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Abstract: We propose a new framework that extends the standard Probability Hypothesis Density (PHD) filter for mul-
tiple targets having three different types, taking into account not only background false positives (clutter), but
also confusion between detections of different target types, which are in general different in character from
background clutter. Our framework extends the existing Gaussian Mixture (GM) implementation of the PHD
filter to create a tri-GM-PHD filter based on Random Finite Set (RFS) theory. The methodology is applied
to real video sequences containing three types of multiple targets in the same scene, two football teams and a
referee, using separate detections. Subsequently, Munkres’s variant of the Hungarian assignment algorithm is
used to associate tracked target identities between frames. This approach is evaluated and compared to both
raw detections and independent GM-PHD filters using the Optimal Sub-pattern Assignment (OSPA) metric
and discrimination rate. This shows the improved performance of our strategy on real video sequences.

1 INTRODUCTION

Visual detection, tracking and association of multiple
targets at each frame in a video sequence is an active
research field. In some cases, for example for situa-
tional awareness, driver assistance and vehicle auton-
omy, there is also a necessity to distinguish between
different target types, e.g. between vehicles and more
vulnerable road users such as pedestrians and bicy-
cles to select the best sensor focus and course of ac-
tion (Matzka et al., 2012). For sports analysis we
often want to track and discriminate sub-groups of
the same target type such as the players in opposing
teams (Liu and Carr, 2014). In this and many other
examples, confusion between target types is common;
a standard histogram-based detection strategy (Dol-
lar et al., 2014) in an urban environment may provide
confused detections between pedestrians and cyclists,
and even small cars.

Traditional multi-target trackers have been based
on finding associations between targets and mea-
surements. These include Global Nearest Neigh-
bor (GNN) (Cai et al., 2006), Joint Probabilistic
Data Association Filter (JPDAF) (Rasmussen and
Hager, 2001), and Multiple Hypothesis Tracking
(MHT) (Cham and Rehg, 1999). However, these ap-
proaches have faced challenges not only in the uncer-

tainty caused by data association but also in algorith-
mic complexity that increases exponentially with the
number of targets and measurements.

To address the problem of increasing complexity,
a unified framework which directly extends single to
multiple target tracking by representing multi-target
states and observations as Random Finite Sets (RFS)
was developed by Mahler (Mahler, 2003). This es-
timates the states and cardinality of an unknown and
time varying number of targets in the scene, and al-
lows for target birth, death, clutter (false alarms), and
missing detections. Mahler (Mahler, 2003) proposed
to propagate the first-order moment of the multi-target
posterior, called the Probability Hypothesis Density
(PHD), rather than the full multi-target posterior.

There are two popular implementations for the
PHD filter, the Gaussian Mixture (GM-PHD) (Vo and
Ma, 2006) and the Sequential Monte Carlo (SMC) or
particle-PHD filter (Vo et al., 2005). The GM-PHD
filter is used in (Zhou et al., 2014) for tracking pedes-
trians in video sequences but there is only one type of
target and the motion model is fixed. As an extension,
a GM-PHD Filter was also developed in (Pasha et al.,
2009) for maneuvering targets but this employed a
Jump Markov System (JMS) that switched between
several motion models. In contrast, a particle-PHD
filter was applied in (Maggio et al., 2008) to allow for
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more complex motion models, and to cope with vari-
ation of scale, which has significant effects not just on
object motion but also on the detection process.

Considering extensions to different target types,
Yan et al. (Wei et al., 2012) developed detection,
tracking and classification (JDTC) of multiple tar-
gets in clutter which jointly estimates the number
of targets, their kinematic states, and types of tar-
gets (classes) from a sequence of noisy and cluttered
observation sets using a SMC-PHD filter. The dy-
namics of each target type (class) was modeled as
a class-dependent model set and the signal ampli-
tude is included in the multi-target likelihood to en-
hance the discrimination between targets from differ-
ent classes and false alarms. Similarly, a joint tar-
get tracking and classification (JTC) algorithm was
developed in (Yang et al., 2014) using RFS which
takes into account extraneous target-originated mea-
surements (of the same type) i.e. multiple measure-
ments that originated from a target which can be mod-
eled as a Poisson RFS using linear and Gaussian as-
sumptions. In these approaches, the augmented state
vector of a target comprises the target kinematic state
and class label, i.e. the target type (class) is put into
the target state vector. However, although multiple
target types were considered, no account was taken
of the effect of confusion between target types at the
detection stage, as is the case in our work.

