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Abstract: The advent of indoor personal mobile robots has clearly demonstrated their utility in assisting humans at
various places such as workshops, offices, homes, etc. One of the most important cases in such autonomous
scenarios is where the robot has to search for certain objects in large rooms. Exploring the whole room
would prove to be extremely expensive in terms of both computing power and time. To address this issue,
we demonstrate a fast algorithm to reduce the search space by identifying possible object locations as two
classes, namely - Support Structures and Clutter. Support Structures are plausible object containers in a scene
such as tables, chairs, sofas, etc. Clutter refers to places where there seem to be several objects but cannot be
clearly distinguished. It can also be identified as unorganized regions which can be of interest for tasks such
as robot grasping, fetching and placing objects. The primary contribution of this paper is to quickly identify
potential object locations using a Support Vector Machine(SVM) learnt over the features extracted from the
depth map and the RGB image of the scene, which further culminates into a densely connected Conditional
Random Field(CRF) formulated over the image of the scene. The inference over the CRF leads to assignment
of the labels - support structure, clutter, others to each pixel.There have been reliable outcomes even during
challenging scenarios such as the support structures being far from the robot. The experiments demonstrate the
efficacy and speed of the algorithm irrespective of alterations to camera angles, modifications to appearance
change, lighting and distance from locations etc.

1 INTODUCTION

The ability to locate a specific object in an indoor en-
vironment is a fundamental problem in creating fully
autonomous mobile robotic systems. This requires
the robot to 1)Locate the object in the exploration en-
vironment. 2)Plan a path to reach the object and 3)
Perform the desired operation on the object such as
servoing to a desired pose, grasping etc.

In indoor scenes, objects are likely to be placed
over raised flat surfaces like tables, which we call sup-
port structures. Moreover, the objects are often sur-
rounded by several other related articles, which can
be termed as clutter. The aim of this work is to locate
all support structures and cluttered areas in a given
scene. More formally, given a depth and RGB im-
age pair, the proposed method classifies each pixel
into one of the three categories i.e. clutter, support
structure or other. An example output of the proposed
approach is shown in Figure 1, where all the objects
(keyboard, mouse, computer screen etc.) are marked
as clutter and the rest of the table is marked as support
structure. The robot can now move close to the ar-
eas marked as clutter to search for the desired object.

Figure 1: The figure shows sample results of the proposed
method. We show an a) input RGB image taken from the
LAB dataset. B) shows the input depth image from kinect.
C) depicts the ground truth labelling for object search in in-
door environments. D) Show the results using our method.

Furthermore, the obtained result can also be useful
for the problem of finding likely locations of placing
an object (connected support structure pixels are can-
didate positions). The motivation behind addressing
it as a 3 label problem is to use the labels as a prior
for object search. Our work is inspired from the idea
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that small objects of the order 1cm-5cm, appear very
small, making it difficult for the present algorithms to
recognize them from far away. A better approach is
to guess from far and recognize from near. It is dif-
ficult to recognize a single object from far but it is
easy to recognize a group of objects placed together.
In most of the scenarios small objects are placed on
support structures. If support structure is not visible ,
it is mostly due to the support structure occluded by
non distinguishable objects which we define as clut-
ter. Clutter can act as a clue in adding the small object
within the search space. These image regions give a
strong prior for object search for a robot in an indoor
environment.The primary problem is the computation
time that previous approaches take. A vision-based
autonomous robot needs to tackle the problem of ob-
ject search efficiently in the shortest possible time.
Our proposed method demonstrates simple yet effi-
cient strategy for object class segmentation exploit-
ing the rich geometric information from the 3D point
cloud. In summary, our main contributions are:

• We propose a method for segmenting clutter and
support structures from RGBD data using a dense
CRF formulation over appearance and SVM fea-
tures extracted from geometry of the scene.

• We use clutter as a clue for recognizing areas
where objects could be present despite support
structure completely absent in a scene. The ab-
sence can be mainly due to two reasons. 1)The
support structure being occluded. 2)Unreliable
depths after 3m from kinect. Clutter also depicts
the presence of an assortment of objects, which
can be included in the search space.

• Our quantitative results on NYU and LAB show
that our model is reliable across datasets without
training on every dataset unlike ALE. We show
considerable improvements over ALE on both the
datasets.

