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Abstract: This work provides details a simulation experiment and analysis of Q-learning applied to multi-agent systems.

Six agents interact within the environment to form hexagon, square and triangle, by reaching their specific

goal states. In the proposed approach, the agents form a hexagon and the maximum dimension of this pattern

is be reduced to form patterns with smaller dimensions. A decentralised approach of controlling the agents via

Q-Learning was adopted which reduced complexity. The agents will be able to either move forward, backward

and sideways based on the decision taken. Finally, the Q-Learning action-reward system was designed such

that the agents could exploit the system which meant that they would earn high rewards for correct actions and

negative rewards so the opposite.

1 INTRODUCTION

With ever increasing applications of Multi-Agent Sy-

stems (MAS), a transferable learning method is a ne-

cessity so as to increase efficiency in the duration of

adoption of such systems into a particular environ-

ment. These specifically include swarm-robot sys-

tems for surveillance, agriculture harvesting and res-

cue operations. Multi-Agent formation control confi-

gurations include centralized and decentralized pat-

tern formations. The former entails no interaction

among agents, whereas the opposite applies to the lat-

ter which utilizes all agents in the learning process.

This part of the work focuses on decentralized reinfor-

cement learning for Multi-Agent pattern formation.

Control algorithms are adopted to perform pattern of

agents, thereby achieving formation.

Popular control algorithms adopted for attaining

desired geometric pattern are decentralized control

algorithm (Cheng and Savkin, 2011), synchroniza-

tion control (I. Sanhoury and Husain, 2012), pre-

dictive control (A. Guillet and Martinet, 2014) and

Neural Network Controller and finite time controller

(C. Zhang and Pan, 2014). The geometric pattern in-

cludes triangle (J. Desai and Kumar, 2001), rectangle

(J. Desai and Kumar, 2001) (Cheng and Savkin, 2011)

(I. Sanhoury and Husain, 2012), ellipse (A. Guillet

and Martinet, 2014) (I. Sanhoury and Husain, 2012).

However it is necessary to track the leaders pose (po-

sition and direction angle) while achieving the desired

geometric pattern (C. Zhang and Pan, 2014) (Buso-

niu et al., 2006) (Gifford and Agah, 2007) (J. Alonso-

Mora and Beardsley, 2011) (Ren, 2015).

The problem in formation control for a group of

agents is dynamic assignment of geometric pattern.

Many formation control strategies have been propo-

sed - leaderfollower, behavioural and virtual struc-

ture/virtual leader approach (Ren, 2015) (Karimod-

dini et al., 2014) (Dong et al., 2015) (Rego et al.,

2014) for preserving formation among agents. The

control algorithms developed for pattern formation

(Cheng and Savkin, 2011) (B. Dafflon and Koukam,

2013) (Ren, 2015) does not account for decentralized

control configuration. Hence any pattern cannot be

formed, where only few formations can be achieved.

Decentralized controller (Smith et al., 2006) (Du-

ran and Gazi, 2010) (Krick et al., 2009) was develo-

ped to make agents form a desired geometric pattern.

The pattern formations were achieved using agents’

ID compared with coordinated variable (Cheng and

Savkin, 2011), maintaining relative angle between the

agents’ position (Rezaee and Abdollahi, 2015), by ad-

justment of distance (Smith et al., 2006) and visuali-

sing each robot through the sensor and minimizing
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the control signal of actual sensor value with desired

value (Krick et al., 2009). Also these patterns are re-

stricted to only directed graph. Pattern formations is

of two forms: artistic formation (J. Alonso-Mora and

Beardsley, 2011) and precise formation (Gifford and

Agah, 2007). These formations are required when the

placement of sensors in the unstructured environment

becomes inadequate. Thus learning is required such

that agents can adapt and accomplish the task in the

unstructured environment where high precision is re-

quired. Learning is evaluated for manipulator link

control (Busoniu et al., 2006) using fuzzy value ite-

ration method. However this method does not lead to

any pattern formation as it focuses only on the motion

control.

