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Abstract: Machine Learning is one of the frequently studied issues in the last decade. The major part of these research 
area is related with classification. In this study, we suggest a novel Lorentzian Distance Classifier for Multiple 
Features (LDCMF) method. The proposed classifier is based on the special metric of the Lorentzian space 
and adapted to more than two features. In order to improve the performance of Lorentzian Distance Classifier 
(LDC), a new Feature Selection in Lorentzian Space (FSLS) method is improved. The FSLS method selects 
the significant feature pair subsets by discriminative criterion which is rebuilt according to the Lorentzian 
metric. Also, in this study, a data compression (pre-processing) step is used that makes data suitable in 
Lorentzian space. Furthermore, the covariance matrix calculation in Lorentzian space is defined. The 
performance of the proposed classifier is tested through public GESTURE, SEEDS, TELESCOPE, WINE 
and WISCONSIN data sets. The experimental results show that the proposed LDCMF classifier is superior to 
other classical classifiers.  

1 INTRODUCTION 

Nowadays, machine learning techniques are used in 
different domains such as data mining, pattern 
recognition, image processing and artificial 
intelligence (Louridas and Ebert, 2016), (Wang et al., 
2016). Generally, a machine learning algorithm has 
two stages: training and testing. The main purpose of 
machine learning is to train a computer system by 
studying a training samples and use it in test samples. 
Two Learning Strategies as supervised 
(classification) and unsupervised (clustering) 
learning are existed in literature (Bkassiny and 
Jayaweera, 2013). In supervised learning a training is 
used over the labelled data and a model is built to 
classify the new samples. Unsupervised learning is 
the clustering of unlabeled samples which have 
similar properties (Bkassiny and Jayaweera, 2013). 
One of the most solved problems in machine learning 
is a classification problem. As known, Bayes, k-
Nearest Neighbor (k-NN) and Support Vector 
Machine (SVM) classifiers are the commonly used 
machine learning algorithms (Theodoridis and 
Koutroumbas, 2009).  

In this study, a classification problem was 
investigated in Lorentzian space for data sets that 
have more than two features. Lorentzian space is one 

of the main issues of the General Relativity Theory 
(Kerimbekov et al., 2016). In this context, for 
obtaining the best classification result a feature 
selection method and pre-processing step were 
developed. As known every feature selection method 
needs a discriminative criterion (Theodoridis and 
Koutroumbas, 2009). For this purpose, in this study, 
unlike the criteria that commonly used in pattern 
recognition as Divergence, Bhattacharyya Distance, 
Scatter Matrix, Fisher’s Discriminant Ratio (FDR) 
(Theodoridis and Koutroumbas, 2009), a new 
criterion was improved based on Lorentzian metric. 

In this study, the Lorentzian metric is used for 
feature selection and classification. This metric is 
non-positive definite. The use of such a metric is an 
interesting contribution of our study. For two 
dimensional features, one of the features has a 
negative effect on the distance measure. This property 
gives us a special opportunity to increase the success 
rate of the classification in Lorentzian space. The 
statement that mentioned above gives us the idea to 
use the Lorentzian metric as a discriminative criterion 
and use it in feature selection. Thus, in this study, the 
new classifier for more than two features data in 
Lorentzian space was developed. 
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2 THE SPECIAL PROPERTIES 
OF LORENTZIAN SPACE  

The Lorentzian space is also recognized as a non-
Euclidean space and known as special case of 
Riemannian space. Because of positive definiteness 
condition an inner product operation in Lorentzian 
space is different than the analogue in Euclidean space 
(Gündogan and Kecilioglu, 2006). Also, a distance 
between points in Lorentzian space is different from 
commonly used Euclidean distance. The group of 
points with the same distance occurs a circle in 
Euclidean space. However, because of the 
neighborhood structure dissimilarity according to 
Euclidean space the shape of the same distance points 
in Lorentzian space is different. The only way to find 
out the neighborhood structure in Lorentzian space is 
possible by clearly understanding the concept of the 
distance between two points in this space. In every 
defined space in art the metrics are existed to compute 
the distance between points. Thus, the distance d 
between two points (U and Y) in Lorentzian space can 
be computed by the following formula. 