2 RELATED WORK

Scene labeling, aiming to densely label everything in
a scene, has been extensively studied in computer vi-
sion. Single color image based methods have been
extremely successful, especially in outdoor scenes
(Shotton et al., 2009),(Gould et al., 2009),(Ladicky
et al., 2010), (Zheng et al., 2015). (Shotton et al.,
2009) proposed a segmentation method incorporating
a boosting based unary classifiers into a conditional
random field (CRF). (Ladicky et al., 2010) showed
that global potentials like co-occurrence statistics can

be defined over all variables in the CRF to obtain sig-
nificant improvement in accuracy. More recently, the
methods combining CRF’s with convolutional neural
nets (CNN) have been shown to obtain effective re-
sults (Zheng et al., 2015). But purely image based
approaches do not perform equally well in the harder
case of indoor scenes (Quattoni and Torralba, 2009).
They tell only a little about the physical relationships
between objects, possible actions that can be per-
formed, or the geometric structure of the scene.

The work by Silberman and Fergus (Silberman
and Fergus, 2011) was one of the extensively tested
method to demonstrate that incorporating depth data
gives a significant performance gain over methods
limited to intensity information for the task of indoor
scene labeling. A large variety of other RGB-D based
segmentation works have been proposed (Ren et al.,
2012), (Reza and Kosecka, 2014), (Koppula et al.,
2011), (Gupta et al., 2015), (Kim et al., 2013). The
work by (Reza and Kosecka, 2014) combines a Ad-
aboost classifier on combined RGB-D features with a
CRF framework, to obtain binary segmentation (par-
ticular object vs background). Ren et al. (Ren et al.,
2012) uses kernel features and solves a standard MRF
over superpixels. Gupta et al. (Gupta et al., 2015)
propose a framework to exploit depth data in mul-
tiple related task of contour detection, object detec-
tion to semantic segmentation. In contrast to these
approaches, where large number of scene labels have
been considered, our approach focuses only on pre-
dicting the areas where the objects are more likely
to be present (clutter) or the areas where new object
could be placed (support structure). This allows us to
avoid using large number of complicated features.

In one such work by koppula et al. (Koppula et al.,
2011) the point clouds obtained from the Kinect sen-
sor are merged together using RGBDSLAM and are
segmented using Euclidean clustering. These seg-
ments are the underlying basic structures for MRF
and are labelled to different categories. The idea of
3D geometry has also been exploited in the voxel
based approach proposed by Kim et al. (Kim et al.,
2013). Although, these approaches have shown im-
pressive results, the algorithm can take upto 18 min-
utes to run on a single stitched point cloud (Koppula
et al., 2011), which is unacceptable in most robotic
tasks.

In this paper, we extend the framework by
Krähenbühl and Koltun (Krähenbühl and Koltun,
2012) to incorporate the depth information. Previous
methods have used basic CRF or MRF methods com-
posed of unary potentials on individual pixels or su-
perpixels and pairwise potentials on neighboring pix-
els or superpixels. It has been shown in the past (Toy-
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Figure 2: The Flow chart shows the stages of our system pipeline. The Input RGBD data contains the RGb image and depth
image from the kinect sensor. We do a preprocessing on the input data to give the super-pixels using the SLIC algorithm
and the 3D point cloud. Using the above preprocessed information, we do a feature extraction to give the entropy, point
cloud normals and the height image. Once the features are extracted, we run a RBF kernel classification algorithm to gain
probability of each class to be input to the CRF. We create a dense fully connected crf with multiple pairwise terms and run an
mean-field based inference algorithm to accurately segment the scene into support structure and clutter.(Figure Best viewed
in color and enlarged).

oda and Hasegawa, 2008), that fully connected CRF’s
can improve the accuracy of semantic labelling over
standard CRF’s. (Hermans et al., 2014) and (Wolf
et al., 2015) use a similar segmentation pipeline as
ours but unlike us, they train a Random forest classi-
fier on appearance features. They do not use height or
normal pairwaise kernels in Dense CRF.

3 SYSTEM OVERVIEW

The motivation behind our model is to speed up the
scene labelling process for selective search rather than
resorting to an exhaustive search. The system archi-
tecture that we follow is explained in the figure 2.
The input for the model are the RGB image and depth
image of a indoor scene containing multiple support
structures and grouped objects from Microsoft kinect
sensor. The RGB image is first superpixelled using
SLIC algorithm(Achanta et al., 2012) and the corre-
sponding depth data for each segment is extracted.
We use the RGB and depth data to compute the nor-
mals of each segment. We train a Support Vector
Machine (SVM) over these images for support struc-
ture and clutter detection. The SVM probabilities
are taken as the initialization into the fully connected
CRF model and inferred using the mean-field approx-
imation.

