider goals 
that change over time. The recognizer must infer the 
goal assigned to each team. 

Action Sequence Trace defines the observables 
that we pass to the recognizer in an online fashion. 
Our simulation component produces a trace file, 
which consists of time-stamped observations ܱ ={ ଵܱ, … , ܱ௧} where each observation includes a 
grounded action from ܦ parameterized by the acting 
agent ܽ ∈  All traces start at the initial state .ܣ
(defined in P) and include all actions required for 
each team to achieve its goal. 

Actions that can take place concurrently (same ݐ) 
are randomly ordered in the serial trace. The 
observer component interleaves the actions of all 
agents while maintaining action dependencies within 
teams. This is also where we drop observations to 
evaluate sensitivity. We do not introduce “noop” 
actions when no action is observed and the online 
recognizer is unaware of the length of the trace. 

3.2 Outputs of Recognizer 

Teams are sets of Agents. ܣ is partitioned into a set 
of ݉ teams ܶ = { ܶ, ଵܶ, … , ܶିଵ} such that each 
team has at least one agent | ௫ܶ| ≥ 1, and each ܣ௫ is 
assigned to one and only one team. Teams can be 
identified as the composition of agents assigned to it, 
e.g., ௫ܶ = ൫ܣ௬,  ൯. We do not consider teams thatܣ
change over time. The recognizer must infer the 
number of teams and assignment of agents to teams. 

Partial Interpretations: The recognizer 
identifies the agents on a team and the goal being 
pursued by the team. For example the partial 
interpretation (ܣ௬, :ܣ  ௬ܣ ଵ) indicates that agentsܩ
and ܣ௭ are teamed and pursuing goal ܩଵ. For each 
partial interpretation, the recognizer can produce a 
total ordered plan that accounts for previous 
observations, missed observations, and future 
actions required to achieve the goal. 

Interpretations: An interpretation (or full 
interpretation) is set of partial interpretations that 
completely and uniquely assign each agent in ܣ. For 
example, given ܣ = ,ܣ} ,ଵܣ ܩ ଶ} andܣ ,ܩ}= ,ଵܩ ,ଶܩ ,ܣ)} ଷ} one interpretation isܩ :ଶܣ ,(ଷܩ :ଵܣ)  )}. For any given scenario thereܩ
are many possible interpretations but only a single 
correct interpretation An interpretation is feasible at 
a particular time ݐ if it explains the actions observed 
up to that time. 

Feasibility of Interpretations: At each time step, 
the recognizer determines from all possible 
interpretations, which best explain all the 
observations up to that point. In Discrete MAPRAP 
the recognizer emitted the set of all feasible 
interpretations as positive classifications and others 
as negative. In P-MAPRAP the recognizer ranks the 
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interpretation by degree of feasibility. The feasibility 
of an interpretation is the mean of the feasibilities of 
each partial interpretation. Perfect feasibility (1.0) is 
achieved when each partial interpretation is 
supported by an optimal plan (cost based on action 
count) for a given team achieving its goal while 
including every action observed up to that point in 
time. The less optimal the plan required for a given 
team to realize their goal, the lower the feasibility 
score. If the observations made achieving a goal 
impossible for a team, its feasibility would be 0.0. 

3.3 The P-MAPRAP Recognizer 

Probabilistic MAPRAP is a redesign of our discrete 
MAPRAP Recognizer based on ranking the 
complete set of interpretations by their likelihood of 
being correct. Unlike discrete MAPRAP where an 
interpretation is either feasible (considered) or not 
(pruned), our P-MAPRAP uses the difference 
between baseline and plans that include the 
appropriate observations (to date) as an indicator of 
how well the interpretation explains the 
observations. So, agents can be acting sub-optimally 
without pruning the correct interpretation. Only the 
most likely interpretations are considered for re-
computation at any time step, but if, after being 
recomputed with the new observations, their 
likelihood decreases interpretations that were 
previously less likely resurface and are considered. 
This design is shown in Figure 2. 

 

Figure 2: P-MAPRAP maintains a queue of interpretation 
to prioritize testing new observations against the best 
explanations first. 

The steps of the P-MAPRAP algorithm in 
labelled in Figure 2 and described below: 
1. Before the first observerable, the baseline plan 

cost is established for each interpretation given 
no observables (also prunes interpretations that 
have impossible combinations of teams/goals). 

2. The recognizer checks the top of the priority 
queue of interpretations. We decompose the set 
of highest likelihood interpretations into a set of 
unique partial interpretations. 