݀(ܷ, ܻ) = ඩ൭෍|ݑ௜ − ௟ݑ|−௜|ଶݕ − ௟|ଶ௟ିଵݕ
௜ୀଵ 	൱ (1)

where l is the dimension of the space (the number 
of features). This value also defines that the last 
dimension has negative signature (Kerimbekov et al., 
2016).    

As it can be clearly seen from (1), the Lorentzian 
metric has a minus sign in the second term, which 
corresponds to time axis. The main difference in 
Lorentzian metric is that the distance between two 
points can be zero. To demonstrate this case, the 
calculation of distances between two points are done 
according to both Lorentzian and Euclidean metrics. 
For this, two points: (-2, -1) and (0, 1) are selected. 
The places of these points visually can be seen from 2 
dimensional Lorentzian space that shown in Figure 1. 
The first coordinate belongs to the first feature, the 
second one belongs to the second feature. If we accept 
that these points are in Euclidean space: ܧௗ = ඥ(−2 − 0)ଶ + (−1 − 1)ଶ = √8 

then the distance is √8. If we accept that these points 
are in Lorentzian space: ܮௗ = ඥ(−2 − 0)ଶ − (−1 − 1)ଶ = √0 

then the distance becomes zero according to the 
Formula-1. 

In the Lorentzian space, the Lorentzian distance 
between two points over the lines parallel to cross 
direction with 45o degree (cone edges or cone lines or 
forward/backward light rays or null like lines) is zero. 
Thus the neighborhood is different in Euclidean and  

 

Figure 1: The difference between Euclidean and Lorentzian 
distances. 

Lorentzian spaces. The other attribute of the 
Lorentzian space is the matrix multiplication 
operation that different than the analog in Euclidean 
space. Namely, for ܣ = ൣܽ௜௝൧ ∈ ℝ௨௧  and  ܤ = ൣ ௝ܾ௟൧ ∈ℝ௣௨ matrix a multiplication operation can be 
calculated with the formula below: 

ܣ ∙௅ ܤ = ቎෍ܽ௜௝ ௝ܾ௟−ܽ௜௨ܾ௨௟௨
௝ୀଵ ቏ (2)

Where, the notation ‘∙௅’ is define the 
multiplication in Lorentzian space (Gündogan and 
Kecilioglu, 2006). For example, the multiplication of 
two matrix ܣ, in Lorentzian space with 2 ܤ × 2 
dimensions is obtained by following expression:  ܣ ∙௅ ܤ = ൤ܽଵଵܾଵଵ − ܽଵଶܾଶଵ ܽଵଵܾଵଶ − ܽଵଶܾଶଶܽଶଵܾଵଵ − ܽଶଶܾଶଵ ܽଶଵܾଵଶ − ܽଶଶܾଶଶ൨ (3)

3 PROPOSED METHOD 

3.1 Feature Subsets and Selection  

In classification problem the requested classification 
results can be produced in case of using the most 
important features from data set. The extracting or 
selecting the most significant features from data set is 
the main purpose of the Data Mining (DM) 
algorithms and it is also considerably decreases the 
computational complexity of classifier. In this study, 
first of all, the properties (metric) of Lorentzian space 
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were investigated in term of selecting the best feature 
subsets that represent the data set ideally. Also, the 
diverse number of selected feature subsets were tested 
in obtaining better classification success rate. In our 
previous research we found out that the classification 
success rate can be increased by using less number of 
best feature subsets (Kerimbekov et al., 2016). Hence, 
in this study, from original data sets the feature pair 
subsets were generated according to the well know 
combination formula (4) which is commonly used in 
statistics (Brualdi, 2010). In this formula feature 
combination subsets are occurred by rule as one 
feature and other ones. For example, in three 
dimensional data case all feature pair subsets looks as 
{1, 2}, {1, 3}, {2, 3}. The position and order of the 
feature subsets in cluster are not important. Generally, 
in ݊	 dimensional data set the total number feature 
subsets defined as ܵ(݊,  and calculated by (ݎ
expression below:  					ܵ(݊, (ݎ = ቀ݊ݎቁ = ݊! (݊ − !ݎ(ݎ 				 (4)