The structure of the paper is as follows. In sec-
tion 4 we give the formulation for detection of sup-
port structure using input RGB and depth images. In
section 5 we use probabilities estimated from the Sec-
tion 4 to formulate a CRF. The evaluation algorithm

on the dataset has been explained in Section 6.

4 OBJECT CLASS DETECTION

This section explains computation of the features for
the object class segmentation and its classification us-
ing the Kernel SVM. We first preprocess the input
RGBD image to reduce the computational time of the
algorithm.

4.0.1 Superpixels

In our approach, rather than performing classification
on every pixel, we consider small regions or patches
called superpixels as the basic units of classification
to speed up the process. We compute superpixels
over the image using Simple Linear Iterative Cluster-
ing(SLIC) method (Achanta et al., 2012). Over seg-
menting the image allows us to work on a few hun-
dred data points per image rather than working with
640X480 pixels per image. Figure 3 shows an exam-
ple of a super pixelated image

Figure 3: A sample scenario. (a) RGB image. (b) SLIC
superpixelled image.
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4.1 Feature Computation

3D point cloud is extracted using the depth map and
the RGB image from the kinect sensor. We use the
PCL library (Rusu and Cousins, 2011) for the com-
putation of the point cloud. We compute 3D features,
which capture the geometry, shape and texture of the
support structures on which objects can be placed. To
support an object, we exploit the constraint that the
surface should always be horizontal and ideally par-
allel to the ground. We have not used appearance
features to avoid sensitivity to color parameters. The
features we have used are listed in the table 2. We
considered small feature set to enable speed in the al-
gorithm.

4.1.1 Entropy Map

Entropy is a statistical measure of randomness that
can be used to characterize the texture of an image. It
is defined as

−
p=kn

∑
p=k1

plog2(p) (1)

where k1 k2....kn are the histogram counts. We take a
9X9 neighbourhood around each pixel and compute
the histogram counts for each window. Secondly we
compute the entropy values at every pixel in all the
three channels R,G,B and also on the depth image.
Entropy map gives high values at inconsistent depth
changes. We then compute the average entropy value
for each superpixel.

4.1.2 Point Cloud Normals

For each superpixel, surface normal is computed at
the centroid. The normal at a point is computed by
approximating it to the problem of computing normal
of a plane located tangent to the surface.

4.1.3 Height

We consider height(hx) of the centroid as one of the
3D cues. Our locations of interest are flat surfaces and
grouped objects raised to a certain height. The height
features give us a good demarcation in segmenting
the regions of interest. We can justify the selection
of these features by the intuition that objects cannot
be found close to the ceiling of an indoor scene and
similarly support structures can not lie on the ground.

4.2 Classification

Based on the above features the support vector ma-
chine assigns a label and score to every superpixel.

We use the SVM implementation from libSVM and
libLinear(Chang and Lin, 2001). We tested our model
on both the linear and kernel SVM. The RBF kernel
performed well compared to the linear kernel. We
used LibSVM (Chang and Lin, 2001) with Radial ba-
sis function kernel. The training set is small and im-
balanced as the positive samples in a image will be
far less than the negative samples. Appropriate cost
paramater C and γ were found by searching over the
grid with the cross validation data set. SVM predicts
the class labels without probability information. To
incorporate the SVM output into a conditional ran-
dom field we follow the method given in(Wu et al.,
2004), where they have extended SVM to give prob-
ability estimates. The probability estimates are given
to the Conditional random fields as Unary potentials
as shown in section 5.

5 CONDITIONAL RANDOM
FIELD

We formulate the labelling problem as a Conditional
Random field(CRF) in the image space. CRF is a
graph based method generally used for segmentation
problems. This is implemented using a model consti-
tuting of set of random variables X = {X1,X2, ....,XN}
each taking a state from the label space ζ = l1, l2, l3.
These random variables belong to all image pixels
i ∈ ν = 1,2, ...,N, Let η be the neighbourhood sys-
tem of the random field defined by the sets ηi,∀i ∈ ν,
where ηi denotes the neighbourhood of the variable
Xi. Here l1 belongs to the support structure, l2 be-
longs to the clutter and the l3 belongs to the regions
not belonging to either the support structure or clutter.
These energies take the form

E(X) = ∑
i∈ν

ψu(xi)+ ∑
i∈ν, j∈ηi

ψp(xi,x j) (2)

Here ψu is defined as the unary potential. This poten-
tial represents whether the pixel belongs to the sup-
port structure or clutter or neither. Here ψp represents
the pairwise potential, which exploits the consistency
of the label in the image space.