3. We create new planning instances, to include 
hypothesized team/goal, and all observations 
that correspond to the team. 

4. An off the shelf planner (GraphPlan) 
synthesizes plans (potentially in parallel) that 
accomplishes the hypothesized goal and 
observed actions. We track the plan and cost. 

5. The difference between the baseline cost and 
the new plan cost (with observations) is used to 
calculate a likelihood score. The score doesn’t 
change if the observations are consistent with 
the baseline plan. If the cost increases, the 
likelihood score is reduced. 

6. Putting the interpretations back into the priority 
queue causes them to be repositioned. If the 
new top (most likely) interpretation does not 
include the current observations, then we rerun 
this process (from step 2) until it is. This allows 
interpretations that were previously less likely 
to return for consideration once the others have 
been deemed less likely than it. 

7. The interpretations that have the highest 
likelihood are classified as positives and sent for 
evaluation. The next observation is read in (go 
to step 2) until trace is complete. 

3.4 Assumptions and Limitations 

Base rates are intentionally not used in our 
recognition because low base rate activities are often 
the most interesting for our applications. While 
using base rates could improve average 
performance, it would accomplish this at the cost of 
missing unusual activities particularly in early stage 
recognition. For applications such as surveillance 
and threat detection, low base rate events are 
interesting and maintaining high recall is ideal. 

Like MAPRAP, P-MAPRAP assumes that team 
activities are independent and agents do not interfere 
with the execution of plans by other teams. This 
assumption is necessary to facilitate synthesizing 
plans for hypothesized partial interpretations and 
reusing those results in multiple full interpretations. 
If the actions of teams were not independent (for 
example they were competing for limited resources) 
then the cross-team context becomes an important 
factor in explaining actions. Eliminating this 
assumption would prevent reuse of partial 
interpretations, which would increase run time. 
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Other PRAP assumptions, such as finite and 
enumerable goals, and purposeful actions are also 
true of P-MAPRAP. 

4 P-MAPRAP EVALUATION 

We evaluate P-MAPRAP by comparing it to the 
results from discrete MAPRAP (Argenta, Doyle 
2015) using same planning domain formulation and 
planner. We simulate a set of scenarios to produce 
an observation trace consisting of a sequence of 
actions, each parameterized with the agent 
performing them. Concurrent actions are randomly 
ordered (i.e., no turn taking pattern). An observer 
model filters observations with a given probability 
of dropping each prior to recognition. The 
recognizer infers interpretations of the team and 
goals while producing a corresponding plan. P-
MAPRAP labels each interpretation with a 
likelihood value, and the set of best scoring 
interpretations are considered feasible inferences for 
evaluation. MAPRAP did not penalize early state 
recognition for mis-assigning agents that had not yet 
acted to the wrong teams, P-MAPRAP counts all 
errors in the interpretation regardless of what has or 
has not been observed up to that point. 

Blocks World Domain: A multi-agent adaptation 
of the Blocks World domain (Team Blocks) is the 
most common evaluation domain for MAPR. In this 
domain there are a series of lettered blocks randomly 
stacked on a table. Each agent operates a robot 
gripper that can pick up one block at a time. Teams 
are composed of 1 to |A| agents that are planning 
together and act collaboratively towards the same 
goal. Actions are atomic and include: pickup, 
unstack (pickup from atop another block), put down 
(on table), stack (put down atop another block); each 
action is parameterized by the block(s) acted on and 
agent performing the action. The goal of Team 
Blocks is for each team to rearrange blocks into a 
stack in a specified sequence. Goals are stacks of 
random letter sequences of various lengths. Since we 
plan teams independently, we partitioned the blocks 
and goals to avoid conflicting plans. However, no 
information about teams (count or sizes), 
partitioning of blocks, or goals assignments are 
accessible to the recognizer. 

Test Scenarios: We randomly selected 107 
different Team Blocks scenarios from (Argenta and 
Doyle 2015). These were generated with 1-2 teams 
with 1-5 agents. Goals were all permutations of 
selected stacking orders of 6-7 blocks (μ=6.5). We 
limited the list of possible goals to 20 (the correct 

goal for each team plus randomly selected possible 
goals) for each scenario. We simulated each scenario 
and recorded an action trace. Each trace consists of a 
serialized sequence of observerables identifying time 
step (1 to t), agent, and action. Traces ranged from 6 
to 14 actions (μ=9.6). 