We make the following four contributions. First,
we model the RFS filtering of three different types
of multiple targets with separate but confused detec-
tions. Second, the Gaussian mixture implementation
of the standard PHD filter is extended for the pro-
posed tri-PHD filter. Third, we extract object detec-
tors’ information including the probabilities of detec-
tion, confusion detection probabilities among target
types and background clutter from receiver operating
characteristic (ROC) curves of each of the detectors
and then integrate them into tri-GM-PHD filter to ap-
ply for visual tracking on real video sequences. Fi-
nally, we integrate Munkres’s variant of the Hungar-
ian assignment algorithm to the typed results from the
tri-GM-PHD filter to determine individual targets of
each type between consecutive frames.

2 RANDOM FINITE SET,
MULTIPLE TARGET
FILTERING FOR THREE
TYPES

A RFS represents a varying number of non-ordered
target states and observations, analogous to a ran-

dom vector for single target tracking. More pre-
cisely, a RFS is a finite-set-valued random variable
i.e. a random variable which is random in both the
number of elements and the values of the elements
themselves. Finite Set Statistics (FISST), the study
of the statistical properties of RFS, is a systematic
treatment of multi-sensor multi-target filtering as a
unified Bayesian framework using random set the-
ory (Mahler, 2003).

When different detectors run on the same scene to
detect different target types there is no guarantee that
these detectors only detect their own type. It is pos-
sible to run an independent PHD filter for each tar-
get type, but this will not be correct in most cases, as
the likelihood of a positive response to a target of the
wrong type will in general be different from, usually
higher than, the likelihood of a positive response to
the scene background. In this paper, we account for
this difference between background clutter and target
type confusion. This is equivalent to a single sensor
(e.g. a smart camera) that has N different detection
modes, each with its own probability of detection and
a measurement density for N different target types. In
this paper we set N = 3.

To derive the tri-PHD filter, we define a RFS rep-
resentation that extends from a single type, single-
target Bayes framework to a multiple type, multiple
target Bayes framework. Let the multi-target state
space F (X ) and observation space F (Z) be the re-
spective collections of all the finite subsets of the state
space X and observation space Z, respectively. If
Li(k) is the number of targets of target type i in the
scene at time k, then the multiple states for target type
i, Xi,k, is the set

Xi,k = {xi,k,1, ...xi,k,Li(k)} ∈ F (X ) (1)

where i ∈ {1, ...,3}. Similarly, if Mi(k) is the num-
ber of received observations for target type i, then the
corresponding multiple target measurements for that
target type is the set

Zi,k = {zi,k,1, ...zi,k,Mi(k)} ∈ F (Z) (2)

where i ∈ {1, ...,3}. As stated above, some of these
observations will be false, i.e. due to clutter (back-
ground) or confusion (response due to another target
type).

The uncertainty in the state and measurement is
introduced by modeling the multi-target state and the
multi-target measurement using Random Finite Sets
(RFS). Let Ξi,k be the RFS associated with the multi-
target state of target type i, then

Ξi,k = Si,k(Xi,k−1)∪Γi,k, (3)
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where Si,k(Xi,k−1) denotes the RFS of surviving tar-
gets of target type i, and Γi,k is the RFS of new-born
targets of target type i. We do not consider spawned
targets as these have no meaning in our context, dis-
cussed below. Further, the RFS Ωi,k associated with
the multi-target measurements of target type i is

Ωi,k = Θi,k(Xi,k)∪Csi,k ∪CtiJ,k , (4)

where J = {1, ...,3}\ i and Θi,k(Xi,k) is the RFS mod-
eling the measurements generated by the target Xi,k,
and Csi,k models the RFS associated with the clut-
ters (false alarms) for target type i which comes from
the scene background. However, we also include
CtiJ,k which is the RFS associated with all target types
J = {1, ...,3}\ i, that is confusions while filtering tar-
get type i.