5.1 Unary Potential

We compute the unary potentials using the probabil-
ity estimates from Section 4.2. Given k classes of
the data, the goal of the classification algorithm as
proposed by (Wu et al., 2004) is to estimate pi =
P(y = i|x), i = 1, ...,k. The algorithm follows the
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Table 1: Quantitative evaluation for LAB dataset. The
figure shows the percentage of correctly classified support
structures. The first, second and third columns presents re-
sults with the ALE, fully connected CRF and our method
proposed.

ALE FULLY-C OURS

36% 46% 69%

one-against-one approach for multi-class classifica-
tion. We train the SVM for the three classes proposed
earlier and input the probabilities to the CRF unary
potential as follows:

ψu(xi) = pi (3)

pi represent the probability of each label. The unary
potential gives a probability of the pixel belonging to
each class.

5.2 Pairwise Potential

The pairwise potential exploits the consistency of the
label in the image space. We use multiple constraints
to exploit the continuity of the label. The formulation
of the pairwaise potential is given in (Krähenbühl and
Koltun, 2012)

ψp(xi,x j) = µ(xi,x j)[
k

∑
m=1

w(m)k(m)( fi, f j)] (4)

Where each k(m) is a Gaussian kernel , the vectors
fi and f j are feature vectors for pixels i and j in
an arbitrary feature space, w(m) are linear combina-
tion weights, and µ is a label compatibility function.
Since our problem is a multi-class image segmenta-
tion and labelling problem, we follow (Krähenbühl
and Koltun, 2012) and use contrast-sensitive kernel
potentials as:

k( fi, f j) = w(1)exp(−|pi− p j|2
2θ2

β
− |Ii− I j|2

2θ2
v

︸ ︷︷ ︸
appearancekernel

)

+w(2)exp( −|pi− p j|2
2θ2

p︸ ︷︷ ︸
smoothnesskernel

)

+w(3)exp(−|pi− p j|2
2θ2

β
− |hi−h j|2

2θ2
q

︸ ︷︷ ︸
heightkernel

)

+w(4)exp(−|pi− p j|2
2θ2

β
− |ni−n j|2

2θ2
n

︸ ︷︷ ︸
normalkernel

)

where pi , p j are the positions, Ii,I j are the intensity
vectors, ni,n j are normal vectors, hi,h j are heights.

Table 2: The above table shows the features used and their
corresponding count.

No Feature set of the superpixel Count
F1 Vertical position of the centroid cz 1
F2 Vertical, Horizontal and z compo-

nents of the normal: nx,ny,nz

3

F3 Entropy on RGB (3 channels) 3
F4 Entropy on Depth 1

Table 3: Recall accuracy on lab dataset.

Method Clutter Support Structure Others
ALE 43.28 36.71 98.63

FULLY-C 20.28 51.13 93.99
OURS 32.63 59.4 96.5

Table 4: Intersection over union accuracy on lab dataset

Method Clutter Support Structure Others
ALE 30.2 29.99 94.19

FULLY-C 15.11 39.87 94.9
OURS 19.10 39.6 93.99

w(1),w(2),w(3),w(4) are the corresponding weights for
each kernel. We have fine tuned the CRF parame-
ters by empirical evaluation of qualitative results. The
appearance kernel is inspired by the observation that
nearby pixels with similar appearance are likely to
have same class. The smoothness kernel removes
small isolated regions. In the case of support struc-
ture and clutter we exploit the constraint of height in
segmenting the image. The height kernel exploits the
difference of height between the labels i.e. pixels be-
longing to the same label need to have the same height
in the depth image. Similarly pixels belonging to the
same label need to have same normal orientation and
is exploited using the normal kernel.

5.3 Inference

We follow (Krähenbühl and Koltun, 2012), which
uses a mean field approximation approach for infer-
ence. In this approach we try to find a mean field ap-
proximation Q(x) that minimizes the KL-divergence
D(Q||P) among all the distributions Q that can be
expressed as a product of independent marginals,
Q(x) = ∏i Qi(xi).