where, ݎ	is the dimension of subsets. Thus, by (4) 
formula we can obtain the feature pair subsets that 
include all features in original data set. In this study, 
the dimension of subsets was taken as two. Because 
of smallest dimension the computational complexity 
of classification process is acceptable. Furthermore, 
the two dimensional Lorentzian space classifier was 
introduced in our study (Kerimbekov et al., 2016) and 
the superiority of that algorithm was also proved. 
Thus, for data set with 50 features and dimension of 
subsets as ݎ = 2 totally 1225 feature pair subsets are 
produced according to (4). However, as seen from 
this example the number of these subsets in high 
dimensional data set will be huger and it is costly to 
use all of them. Hence, in this study, we propose the 
novel feature selection method that selects optimal 
feature subsets according to Lorentzian metric.  

The main aim of feature selection method is to 
increase the classification success rate by using less 
number of feature and decrease the computational 
complexity of classifier. The methods based on 
statistics like mean, variance, correlation are 
commonly used in pattern recognition (Theodoridis 
and Koutroumbas, 2009). These criteria serve in 
feature selection process as a determinative criterion 
in measuring the relation among the features and the 
discrimination for best or worst feature subsets is 
made. In Euclidean space we have the discriminative 
criterion ܬ which based on within and between class 
scatter matrices of samples: 

ܬ                         = (5) (௪ିଵܵ௠ܵ)݁ܿܽݎݐ

Where, ܵ௪ is the within class scatter matrix of ܯ 
class data set. The within class scatter matrix of 
samples consists from multiplication of a prior 
probability value ܲ ௛ and the covariance matrix Σ௛  for ߤ௛ class. The subtraction of feature vector	ݔ and 
within class mean ߤ௛ for every ݓ௜ class from data set 
is established covariance matrix Σ௛. Hence, the 
covariance matrix Σ௛ can be occurred as:  Σ௜ = ݔ)ሾܧ − ݔ)(௛ߤ −  ௛)்ሿ (6)ߤ

Thus, according to the statement mentioned above a 
scatter matrix of within class samples ܵ௪ takes form 
like:   

ܵ௪ =෍ ௛ܲΣ௛ெ
௛ୀଵ  (7)

The other S௠ value in (5) formula is the Mixture 
Scatter Matrix of samples (Theodoridis and 
Koutroumbas, 2009). This matrix is calculated as 
covariance matrix of feature vector	ݔ and general 
mean ߤ௛ subtraction and can be calculated by formula 
below: S௠ = ݔ)ሾܧ − ݔ)(଴ߤ − ଴)்ሿ (8)ߤ

The discriminative criterion J that given by (5) is 
valid only in Euclidean space and this criterion was 
restructured according to Lorentzian metric. As we 
can see from (7) and (8) expressions the criterion ܬ 
includes the covariance matrix calculation. 
Furthermore, a covariance matrix is based on matrix 
multiplication operation. However, as explained in 
section II above a matrix multiplication operation in 
Lorentzian space is different than Euclidean analogue 
and dependent to rule (2). Hence, redesigning of the 
(7) and (8) expressions in Lorentzian space according 
to rule (2) gives us next formulas:  

           (Σ௜)௅ = ݔ)ሾܧ − (௛ߤ ∙௅ ݔ) − ௛)்ሿ (9)ߤ

And (S௠)௅ = ݔ)ሾܧ − (଴ߤ ∙௅ ݔ) − ଴)்ሿ (10)ߤ

As a result of this restructuring the covariance matrix 
calculation path in Lorentzian space is suggested as 
(9). Thus, the novel ܬܮ (Lorentzian ܬ) discriminative 
criterion in Lorentzian space based on (9) and (10) 
expressions was suggested. The ܬܮ criterion defines a 
significance rate of features in Lorentzian space and 
according to (5) can be formulated as below: 