Analogous to the single-target case, the dynamics
of Ξi,k are described by the multi-target transition den-
sity yi,k|k−1(Xi,k|Xi,k−1), while Ωi,k is described by the
multi-target likelihood fi j,k(Zi,k|X j,k) for target type
i ∈ {1, ...,3} from detector j ∈ {1, ...,3}. The recur-
sive equations are

pi,k|k−1(Xi,k|Zi,1:k−1) =∫
yi,k|k−1(Xi,k|X)pi,k−1|k−1(X |Zi,1:k−1)µ(dX)

(5)

pi,k|k(Xi,k|Zi,1:k) =
fi j,k(Zi,k|X j,k)pi,k|k−1(Xi,k|Zi,1:k−1)∫
fi j,k(Zi,k|X)pi,k|k−1(X |Zi,1:k−1)µ(dX)

(6)
where µ is an appropriate dominating measure on
F (X ) (Mahler, 2003). We extend Mahler’s method
of propagating the first-order moment of the multi-
target posterior instead of the full multi-target poste-
rior for N = 3 types of multiple targets by deriving the
updated PHD from the Probability Generating Func-
tional (PGFL) for our tri-PHD filter.

2.1 Tri-PHD Filtering Strategy

The PHDs, DΞ1(x), DΞ2(x), DΞ3(x), are the first-
order moments of RFSs, Ξ1, Ξ2, Ξ3, and are intensity
functions on a single state space X whose peaks iden-
tify the likely positions of the targets. For any region
R⊆ X

E[|(Ξ1∪Ξ2∪Ξ3)∩R|] =
3

∑
i=1

∫

R
DΞi(x)dx (7)

where|.| is used to denote the cardinality of a set. In
practice, Eq. (7) means that by integrating the PHDs
on any region R of the state space, it is possible to
obtain the expected number of targets (cardinality) in
R.

At any time step, k, new targets may appear
(births) and are added to those targets that persist
and have moved position from the previous time step.
Consequently, the PHD prediction for target type i at
time k is

Di,k|k−1(x) =
∫

psi,k|k−1(ζ)yi,k|k−1(x|ζ)Di,k−1|k−1(ζ)dζ
+γi,k(x),

(8)

where γi,k(.) is the intensity function of a new target
birth RFS Γi,k, psi,k|k−1(ζ) is the probability that a tar-
get still exists at time k, yi,k|k−1(.|ζ) is the single tar-
get state transition density at time k given the previous
state ζ for target type i.

Thus, the final updated PHD for target type i is
obtained by

Di,k|k(x) =
[

1− pii,D(x)+

∑z∈Zi,k

pii,D(x) fii,k(z|x)
csi,k (z)+cti,k (z)+

∫
pii,D(ξ) fii,k(z|ξ)Di,k|k−1(ξ)dξ

]
Di,k|k−1(x),

(9)

The clutter intensity cti,k(z) due to all types of targets
j = 1, ...,3 except target type i in (9) is given by

cti,k(z) = ∑ j=1,...,3\i
∫

p ji,D(y)D j,k|k−1(y) f ji,k(z|y)dy,
(10)

This means that when filtering target type i, all the
other target types are included as confusing detec-
tions. (10) converts state space to observation space
by integrating the PHD estimator D j,k|k−1(y) and like-
lihood f ji,k(z|y) which defines the probability that z
is generated by the target type j conditioned on state
x from detector i taking into account the confusion
probability p ji,D(y), when target type j is detected by
detector i.

The clutter intensity due to the background i,
csi,k(z), in (9) is given by

csi,k(z) = λici(z) = λciAci(z), (11)

where ci(.) is the uniform density over the surveil-
lance region A, and λci is the average number of
clutter returns per unit volume for target type i i.e.
λi = λciA. While the standard PHD filter has lin-
ear complexity with the current number of measure-
ments (m) and with the current number of targets (n)
i.e. computational order of O(mn), the tri-PHD fil-
ter has linear complexity with the current number of
measurements (m), with the current number of targets
(n) and with the total number of target types (N = 3)
i.e. computational order of O(3mn).

In general, the clutter intensities due to the back-
ground for each target type i, csi,k(z), can be different
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as they depend on the ROC curves of the detection
processes. Moreover, the probabilities of detection
pii,D(x) and pi j,D(x) may all be different although as-
sumed constant across both the time and space.