Qi(xi = l) =1/Ziexp{−ψu(xi)−
∑

l′∈L
∑
j 6=i

Q j(x j = l′)ψp(xi,yi)}

where Zi is a constant which normalizes the marginal
at pixel i. If the updates are made in sequence across
pixels, the KL-Divergence is guaranteed to decrease.
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Figure 4: Qualitative Results: Our method is able to de-
tect clutter in case of cluttered indoor scenes where support
sturctures are not visible. The 2nd and 3rd columns shows
the ground-truth labelling and our method labelling respec-
tively(Figure best viewed in color and enlarged).

6 EXPERIMENTAL RESULTS

6.1 Dataset

LAB Dataset. We consider labeling support structure
and clutter in a 3D scene using a Kinect sensor. Data
has been collected from 5 labs with varying compo-
sitions of the three labels, which we will be address-
ing as lab dataset. Each scene in the lab dataset had
a image resolution of 640x480 and contained about
300,000 points of depth points. These scenes are chal-
lenging as they contained objects, which cannot be
grouped or classified using existing computer vision
algorithms. Manual annotation of each scene from the
LAB dataset with the 3 classes is performed as shown
in the second column Fig 5. We have classified the
dataset into 35 traning examples and 60 testing exam-
ples.
NYU Dataset.To test the algorithm on publicly avail-
able dataset, we used the NYUv2 RBG-D dataset (Sil-
berman et al., 2012) which comprises of 795 train-
ing and 654 testing images. NYU is one of the most
widely used RGBD dataset for semantic segmenta-
tion. These images were semantically labelled to con-
tain multiple classes. We have selected 65 testing
samples containing challenging scenarios for support
structure detection. The ground truth provided by
NYU cannot be used for our problem as we are try-
ing to segment support structure tops rather than the
whole support struture to reduce computation. There-
fore manual annotation was performed on these se-
lected images for all the three classes.

6.2 Evaluation

In this section, we show an extensive evaluation of
our algorithm on the datasets mentioned in section
6.1. We quantitatively compare our results with
other state-of-the-art algorithms in scene understand-

Table 5: Intersection over union accuracy on NYU.

Method Clutter Support Structure Others
ALE 7.40 5.18 85.12

FULLY-C 30.04 36.01 84.45
OURS 31.68 38.14 83.13

Table 6: Recall accuracy on NYU.

Method Clutter Support Structure Others
ALE 7.34 5.41 99.0

FULLY-C 51.61 35.68 88.99
OURS 57.17 37.57 87.14

ing. All the currently available datasets like NYU V2,
contained scenes where support structures are closer
to the camera. We created the LAB dataset with chal-
lenging scenes where the support structures and clut-
ter are relatively far away and difficult to segment
compared to other publicly available datasets.

To find the best labelling algorithm over the SVM
trained potentials, we have experimented with mul-
tiple CRF formulations and inference. We have
used ALE (Ladicky et al., 2009) to test and train
over the RGBD images using the texton features
as the unary potential which we will call as ALE.
We evaluated the algorithm with the fully con-
nected CRF model(FULLY-C) from (Krähenbühl and
Koltun, 2012) using the SVM potentials from sec-
tion 4.2 without the additional height and normal ker-
nels in the pairwise term, which we will be calling as
FULLY-C. Finally we compared the accuracies of our
proposed method with respect to the above mentioned
methods and show an improvement in the accuracy of
segmentation. We would like to emphasize that ALE
and our system are both trained on the LAB dataset
and tested on both the datasets. As ALE is trained
on texture features, It performed well on LAB dataset
but not on NYU dataset. Our algorithm is not trained
on appearance cues to avoid sensitivity to color. This
would allow us to test on variety of datasets with-
out needing to train on all the datasets. Our algo-
rithm is aimed at labelling only the part of the struc-
ture which supports objects for example table-top but
not the whole structure. The annotations provided in
the NYU dataset for structure cannot be used for the
problem we are trying to address due to the afore-
mentioned reason. Labeling only the support surfaces
of the whole structure can be used as a prior for a
faster object search in robotic applications. We show
a quantitative evaluation of the proposed algorithm on
the LAB dataset in Fig. 5. Image 2 of Fig. 5 shows
how we improve upon FULLY-C by adding normal
and height kernels.We show support structure level
accuracies in Table 1 which gives us the information
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Figure 5: The columns from left to right represents the original RGB image from our lab data set with its corresponding
manually annotated ground truth, predicted labels by the Super-pixel clique CRF(ALE), predicted labels by the fully con-
nected CRF (FULLY-C). The rightmost column represents the predicted labels by our proposed CRF (OURS) based learning
approach. The locations of interest here are the support structures, and clutter.
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Figure 6: The columns from left to right represents the original from the NYU V2 dataset with its corresponding ground truth,
predicted labels by the Super-pixel clique CRF(ALE), the dense CRF output. The rightmost column of images represent the
predicted labels of our proposed method(OURS) for different NYU scenes. The locations of interest here are the support
structures and clutter.
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about the percentage of support structures correctly
classified. We show an improvement of 10% on the
support structure detection with our proposed method
compared to FULLY-C and 33% increase compared to
ALE.All the methods aforementioned are trained on
LAB dataset. The models were tested on both LAB
dataset and NYU. The standard algorithms like ALE
have performed poorly on the NYU dataset and also
on LAB in support structure detection because of de-
pendency of the algorithm on the texture features. Our
proposed method has scaled well on both the datasets
because of its exclusive features which are not depen-
dent on the texture of the image.