The focus of this work is pattern formation for a

dynamic multi-agent system using decentralized ma-

chine learning algorithm. In this paper, 6 agents form

pattern on certain quantity of interest using reinfor-

cement learning. The learning process utilizes agents

initial position scattered in the defined space. The le-

arning curve utilizes the policy for action to be ta-

ken to move to next step and gets highest reward for

reaching correct position. The agents are penalized

for moving away from the desired position. The pa-

per is structured as follows: Section 2 delves into the

learning process. Results are discussed in Section

3. Section 4 describes the conclusion by giving the

glimpse of the work carried out.

2 DECENTRALIZED LEARNING

FOR MULTI-AGENTS

In this work, Q learning is adopted where each agent

individually learns through the set of actions, ′ A ′ for

the given environmental state, ′ S ′. In the proposed

work, as the position of each agent is defined in 2D,

learning problem is defined to operate parallel in both

x and y coordinates. With this configuration, the agent

can explore the state space independently. The propo-

sed approach contributes to attain polygonal forma-

tion.

2.1 Proposed Structure for Learning

The decentralized structure utilizes Q learning for

training agents to reach its coordinates. Policy is ba-

sed on exploitation, where an action, ′ Act ′ is perfor-

med using maximum Q value and is given in Eq.1.

Act = argmaxaεA{Q(States− Space ID,a)} (1)

where A = [−1,1]

Initially first agent starts to explore the states-

space from States− Space ID : 1 till it reaches the

specified target and lock, 0. Here lock indicates whet-

her the agent should continue with the learning pro-

cess or not. The current state of the agent is updated

based on the specified condition as in line 19 of Algo-

rithm 1. Once the state of the agent gets updated, the

computation of Q matrix is repeated using line 34 in

Algorithm 1, to pre-compute the policy adopted until

the specified target is reached. For the next agent, the

target position of previous agent is taken as the ini-

tial state of the states-space and learns through the Q-

learning until it reaches the specified target.

2.2 Algorithm to Compute Reward of

the Agent

This section focuses on the computation of reward

of the agent for the defined state space. An agent

is given maximum reward if it performs some action

and is penalized if the agent performs action even af-

ter reaching the target. In Section 2.2.1 and Section

2.2.2, the assignment of rewards for x-coordinate and

y-coordinate are derived from the specific target as-

signed to each agent respectively.

2.2.1 Algorithm for Computing Reward of

x-coordinate of Agent

The next state of each agent is computed and updated

based on the action taken from the optimum Q value.

The next state of each agent ID is updated till it rea-

ches the goal state of x-coordinate and lies within the

goal states space of [−2,2]. The agent gets maximum

reward when it performs correct action, gets penalty

when the agent reaches goal state of −1,0,1,2,1,0
and also if neither of the case then the agent is facili-

tated with lesser negative reward. The complete struc-

ture of algorithm for computing next state of each

agent ID is described in Algorithm 2.

2.2.2 Algorithm for Computing Reward of

y-coordinate of Agent

The next state of each agent is computed and upda-

ted based on the action taken from the optimum Q

value. The next state of each agent ID is updated

till it reaches the goal state of y-coordinate and lies

within the goal states space of [−1,1]. The agent

gets maximum reward when the agent performs cer-

tain action, gets penalty when the agent reaches goal

state of 0,1,1,0,−1,−1 and also if neither of the case

then the agent is facilitated with lesser negative re-

ward. The complete structure of algorithm for comp-
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Algorithm 1: Proposed Structure for Learning.

Require: States−Space,Action,Q
Require: Learning Rate and Discount Factor

1: States−Space = −2 : 3
2: Action= [move down (−1), move up (1)]
3: Learning Rate, al pha = 0.5
4: Discount Rate, gamma = 0.5
5: Q = zeros(length (States-Space), length (Action))
6: States−Space ID = Index of States−Space
7: N = Total no. of agents
8: M = Total no. of iterations
9: x = Current State

10: y = Next State
11: Next State ID = Index of agent for its next position

in the States−Space
12: lock = To indicate whether to restrict the movement

or not
13: Target = Goal position of the agent
14: repeat
15: for i← 1,N do
16: States−Space ID = 1
17: repeat
18: for k← 1,M do
19: Action ID = f ind(Action ==

max(Q(States−Space ID, :))
20: x(i) = States − Space(States −

Space ID)
21: Comment: Based on current action

and i, next state y is computed
22: if x ≤ max(States− Space)&&x ≥

min(States−Space) then
23: y(i) = x(i)+Action(Action ID)
24: else
25: y(i) = x(i)
26: end if
27: Comment: Based on Current State

and Action, Assign Reward
28: if y == Target then

29: lock = 1
30: else
31: lock =0
32: end if

33: if y ==−3 then
34: y = −2
35: end if
36: Next State ID = f ind(States −

Space == y)
37: Update Q using Q-Learning Rule
38: Q(States − Space ID,Action ID)