5 RESULTS 

Efficiency in terms of the number of plans 
synthesized drives the run-time performance of 
PRAP-based recognition. For comparison of many 
examples, we normalized actual counts by number 
of goals and time step in the trace to ensure, such 
that the worst-case single agent performance would 
be 1.0. We previously demonstrated two pruning 
approaches for discrete MAPRAP aggressive and 
conservative. Aggressive pruning attempted to limit 
the interpretations considered by assuming all agents 
are on the same team for each goal and removing 
members as observations suggested otherwise. This 
was very effective (blue in Figure 3) but is not 
general for all domains. Conservative pruning is 
general, but does not scale as well (red in Figure 3). 

 

Figure 3: P-MAPRAP (green) effectively prunes the 
search space faster than discrete MAPRAP with 
conservative pruning (red). Aggressive pruning (blue) 
performs better, but has strict domain limitations that P-
MAPRAP does not. The worst-case single agent score is 
1.0. 
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P-MAPRAP (green in Figure 3) prunes the search 
space by prioritizing interpretations and only 
pursuing those that are best explaining the 
observations at that time step. Similar to MAPRAP 
each interpretation further decomposed into the set 
of partial interpretations to avoid synthesizing plans 
for equivalent hypothesis. As a result of these 
enhancements P-MAPRAP performance has a mean 
improvement of 25.2% over conservative pruning 
(min 19.7% for 1 team / 1 agent and max 30.0% for 
2 teams / 5 agents) and while maintaining full 
domain generality. Aggressive pruning (which is 
valid for the Blocks World domain) still outperforms 
P-MAPRAP (mean 48.6%, min 3.9%, max 87.4%). 

Recognition: Our evaluation metrics for 
recognition are Recall, Precision, and Accuracy 
based on the interpretations emitted by the 
recognizer for each time step. In P-MAPRAP, 
positives classifications are the set of the most 
highly ranked interpretations. A True Positive (TP) 
is the correct interpretation recognized successfully 
(max of 1) and True Negatives (TN) are incorrect 
interpretations identified as infeasible/unlikely. In 
our formulation, there is only one correct and many 
incorrect interpretations. This results in recall values 
of either 0 or 1. Our goal is maintain perfect recall 
for all time steps, potentially trading precision and 
accuracy to accomplish this. 

Recall is the ratio of correct interpretations 
identified correctly. Recall is used to identify if the 
correct interpretation is in the set of interpretations 
indicated by the recognizer to be likely or feasible. 
High recall is particularly important in online 
analysis as it enables us to use early results to limit 
the analysis needed for future observations (i.e., 
pruning). Our results for recall were consistently 1, 
indicating that the correct answer was always in the 
positive set for every timestamp. 

Precision is the ratio of true positives to all 
positives. Precision indicates how well the analytic 
narrows in on the correct interpretation and avoids 
giving false positive responses. As indicated under 
recall, we would like to use early recognition results 
to prune our search space for the future, so a high 
number of false positives are expected, particularly 
early in the observation trace  

As shown in Figure 4, single agent scenarios 
again require fewer observations to converge on 
interpretations than multi-agent scenarios. Again, we 
observed that reduced precision in the multi-agent 
cases reflects both fewer observations per individual 
agent at any time, and a large number of potential 
team compositions. For P-MAPRAP, we have the 
ability to provide base rates for both the goals and 

teaming arrangements or team counts – however, 
since a positive classification is made only for 
interpretations with the highest (relative) likelihood, 
base rates would also introduce situations where 
recall = 0 in early state recognitions because the 
scenario did not match the base rates. 

We observed that reduced precision in the multi-
agent cases reflects both fewer observations per 
individual agent at any time, and a large number of 
potential team compositions. In essence, the 
explanatory power of each observation is diluted 
across the pool of agents. As a result, it takes more 
observations to rule out all feasible, but ultimately 
incorrect, interpretations. In fact, unlike the single 
agent case, most multi-agent traces ended before the 
recognizer converged to a single correct 
interpretation. 

 

Figure 4: P-MAPRAP (solid lines) shows mixed results 
compared to the discrete version (dashed lines). As before, 
mean precision shows multi-agent scenarios retain false 
positives. 