2.2 Tri-PHD Filter Implementation
based on Gaussian Mixture

The Gaussian mixture implementation of the standard
PHD (GM-PHD) filter (Vo and Ma, 2006) is a closed-
form solution of the PHD filter that assumes a linear
Gaussian system. In this section, this is extended for
the tri-PHD filter by solving (10). Assuming each
target follows a linear Gaussian model,

yi,k|k−1(x|ζ) = N (x;Fi,k−1ζ,Qi,k−1) (12)

fi j,k(z|x) = N (z;Hi j,kx,Ri j,k) (13)
where N (.;m,P) denotes a Gaussian density with
mean m and covariance P; Fi,k−1 and Hi j,k are the
state transition and measurement matrices, respec-
tively. Qi,k−1 and Ri j,k are the covariance matrices
of the process and the measurement noise, respec-
tively, where i ∈ {1,2,3} and j ∈ {1,2,3}. A mea-
surement driven birth intensity, similar in principle
to (Ristic et al., 2012), is introduced at each time
step with a non-informative zero initial target veloc-
ity. This choice is preferred to the options of covering
the whole state space (random) (Ristic et al., 2010)
or a-priori birth (Vo and Ma, 2006) and is discussed
further in Section 5. The intensity of the spontaneous
birth RFS is γi,k(x) for target type i

γi,k(x) =
Vγi ,k

∑
v=1

w(v)
i,γ,kN (x;m(v)

γi,k
,P(v)

γi,k
) (14)

where Vγi,k is the number of birth Gaussian compo-

nents for target type i where i ∈ {1,2,3}, m(v)
γi,k

is the
current measurement and zero initial velocity used as
mean and P(v)

γi,k
is the birth covariance for target type i.

It is assumed that the posterior intensity for target
type i at time k−1 is a Gaussian mixture of the form

Di,k−1(x) =
Vi,k−1

∑
v=1

w(v)
i,k−1N (x;m(v)

i,k−1,P
(v)
i,k−1), (15)

where i ∈ {1,2,3} and Vi,k−1 is the number of Gaus-
sian components of Di,k−1(x). Under these assump-
tions, the predicted intensity at time k for target type i
is given following (8) by

Di,k|k−1(x) = Di,S,k|k(x)+ γi,k(x), (16)
where

Di,S,k|k−1(x) = pi,s,k ∑
Vi,k−1
v=1 w(v)

i,k−1N (x;

m(v)
i,S,k|k−1,P

(v)
i,S,k|k−1),

m(v)
i,S,k|k−1 = Fi,k−1m(v)

1,k−1,

P(v)
i,S,k|k−1 = Qi,k−1 +Fi,k−1P(v)

i,k−1FT
1,k−1,

where pi,s,k is the survival rate for target type i and
γi,k(x) is given by (14).

Since Di,S,k|k−1(x) and γi,k(x) are Gaussian mix-
tures, Di,k|k−1(x) can be expressed as a Gaussian mix-
ture of the form

Di,k|k−1(x) =
Vi,k|k−1

∑
v=1

w(v)
i,k|k−1N (x;m(v)

i,k|k−1,P
(v)
i,k|k−1),

(17)

where w(v)
i,k|k−1 is the weight accompanying the pre-

dicted Gaussian component v for target type i and
Vi,k|k−1 is the number of predicted Gaussian compo-
nents for target type i where i ∈ {1,2,3}.

Assuming the probabilities of detection are con-
stant, the posterior intensity for target type i at time
k (updated PHD), considering incorrect detection of
target types as confusion, is also a Gaussian mixture
which corresponds to (9), and is given by

Di,k|k(x) = (1− pii,D,k)Di,k|k−1(x)+ ∑
z∈Zi,k

Di,D,k(x;z),

(18)

where

Di,D,k(x;z) =
Vi,k|k−1

∑
v=1

w(v)
i,k (z)N (x;m(v)

i,k|k(z),P
(v)
i,k|k),

w(v)
i,k (z) =

pii,D,kw(v)
i,k|k−1q(v)i,k (z)

csi,k (z)+ cti,k (z)+ pii,D,k ∑
Vi,k|k−1
l=1 w(l)

i,k|k−1q(l)i,k (z)
,

q(v)i,k (z) = N (z;Hii,km(v)
i,k|k−1,Rii,k +Hii,kP(v)

i,k|k−1HT
ii,k),

m(v)
i,k|k(z) = m(v)

i,k|k−1 +K(v)
i,k (z−Hii,km(v)

i,k|k−1),

P(v)
i,k|k = [I−K(v)

i,k Hii,k]P
(v)
i,k|k−1,

K(v)
i,k = P(v)

i,k|k−1HT
ii,k[Hii,kP(v)

i,k|k−1HT
ii,k +Rii,k]