= (States − Space ID,Action ID) +
al pha(Reward +gamma∗max(Q(Next State ID, :
)))−Q(States−Space ID,Action ID))

39: States−Space ID = Next State ID
40: end for

41: until y == Target
42: end for
43: until lock==1

Algorithm 2: Computation of Reward for x- coordinate of
Each Agent.

Require: Current State, Action, Reward

1: x = Current State

2: u = Action

3: r = Reward

4: N = Total no. of agents

5: t = Target

6: for i← 1,N do

7: if i == 1 then

8: Target = −1

9: else if i == 2 | i == 6 then

10: Target = 0

11: else if i == 3 | i == 5 then

12: Target = 1

13: else

14: Target = 2

15: end if

16: if x == t− 1&&u == 1 then

17: r = 10

18: else if x == t + 1&&u ==−1 then

19: r = 10

20: else if x == t&&u == 1 ‖ u ==−1 then

21: r = −10

22: else

23: r = −1

24: end if

25: end for

uting next state of each agent ID is described in Algo-

rithm 3.

2.2.3 Algorithm for Plotting Agents Learning

Process

The Algorithm 4 briefs about the updated state of each

agent for a given episode. This is required to know

whether the agent has reached its goal state or not.

3 RESULTS AND DISCUSSION

This section details agents learning to reach their tar-

get along x and y coordinates, and the episodes they

have undergone to achieve the same. With the next

state history of each agent along x and y coordinates,

the desired pattern of hexagon is achieved.

3.1 Transition Along x Coordinate to

Reach Target

The agents after undergoing the phase of algorithm

described in Section 2.2.1, it traverses several episo-
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Algorithm 3: Computation of Reward for y-coordinate
of Each Agent.

Require: Current State, Action, Reward

1: x = Current State

2: u = Action

3: r = Reward

4: N = Total no. of agents

5: t = Target

6: for i← 1,N do

7: if i == 1 | i == 4 then

8: Target = 0

9: else if i == 2 | i == 3 then

10: Target = 1

11: else

12: Target = −1

13: end if

14: if x == t− 1&&u== 1 then

15: r = 10

16: else if x == t + 1&&u ==−1 then

17: r = 10

18: else if x == t&&u == 1 ‖ u ==−1 then

19: r = −10

20: else

21: r = −1

22: end if

23: end for

Algorithm 4: Plot of Learning of agents to reach target
with episodes incurred by each agent.

Require: next state history

1: Px = Positions of x coordinate

2: Py = Positions of y coordinate

3: Rx = next state x

4: Ry = next state y

5: E = Episode of Agent ID

6: Px =
[
Rx,E]

7: Py =
[
Ry,E]

8: N = Total no. of agents

9: for i← 1,N do

10: s1 = f ind(Rx) == i

11: s2 = f ind(Ry) == i

12: j j1 = max(s1)
13: j j2 = max(s2)
14: plot(i,Rx( j j1,1)
15: plot(i,Ry( j j2,1)
16: end for

des defined in the state space. This transition of agents

from one state to the other is shown in Fig. 1. It is

seen that agents reach to the goal state as indicated in

Algorithm 2 of Section 2.2.1. The episodes for tran-

sition is indicated in Table 1.
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Figure 1: Transition of Agents x coordinate to reach target.

Table 1: Episode incurred by each agents x coordinate.

Agent ID No. of Episodes Incurred

1 2

2 6

3 9

4 12

5 9

6 6

3.1.1 Learning x Coordinate to Reach Target

The agent reaches its target from the initial position

of each agent in x coordinate as shown in Fig.2

3.1.2 Transition Along y Coordinate to Reach

Target

The agents after undergoing the phase of algorithm

described in Section 2.2.2, it traverse through several

episodes defined in the state space. This transition of

agents from one state to the other is shown in Fig. 3.