 

Figure 5: P-MAPRAP (solid lines) improves Accuracy 
over discrete version (dashed lines) in all cases except the 
single agent scenario. Accuracy shows many true 
negatives are eliminated with each observation. 
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Accuracy is the ratio of correct classifications to 
total classifications. Accuracy is a good measure of 
how well we are eliminating (pruning) some of the 
many incorrect interpretations. Accuracy is the 
metric that is the least impacted by the needle-in-
haystack issues of a single correct interpretation. 
This resilience is due to giving credit for identifying 
incorrect interpretations. 

As shown in Figure 5, the mean accuracy of 
MAPRAP trails the single agent per team cases, but 
demonstrates correct classifications of potential 
interpretations for observerables over time. 

5.1 Sensitivity to Missing Observations 

Performance of the run time is measured by the 
relative quantity of plans synthesized as above. 
Dropped observations were modeled as time steps 
with no observations (to ensure consistency of 
scenarios) so one might expect fewer time plans 
synthesized on average. However, some of this 
reduction is offset by not reducing the pool of 
feasible interpretations. For example, despite 50% of 
the time steps not requiring any plan synthesis, the 
50% Error cases showed only 21% (2 teams / 5 
agents) to 36% (1 team / 1 agent) reduction in plans 
synthesized. Overall, the reduced workload from 
dropped observations is partially offset by missing 
information preventing search space reduction. 

Precision measurements were further reduced as 
expected due to the reduction in observations. This 
essentially reflects more FPs being carried further 
into the trace time. 

Accuracy measurements clearly capture the 
decrease for more dropped observations (Error! 
Reference source not found.). Since observation 
dropping in random, we ran each scenario four times 
for each error level. The results between runs were 
not significantly different indicating that recognition 
in the Team Blocks domain is not highly sensitive to 
detecting specific observations. In part this is 
explained by the dependency between the picking up 
and putting down actions. It only takes observing 
one of these actions to identify the other for the 
same block. 

6 FUTURE WORK 

Space limitations restrict detailing several aspects of 
our work in this paper. For example, P-MAPRAP 
handles alternative domains and planners, and 
suboptimal team activities. These will be addressed 
in future papers. 

1 Team / 1 Agent 1 Team / 2 Agents 

1 Team / 3 Agents  

2 Teams / 2 Agents 2 Teams / 3 Agents 

2 Teams / 4 Agents 2 Teams / 5 Agents 

Figure 6: When some of the actions in the trace are 
dropped, recognition must proceed with less information. 
This generally results in lower accuracy, but the impact is 
less than expected. 

We are currently evaluating additional planning 
domains for multi-agent plan recognition 
benchmarking. For evaluation purposes, these 
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domains must scale from 1 agent on 1 team to ݊ 
agents on ݉ teams with ݊ ≤ ݉ without artificially 
limiting the search space of possible interpretations. 
Ramirez and Geffner (2010) also compared that 
optimal and satisficing planners, reducing run time 
with little cost to PRAP accuracy. We are also 
investigating alternative and specialized planners. 

Secondly, moving to a probabilistic recognizer 
allows for evaluating performance on suboptimal 
action traces. While we are primarily interested in 
applications that do not use base rates, our 
probabilistic approach is very amenable to 
introducing base rates, likely improving mean 
precision and accuracy provided one is willing to 
accept varying recall. 

7 CONCLUSIONS 

In this paper we introduced P-MAPRAP a 
probabilistic version of MAPRAP, our MAPR 
system based on an extension to PRAP. This 
recognizer uses a multi-agent planning domain vice 
a human-generated plan library. Our implementation 
enforces generalization and eliminates the 
dependency on human expertise in designating what 
actions to watch in a domain.  

We show that we can recognize team 
compositions from an online action sequence, 
without domain-specific tricks, and manage the very 
large the search space of potential interpretations. 
We evaluated the efficiency and performance of P-
MAPRAP a range of Team Blocks scenarios, and 
compared these to a previous discrete version given 
the same scenarios. Despite tracking all possible 
interpretations, we found prioritizing consideration 
of interpretations effectively prunes the search space 
and this continues to reduce run-time independent of 
the planner used. Our results placed P-MAPRAP  

We evaluated our recognition performance on a 
multi-agent version of the well-known Blocks World 
domain. We assessed precision, recall, and accuracy 
measures over time and compared those results with 
discrete MAPRAP. In both cases we maintained 
perfect recall, but observed low precision, 
particularly during early stage recognition. Accuracy 
was improved over discrete version. This in turn 
requires more observations to limit potential 
interpretations down to the single correct 
interpretation. Our precision and accuracy measures 
over time help quantify this difference. 
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