−1,

csi,k(z) is given in Eq. (11). Finally, the implemen-
tation scheme for cti,k(z) is formulated in (10) and is
given again as
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cti,k(z) = ∑ j=1,...,3\i
∫

p ji,D(y)D j,k|k−1(y) f ji,k(z|y)dy,
(19)

where D j,k|k−1(y) is given in (17), f ji,k(z|y) is given in

(13) and p ji,D(y) is assumed constant. Since w(i)
j,k|k−1

is independent of the integrable variable y, (19) be-
comes

cti,k(z) = ∑ j=1,...,3\i ∑
V j,k|k−1
v=1 p ji,Dw(v)

j,k|k−1
∫

N (y;

m(v)
j,k|k−1,P

(v)
j,k|k−1)N (z;H ji,ky,R ji,k)dy,

(20)
This can be simplified further using the following
equality given that P1 and P2 are positive definite

∫
N (y;m1ζ,P1)N (ζ;m2,P2)dζ

= N (y;m1m2,P1 +m1P2mT
2 ).

(21)

Therefore, (20) becomes,

cti,k(z) = ∑ j=1,...,3\i ∑
V j,k|k−1
v=1 p ji,Dw(v)

j,k|k−1N (z;

H ji,km(v)
j,k|k−1,R ji,k +H ji,kP(v)

j,k|k−1HT
ji,k),

(22)
where i ∈ {1,2,3}.

The key steps of the tri-GM-PHD filter are sum-
marised in Algorithms 1 and 2. These are expressed
in terms of frames k and k− 1; for the first frame,
k = 1, of a sequence there is only detection and target
birth, but no prediction and update for existing tar-
gets. For subsequent frames, we have chosen mea-
surement driven target birth, rather than a random or
a-priori birth model, inspired by but not identical to
(Ristic et al., 2012). Maggio et al. (Maggio et al.,
2008) also assume that targets are born in a limited
volume around measurements. The advantage of ran-
dom birth is in the potential detection of weak target
signatures, but in these examples the presence of a
human should, in general, generate a strong probabil-
ity of detection provided the target is in view. This
is borne out by experiments and parameter setting in
Section 5. A further disadvantage of random birth is
the increased complexity of processing a large num-
ber of incorrect targets. For humans moving in video
sequences there is no spawn process, but occlusions
do result anywhere in the field of view, and may be
caused either by other targets or other obstacles. Re-
emerging targets are detected and constitute births,
are not spawned because they may be occluded by
obstacles other than targets, and have no a-priori lo-
cation.

The prediction and update, steps 2 to 4, follow the
GM-PHD filter (Vo and Ma, 2006) but are extended
to take into account the three detection processes and
the subsequent confusion between detections. In the
proposed algorithm, birth and prediction both precede

Algorithm 1: Pseudocode for the tri-GM-PHD filter.

1: given {w(v)
i,k−1,m

(v)
i,k−1,P

(v)
i,k−1}

Vi,k−1
v=1 , and the measure-

ment set Zi,k for target type i ∈ {1,2,3}
2: step 1. (prediction for birth targets)
3: for i = 1, ...,3 do . for all target type i
4: ei = 0
5: for u = 1, ...,Vγi,k do
6: ei := ei +1
7: w(ei)

i,k|k−1 = w(u)
i,γ,k

8: m(ei)
i,k|k−1 = m(u)

i,γ,k

9: P(ei)
i,k|k−1 = P(u)

i,γ,k
10: end for
11: end for
12: step 2. (prediction for existing targets)
13: for i = 1, ...,3 do . for all target type i
14: for u = 1, ...,Vi,k−1 do
15: ei := ei +1
16: w(ei)

i,k|k−1 = pi,s,kw(u)
i,k−1

17: m(ei)
i,k|k−1 = Fi,k−1m(u)

i,k−1

18: P(ei)
i,k|k−1 = Qi,k−1 +Fi,k−1P(u)

i,k−1FT
i,k−1

19: end for
20: end for
21: Vi,k|k−1 = ei
22: step 3. (Construction of PHD update components)
23: for i = 1, ...,3 do . for all target type i
24: for u = 1, ...,Vi,k|k−1 do