We summarize the Intersection over Union ac-
curacies of object class segmentation on the LAB
Dataset in Table 4 and on the NYU dataset in Table
5. The Intersection over union measure is defined as
T P/(T P+FP+FN), where TP represents True pos-
itive, FP represents False positive and FN represents
the false negatives. Similarly we evaluate on the recall
accuracies for each label and summarize them in Ta-
ble 6 for the NYU dataset and in Table 3 for the LAB
datasets. Here recall is defined as T P/(T P + FN),
which defines the probability of retrieval of a specific
label with respect to its query. We observe that our al-
gorithm performs better than the standard dense CRF
based method in both the datasets.

We show 3D reconstruction of a lab environ-
ment using RTAB MAP((Real-Time Appearance-
Based Mapping), a RGB-D SLAM approach using
visual odometry in the supplementary video. We use
a Kinect mounted on a P3DX robot. The system is
built on ROS(Robotic Operating system). We run our
algorithm on the live 3-D stream and label the sup-
port structures present in the scene. The segmented
regions can help the robot for the task of object search
and can also be used for path planning for faster area
coverage while search for objects.

7 CONCLUSION

We have proposed an algorithm which uses geomet-
ric 3d cues and texture cues to classify the scene into
support structures and clutter which will be a prior
for reducing the object search space. We are propos-
ing a generic method which will work for a variety
of scenes without training on every dataset. In fig-
ure 4 we show that clutter can be used as a feature to
locate regions of interest when support structures are
absent or occluded. The experiments performed on
NYU show the robustness of the algorithm to dras-
tic change in appearance of the support structures and
clutter in the scene. We show 7% and 2% increase

in pixelwise recall accuracies for support structure on
LAB and NYU. The performance can be attributed to
the consideration of geometric features from the 3-D
point cloud which would otherwise not be possible if
only texture cues were considered as features. Since
the algorithm is fast, it is possible to implement it in a
multi processor architecture for real time performance
which makes it easy to use in robotic environments for
region proposals. From the evaluation we conclude
that our proposed method scales well across datasets.
As part of the future research, We intend to segment
clutter to individual objects for object recognition and
formulate an Optimized path planning strategy for the
robot to simultaneously explore and navigate in large
rooms efficiently depending on the task it is assigned.
Further by assigning the confidence for each pixel be-
ing a support structure or clutter, a more robust and
optimal search strategy can be derived.

8 FUTURE WORK

We would like to extend this work further and use
these region proposals for a faster object search in in-
door environment. Further, we would like to investi-
gate the performance of convolution neural networks
for the same task.

REFERENCES

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
Susstrunk, S. (2012). Slic superpixels compared to
state-of-the-art superpixel methods. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
34(11):2274–2282.

Chang, C. and Lin, C. (2001). LIBSVM: a library for sup-
port vector machines.

Gould, S., Fulton, R., and Koller, D. (2009). Decomposing
a scene into geometric and semantically consistent re-
gions. In Computer Vision, 2009 IEEE 12th Interna-
tional Conference on, pages 1–8. IEEE.
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