ܬܮ                  = ሾ(ܵ௪ିଵ)௅(S௠)௅ሿ (11)݁ܿܽݎݐ

Eventually, the new Feature Selection in 
Lorentzian Space (FSLS) method based on ܬܮ 
discriminative criterion was proposed. The new FSLS 
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method selects optimal feature subsets according to 
Lorentzian metric. 

3.2 Pre-processing and Optimal 
Parameters 

In classification problem occasionally a 
preprocessing step is necessarily. Because of better 
representing and making usable a data set this 
operation can enhance the classification success rate. 
In this study, the preprocessing step is composed only 
from matrix multiplication (compression) (Marcus 
and Minc, 1992). This transformation matrix is used 
with the aim to make the data meaningful in 
Lorentzian space. Thus, after doing compression over 
n-dimensional ܺ = ,ଵݔ) ,ଶݔ … ,  ௡) training set inݔ
Euclidean space it is transformed as ܺᇱ ଵᇱݔ)= , ଶᇱݔ , … ,   and becomes suitable for training and	௟ᇱ)ݔ
classification in Lorentzian space. This preprocessing 
step can be defined as the following expression:  						ܺᇱ = (12) ߣܺ

Where, ߣ is the diagonal matrix which can be 
expressed by ߣ௜௝ = 0, if	݅ ≠ ݆	∀	݅, ݆ ∈ ሼ1,2, … , ݊ሽ. 
Hence, the transformation matrix that forms the 
preprocessing step for two dimensional data is 
determined as following formulas: 

ߣ        = ൬ݓ 00 ߣ   ൰ orݍ = ൬0 ݍݓ 0൰ (13)

where, ݓ, ݍ ∈ ܴ. 
In this study, the first form of transformation 

matrix was used.  The relation between the 
parameters ݓ, ݓ	is as ߣ of this matrix ݍ = 20 ∗  .ݍ
Hence, the primary case is assumed as: ߣ = ቀ2 00 0.1ቁ 

However, our research shows us that these 
parameters meanings are significant in term of 
classification success. Because of this the optimal 
meanings of parameters which produce the best 
classification output were also investigated in 
experiments. 

4 LORENTZIAN CLASSIFIER 

Generally, a classification process consists from 
training and test steps. In this study, preparing the 
data for training is done in two steps. First of all, the 
optimal feature pair subsets are selected by new 
proposed FSLS method. Subsequently, over these 
feature subsets the pre-processing operation is 

applied that mentioned in third section. For training 
of selected and transformed feature subsets the 
Classification via Lorentzian Metric (CLM) 
(Kerimbekov et al., 2016) method was improved. The 
classification algorithm CLM is valid in two 
dimensional Lorentzian space and based on 
Lorentzian distance. The CLM classifier assigns the 
class label of new sample according to Lorentzian 
distances that explained by formula (1). It means that, 
the k nearest pairs are selected by Lorentzian metric. 
These pairs define the relation of a test sample 
between k training set samples and finally the 
classification can be done by using the majority rule. 
The CLM method was described as a classifier in two 
dimensional Lorentzian space. However, in our 
research, we use the multidimensional data sets. 
Therefore, the CLM method was improved by adding 
the supplementary decision rule and hereinafter 
referred to as the Lorentzian Distance Classifier for 
Multiple Features (LDCMF).  