25: η(u)
i,k|k−1 = Hii,km(u)

i,k|k−1

26: S(u)i,k = Rii,k +Hii,kP(u)
i,k|k−1HT

ii,k

27: K(u)
i,k = P(u)

i,k|k−1HT
ii,k[S

(u)
i,k ]
−1

28: P(u)
i,k|k = [I−K(u)

i,k Hii,k]P
(u)
i,k|k−1

29: end for
30: end for
31: step 4. (Update)
32: for i = 1, ...,3 do . for all target type i
33: for u = 1, ...,Vi,k|k−1 do

34: w(u)
i,k = (1− pii,D,k)w

(u)
i,k|k−1

35: m(u)
i,k = m(u)

i,k|k−1

36: P(u)
i,k = P(u)

i,k|k−1
37: end for
38: li := 0
39: for each z ∈ Zi,k do
40: li := li +1
41: for u = 1, ...,Vi,k|k−1 do

42: w
(liVi,k|k−1+u)
i,k = pii,D,kw(u)

i,k|k−1N (z;

η(u)
i,k|k−1,S

(u)
i,k )

43: m
(liVi,k|k−1+u)
i,k = m(u)

i,k|k−1 +K(u)
i,k (z−

η(u)
i,k|k−1)

44: P
(liVi,k|k−1+u)
i,k = P(u)

i,k|k
45: end for
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46: for u = 1, ....,Vi,k|k−1 do
47: csi,k (z) = λci Aci(z)

48: cti,k (z) = ∑ j=1,2,3\i ∑
Vj,k|k−1
e=1 p ji,D

w(e)
j,k|k−1N (z;H ji,km(e)

j,k|k−1,R ji,k +

H ji,kP(e)
j,k|k−1HT

ji,k)

49: ci,k(z) = csi,k (z)+ cti,k (z)

50: wi,k,N = ∑
Vi,k|k−1
e=1 w

(liVi,k|k−1+e)
i,k

51: w
(liVi,k|k−1+u)
i,k =

w
(liVi,k|k−1+u)

i,k
ci,k(z)+wi,k,N

52: end for
53: end for
54: Vi,k = liVi,k|k−1 +Vi,k|k−1
55: end for
56: output {w(v)

i,k ,m
(v)
i,k ,P

(v)
i,k }

Vi,k
v=1

the construction and update of the PHD components,
so the total number at the conclusion of step 4 is the
sum of the persistent and birthed components. The
number of Gaussian components in the posterior in-
tensities may increase without bound as time pro-
gresses, particularly as a birth at this stage may be due
to an existing target that has moved from the previous
frame and then is re-detected in the current frame.
Therefore, it is necessary to prune weak and dupli-
cated components in Algorithm 2. First, weak com-
ponents with weight w(v)

i,k < 10−5 are pruned. Fur-
ther, Gaussian components with Mahalanobis dis-
tance less than U = 4 pixels from each other are
merged. These pruned and merged Gaussian com-
ponents, output of Algorithm 2, are predicted as ex-
isting targets in the next iteration. Finally, Gaussian
components of the posterior intensity, output of Algo-
rithm 1, with means corresponding to weights greater
than 0.5 as a threshold are selected as multi-target
state estimates.

3 OBJECT DETECTION,
TRAINING AND EVALUATION

For the tri-PHD filter, we need parameters for the
probabilities of detection, confusion and clutter.
We employ the existing, state-of-the-art, Aggregated
Channel Features (ACF) pedestrian detection algo-
rithm (Dollar et al., 2014) although any detector can
be used. This uses three different kinds of features in
10 channels: normalized gradient magnitude (1 chan-
nel), histograms of oriented gradients (6 channels),
and LUV color (3 channels). It is applied to detect
the actors (football teams and a referee) using a slid-
ing window at multiple scales. The Adaboost classi-
fier (Appel et al., 2013) is used to learn and classify

Algorithm 2: Pruning and merging for the tri-GM-PHD fil-
ter.