It is seen that agents reach to the goal state as indica-

ted in Algorithm 3 of Section 2.2.2. The episodes for

transition is indicated in Table 2. The critical analysis

was executed for a test data to check the variation of

number of episodes incurred for different initial posi-

tion and target for the same. It is observed that when

the agent needs to travel from lower negative value to

higher negative value or lower positive value to hig-

her positive value, more number of episodes are taken

by the agent to reach its target. However if the agent

traverses from higher negative value to lower negative

value and higher positive value to lower positive va-
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Figure 2: Learning of agents x coordinate.

Table 2: Episode incurred by each agents x coordinate.

Agent ID No. of Episodes Incurred

1 4

2 7

3 7

4 4

5 3

6 3

lue, agents takes lesser episodes comparatively. This

analysis signifies the computational time incurred by

each agent to reach its target.

3.1.3 Learning Along y Coordinate to Reach

Target

The agent reaches its target from the initial position

of each agent in y coordinate as shown in Fig. 4

3.2 Pattern Formation

Patterns from maximum dimension (6 / hexagon) to

reduced polygon dimensions of the size three, four

and five were achieved in this work. To suit all achie-

vable patterns, the target assignment defined in Algo-

rithm 2 of Section 2.2.1 and Algorithm 3 of Section

2.2.2 utilized to obtain the desired pattern. Before

forming pattern, the agent utilizes initial position as

the target position of previous agent position and rea-

ches the specified target through learning. Hence the

agents are connected and cooperative to form the spe-

cified pattern.

While forming the pattern, certain agents cannot

sense or fail to perceive the information about the pre-
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Figure 3: Transition of Agents y coordinate to reach target.
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Figure 4: Learning of agents y coordinate.

sence of other agents. Such agents are eliminated to

form patterns of smaller dimensions. The elimination

of certain agents for obtaining the desired pattern is

shown in Table 3.

Table 3: Elimination of Agents to Obtain the Desired Pat-
tern.

Pattern Cases to Perform Different Patterns

Hexagon No agents are eliminated

Pentagon Agent 4 is eliminated

Square Agent 1 and Agent 4 is eliminated

Triangle Agent 3, Agent 4 and Agent 5 is eliminated

The patterns of hexagon, pentagon, square and tri-
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angle are shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8

respectively. The notations for initial and desired po-

sitions are represented by ′ o ′ and ′ x ′ respectively.

With this proposed design, patterns of various redu-

ced dimensionality (from the maximum of that of a

hexagon) can be demonstrated and not just restricted

to the patterns shown in this paper.
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Figure 5: Desired Pattern: Hexagon.
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Figure 6: Desired Pattern: Pentagon.
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Figure 7: Desired Pattern: Square.

−2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

X − Axis

Y
 −

 A
x
is

Desired Pattern − Triangle

Figure 8: Desired Pattern: Triangle.

4 CONCLUSION AND FUTURE

WORK

This work demonstrates a practical method for pat-

tern formations in MAS. The action-reward system of

Q-learning is ideal choice for formation of patterns in

a behavioural based system (such as the one demon-

strated in this work), as it allows for a rigid control on

the movements through exploitation. Longer learning

periods are a consequence of freedom to explore the

environment, which means reducing the number of

possibilities of selecting the correct action (higher re-
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ward) is not beneficial for formation of patterns. The

method demonstrated here is best suited for a known

environment. Applications of MAS patterns are vast,

and this method demonstrated in this paper is highly

adaptable and user friendly to account for any pat-

terns as desired. Proof of concept of this research is

presented over the formation of polygons from maxi-

mum hexagonal dimension to minimum dimensiona-

lity of triangular. In this work, the control of agents to

reach the specified target is controlled independently

for both x and y position of agent. This can be ad-

vantageous in both computational efforts and time.

To validate with other methods, the pattern formation

was tested using neural network. The drawback is

each agent should be specified with its initial position

and target. States-Space search cannot be obtained by

using this approach.

Future work includes combining leader-follower

(Prasad et al., 2016a) (Prasad et al., 2016b) trajectory

tracking with pattern formation. We would like to

keep pattern selection and formation under the con-

trol of the leader. Coupling this system with le-

ader election would also be interesting and would

help counter any loss of connectivity during trajectory

tracking.
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