The proposed novel LDC method is the aggregate 
of next stages. The novel LDC method takes as the 
inputs ܺ, ܻ ∈ ℝ training and test sets. However, as 
mentioned before, the training data sets are separated 
to feature pair subsets by (4). Namely, in first step 
from the ܺ training set all possible ܵ(݊, 2)  feature 
pair subsets are occurred as ܺᇱ =(ሼݔଵ, ,ଶሽݔ ሼݔଵ, ,ଷሽݔ … , ሼݔ௡ିଵ,  ௡ሽ).  Subsequently, theݔ
produced ܵ(݊, 2) feature pair subsets are weighted by ܬܮ criterion. Thereafter, the ݇ = (1, ܵ) number  ܺᇱᇱ 
optimal feature pair subsets are selected by FSLS 
method that based on Lorentzian metric. Here, ܵ 
defines the total number of feature combination (fc) 
pairs. The selected feature pair subsets are 
compressed by (12) formula and becomes ready for 
training. The new LDC classifier has iteration in 
length	݇. This value is also used as a threshold for 
stopping in the proposed algorithm. According to 
how will be defined the meaning of ݇  less or more the 
computational time of proposed algorithm is changed. 
Furthermore, was found that the selected feature pair 
subsets ܺᇱᇱ by including the efficient features 
represents the original data set in best way. Thus, the 
selected feature pair subsets ܺᇱᇱ are used in proposed 
LDC classifier as training data set.  

For new sample coming from 	ܻᇱᇱ test set feature 
selection and preprocessing step that explained before 
are applied as like in training samples case.  
Subsequently, the class labels of test samples are 
assigned as ܿ௜, ݅ = (1, ݇). The determined ܿ௜	is the 
class label of ݅. feature pair from ܻᇱᇱ which respective 
to ܺ ᇱᇱ. It means that, the new proposed LDC classifier 
in testing stage of new coming sample is iterated ݇ 
times. In every iteration the new proposed classifier 
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produces a combined class label ܥ௜ which includes the 
class labels of each selected feature pairs ܿ௜. The 
combined class label ܥ௜ represents one test sample 
and defines the class affiliation. In first step of 
iteration the combined class label is defined as ܥ଴ =ሾܿଵሿ. In the other iteration it continues as ܥ௜ =ሾܥ௜ିଵ, ܿ௜ሿ. The classification ratio obtains according to 
majority rule. It means that, in two class sample case 
if the number of selected optimal feature pairs will be 
3 than the proposed classifier produces class label as ܥ଴ = ሾܿଵሿ, ଵܥ = ሾܿଵ, ܿଶሿ, ଶܥ = ሾܿଵ, ܿଶ, ܿଷሿ. All steps 
that mentioned before compose the new Lorentzian 
Distance Classifier for Multiple Features (LDCMF) 
method. Finally, the LDC method can be defined as 
Algorithm-1 in the following processes in order: 

Algorithm-1. Lorentzian Distance Classifier (LDC) 
 Input:  ܺ, ܻ ∈ ℝ training and test datasets 
  Step 1: Create ܺᇱ fc pairs with ܵ(݊, 2) 
  Step 2: From ܺᇱ select ݇ ⋕ feature subset ܺᇱ′  using ܬܮ 
  Step 3: Do compression ܺᇱᇱᇱ = ܺᇱᇱߣ   
  Step 4: For new sample ܻ from test set,  
                Generate 	ܻᇱ′′ and find K nearest pairs 
                Assign class label ܿ௜ by using the majority rule 
                Obtain  ܥ௜ = ሾܥ௜ିଵ, ܿ௜ሿ  
  Step 5: Compute classification rate using ܥ௜ 
 

5 EXPERIMENTAL RESULTS 
AND DISCUSSIONS  

5.1 Data Sets 

In this study, for purpose of testing the new suggested 
classifier performance some public data sets were 
used as: GESTURE, SEEDS, TELESCOPE, WINE 
and WISCONSIN (Lichman, 2013). The number of 
features in the selected data sets varies in interval of 
7-33.  There is some statistical information about 
these data sets in Table 1. The samples in training and 
test set were selected randomly from original data set. 
In experiments the 30% of the data was used for 
training and the rest 70% for testing. 

Table 1: Data set descriptions. (f -feature, c -class, s -
sample). 

 ⋕ f ⋕ c ⋕ s ⋕ train s ⋕ test s 

GESTURE 18 2 448 150 298 

SEEDS 7 2 140 46 94 

TELESCOPE 10 2 400 134 266 

WINE 13 2 130 44 86 

WISCONSIN 33 2 198 66 132 

5.2 Experimental Results 

In this study, the new LDC classifier in Lorentzian 
space is suggested. This algorithm uses the optimal 
feature pairs which selected by FSLS method based on 
Lorentzian space metric. To evaluate the proposed 
classifier performance some public data sets as 
GESTURE, SEEDS, TELESCOPE, WINE and 
WISCONSIN were used in experiments. As clearly 
seen from Table 2. the number of features in these data 
sets are different. Hence, in experiments the number 
of feature subsets obtained from these data sets are 
also different. As we see from this statement the large 
number of features in data set is considerably 
increased the subsets number. Hence, the FSLS 
method in term of classification is important. 
Moreover, as mentioned before, the best outputs of 
LDC method is linked to number of selected optimal 
feature pair subsets. Therefore, in experiments, the 
meaning of ݇ was defined as 20. Subsequently, from 
all feature pair subsets only 20 feature pairs were 
selected according to FSLS method. On the one hand, 
the new LDC classifier with value ݇ = 20 in terms of 
computational complexity does not produce the 
perceivable difference in comparison with classic 
Bayes, kNN and SVM classifiers. For example, for 
feature pair from GESTURE data set case the classic 
classifiers Bayes, kNN and SVM are produced the 
work times as 0.0078, 0.0349 and 0.0596 second 
respectively. The work time of our method for the 
same case was produced as 0.0677 second. The 
computational time of our method as seen from results 
is little more than SVM output which is the biggest 
among the others. However, it can be explained by use 
of pre-processing step which is reported in section 3.2.  

Despite the fact that the number of feature pairs for 
data sets are dissimilar as it has been seen from 
experimental results definition of ݇ as 20 was 
sufficient to get the best success rate with LDC 
classifier. Also, it was found out that the meaning of ݇௢௣௧ = (1, ݇) which produces the best success rate in 
LDC method can be less than ݇. The last statement 
enhances the proposed methods validity in terms of 
computational complexity and effectiveness. The 
numerical information about the features and feature 
pair subsets obtained from data sets take place in Table 
2. Also, the differences between ݇ and  ݇௢௣௧ which 
produce the best classification outputs with proposed 
LDC method is given. 
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Table 2: feature (f), feature combination (fc), k- selected 
subsets, kopt- optimal subsets that produce best result. 

 ⋕ f ⋕fc ⋕ k ⋕ k୭୮୲ 
GESTURE 18 153 20 20 

SEEDS 7 21 20 12 

TELESCOPE 10 45 20 8 

WINE 13 78 20 14 

WISCONSIN 33 528 20 15 

As mentioned in section III the meaning of ݓ,  ݍ
parameters are important in terms of transforming the 
data and making them usable in Lorentzian space. In 
this regard, the optimal values of these parameters 
were found out for all data set. The meanings of 
parameters changes according to distribution of points 
in data set. The whole list of optimal parameter values 
obtained for data sets that produce the best 
classification results with proposed LDC method are 
took place in Table 3. below. 

Table 3: The optimal parameters of compression matrix for 
data sets. 

,࢚࢖࢕࢝    ࢚࢖࢕ࢗ
GESTURE 0.9, 1.8 

SEEDS 2, 1.4 

TELESCOPE 1.9, 1.8 

WINE 0.9, 1.9 

WISCONSIN 2, 1.8 
 

The performance of new LDC classifier over all 
data set was evaluated by comparing the classification 
results with Bayes, kNN and SVM classifiers outputs. 
For classic classifiers the Euclidean analogue of 
proposed feature selection method was used. It means 
that except the compression of data set which is 
explained in the section 3.2. and special for Lorentzian 
space the other steps of proposed algorithm are 
common for classic classifiers. It was made with the 
aim of to keep the experiment path similar and 
meaningful in term of comparison the classification 
results. Also, in experiments the classic classifiers 
result for data sets with all features were investigated 
and compared with the results of new proposed 
method.  For example, for GESTURE data set the 
results of classic Bayes, kNN and SVM classifiers 
were recorded as 84.56%, 80.20% and 53.69% 
respectively. It was made to define the superiority of 
presented method.  

Thus for GESTURE data set, the best 
classification rate for SVM is obtained as 67.45%. The 
best results for kNN is obtained as 82.21% and for 

Bayes as 93.29%. Under these circumstances, the 
proposed LDC classifier produced the best finding as 
96.64%. Despite of the kNN method result which is 
sufficiently high almost 4% superiority was provided 
by our method in GESTURE data set. For GESTURE 
data set case new proposed classifier produced the best 
classification rate in  ݇௢௣௧ = 20 which is equal to 
threshold meaning. It means that, the new LDC 
classifier using the FSLS method selects only 20 
optimal feature pairs from 153 subsets and obtains the 
best result. This statement can be used as a 
considerable measure in proving the validity and 
usability of the proposed LDC classifier. Further, in ݇ = 1 case, namely, only with two feature our method 
produces success rate as 71.48% and in this wise left 
behind the classic classifiers and this superiority 
continues in all feature pair subsets cases. The 
illustration of the classification results of classic 
method and the outputs recorded by proposed 
classifier for GESTURE data set in varies meaning of ݇ is imaged in Figure 2. 

 

Figure 2: Classification results for GESTURE data set. 

Totally 21 feature pair subsets were extracted by 
(4) from SEEDS data set. The number of selected 
feature pair subsets by FSLS method was 20 and the 
best classification result was produced by new LDC 
classifier as 97.87%. The worst success rate was 
recorded by kNN as 95.74%. For SEEDS data set 
Bayes and SVM classifiers have produced the same 
classification rate as 96.81%. As a result of 
experiments, an optimal meaning of ݇௢௣௧ which 
produces the best classification rate with the proposed 
new LDC classifier was found out as 12.  As clearly 
visible from Figure 3. in ݇ = 12 case the best result 
for SEEDS which produced by both of Bayes and 
SVM was increased almost for 5%. Moreover, in 
comparison to outputs that were recorded by classic 
methods the findings of suggested classifier for 
SEEDS data set in most of means ݇ are the best ones. 
Additionally, despite of the high success rate obtained 

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

498



by classic classifiers our method is able to produce 
better outputs. The visual comparison of classic 
classifiers and the proposed methods outputs for 
SEEDS data set are illustrated in Figure 3. 

 

Figure 3: Classification results for SEEDS data set. 

For TELESCOPE data set having 45 feature pair 
subsets in total which were extracted from 10 features 
both of Bayes and SVM method produced the same 
success rates as 53.01% and it is the worst one among 
others. The same situation was observed in PI 
DIABTES data set case between kNN and SVM. In 
TELESCOPE case the best result was obtained by the 
proposed LDC classifier in eighth iteration (݇௢௣௧ = 8) 
as 68.42%. The closest classification result to LDC 
classifier output is 66.17% that recorded by kNN. As 
we clearly can see from Figure 4. in all selected feature 
pair subsets, except four of them, the new suggested 
classifier produces better results than other methods. 
The variations of the new proposed classifier results 
throughout all means ݇ are imaged in Figure 4. Also, 
in TELESCOPE case our algorithm with only two 
feature (݇ = 1) obtains better results than SVM and 
Bayes in all iterations.  

 

Figure 4: Classification results for TELESCOPE data set. 

The similar course of action as in SEEDS case was 
exhibited by LDC classifier for WINE data set. 
Namely, in first iterations the proposed method 
produces the worst success rate than other classifiers 
and from ݇ = 6  to end only the best ones. For WINE 
data set the worst one among the best classification 
results was produced by Bayes as 89.53%. Also, the 
best results of SVM and kNN classifiers were 
recorded as 91.86% and 94.19% respectively. The 
proposed LCMF classifier in SEEDS case produces 
the best classification output as 98.84% and for it only 
14 optimal feature pairs of selected 20 subsets has 
been enough. As mentioned above, the suggested 
LDC classifier in most of the selected subsets that 
were extracted from WINE and SEEDS data sets 
produces better classification outputs. Even in 
GESTURE case the supremacy was observed in whole 
iterations. Essentially, this fact describes that the new 
classifier is not useful only on specific feature pair 
groups and also available in all subsets. The classic 
classifiers outputs and the results of LDC classifier for 
selected feature pairs from WINE data set were 
visualized in Figure 5.  

 

Figure 5: Classification results for WINE data set. 

WISCONSIN is the last data set which was used 
in this study to validate the LDC classifier. The worst 
classification results in entire the selected subsets 
from WISCONSIN data set were produced by SVM 
and the best of them was recorded as 61.36%. And, 
75.00% and 78.03% are the best results of kNN and 
Bayes classifiers for WISCONSIN data set 
respectively. For the same case the new LDC 
classifier with 15 optimal feature pairs produces 
80.30% classification rate. In this study, from 
WISCONSIN data set were occurred in total 528 
feature pair subsets by (4) and only 15 of them that 
selected according to FSLS method was sufficient to 
produce the best classification result. Moreover, in 
more than half of the selected feature pairs the results 
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obtained by proposed classifier are better than others. 
The comparison of classification results for 
WISCONSIN data set are illustrated in Figure 6.  

 

Figure 6: Classification results for WISCONSIN data set. 

Generally, as result of experiments in this study, 
the classification rates obtained from GESTURE, 
SEEDS, TELESCOPE, WINE and WISCONSIN 
data sets by new LDC classifier are better than other 
classic methods outputs. In terms of classification the 
proposed classifier is superior to kNN, Bayes and 
SVM methods. This situation and the best 
classification results obtained by classic classifier 
methods can be seen in comparison from Table 4. 

Table 4: The comparison of the best classification results. 

 Bayes SVM kNN LCMF  

GESTURE 93.29 67.45 82.21 96.64 

SEEDS 96.81 95.74 96.81 97.87 

TELESCOPE 53.01 53.01 66.17 68.42 

WINE 89.53 91.86 94.19 98.84 

WISCONSIN 78.03 61.36 75.00 80.30 

6 CONCLUSIONS 

In this study, the novel Lorentzian Distance Classifier 
for Multiple Feature (LCDMF) method is developed. 
The proposed classifier uses the improved Feature 
Selection in Lorentzian Space (FSLS) method. The 
FSLS method was restructured according to 
Lorentzian metric and based on ܬܮ discriminative 
criterion. It selects optimal feature subsets from data 
set with the aim of to reduce the dimension. Thus, by 
selecting most important feature subsets from original 
data set according to Lorentzian space metric the best 

classification results can be produced by proposed 
LDC classifier. Also, in this study, the pre-processing 
step is proposed. This pre-processing step is 
important in terms of transforming the data and 
making them suitable in Lorentzian space. Further, 
the covariance matrix calculation in Lorentzian space 
was described. The validity and correctness of the 
proposed classifier were tested over GESTURE, 
SEEDS, TELESCOPE, WINE and WISCONSIN 
data sets. The performance of new proposed LDC 
classifier over all data set was evaluated by 
comparing the classification results with Bayes, kNN 
and SVM classifiers outputs. In experiments besides 
the results of the classical classifiers for selected 
feature pairs, also the results for all features were 
investigated and compared with the results of new 
proposed method. As result of experiments, the 
superiority of proposed LDC classifier to other classic 
methods is clearly seen. 

In future studies, Lorentzian metric may be used 
for Principal Component Analysis by reconstruction 
of its internal calculations. Furthermore, the structure 
of the SVM method may also be reorganized 
according to properties of the Lorentzian space. 
These modifications could improve the success rate 
of the classification.  
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