1: given {w(v)
i,k ,m

(v)
i,k ,P

(v)
i,k }

Vi,k
v=1 for target type i ∈

{1,2,3}, a pruning weight threshold T, and a
merging distance threshold U.

2: for i = 1, ...,3 do . for all target type i
3: Set `i = 0, and Ii = {v = 1, ...,Vi,k|w(v)

i,k > T }
4: repeat
5: `i := `i +1
6: u := arg maxv∈Iiw

(v)
i,k

7: Li :=
{

v ∈ Ii

∣∣∣(m(v)
i,k −m(u)

i,k )
T (P(v)

i,k )
−1(m(v)

i,k −
m(u)

i,k )≤U
}

8: w̃(`i)
i,k = ∑v∈Li w(v)

i,k

9: m̃(`i)
i,k = 1

w̃
(`i)
i,k

∑v∈Li w(v)
i,k x(v)i,k

10: P̃(`i)
i,k = 1

w̃
(`i)
i,k

∑v∈Li w(v)
i,k (P

(v)
i,k +(m̃(`i)

i,k −

m(v)
i,k )(m̃

(`i)
i,k −m(v)

i,k )
T )

11: Ii := Ii \Li
12: until Ii = /0
13: end for
14: output {w̃(v)

i,k , m̃
(v)
i,k , P̃

(v)
i,k }

`i
v=1 as pruned and

merged Gaussian components for target type i.

the feature vectors acquired by the ACF detector.
For training, evaluation and parameter setting we

use the VS-PETS’2003 football video data1. This
consists of 2500 frames which have players from the
red and white teams and the referee. We trained 3
separate detectors for each target type (red, white, ref-
eree). We used every 10’th frame, i.e. 240 frames
taken from the last 2400 frames, including 2000 pos-
itive samples for each footballer type, 240 samples
for the referee, and 5000 random selected negative
samples. This captures the appearance variation of
players due to articulated motion. The correct player
type or referee positions and windows were labeled
manually for training as positive samples. The first
100 frames (video) are used to evaluate and test the
tri-GM-PHD filtering process in comparison with re-
peated detection and three separate GM-PHD filters
in Section 5.

The RFS methodology assumes point detections
and a Gaussian error distribution on location. How-
ever, humans in a video sequence are extended tar-
gets and the ACF detector employs a bounding box.
Therefore, overlapping detections are merged using
a greedy non-maximum suppression (NMS) overlap
threshold (intersection over union of two detections)

1http://www.cvg.reading.ac.uk/slides/pets.html
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of 0.05 (we made the overlap threshold very tight to
ignore multiple bounding boxes on the same object).
However, when evaluating the detectors, an overlap
threshold (intersection over union of detection and
ground truth bounding box) of 0.5 is used to identify
true positives vs false positives. The receiver operat-
ing characteristic (ROC) curves for each of the detec-
tors are given in Figure 1.

For the tri-GM-PHD strategy, we set the thresh-
olds on detection from the ROC curves in Figure 1,
taking into account the probabilities of confusion that
arise from the corresponding ROC curves (not shown)
of each detector applied to targets of a confusing type.
From our own simulations and the published litera-
ture, e.g. (Vo and Ma, 2006; Ristic et al., 2012),
we know that the RFS methodology is most effec-
tive when applied with a high probability of detec-
tion, albeit with a higher clutter rate, and in our case
a higher confusion rate. Obviously, for a target detec-
tion to be useful, the probability of true detection must
be higher than the probability of confusion. There-
fore, from Figure 1, we standardise a clutter rate of
10 false positive per image (fppi), which gives prob-
abilities of detection of 0.93, 0.99 and 0.99 for red,
white and referee respectively. With these values, the
corresponding confusion parameters are 0.24 (white
footballer detected as red), 0.5 (referee as red), 0.24
(red as white), 0.18 (referee as white), 0.19 (red as
referee) and 0.17 (red as referee).

4 DATA ASSOCIATION

The tri-GM-PHD filter distinguishes between true and
false targets of each type. However, this does not
distinguish between two different targets of the same
type, so an additional step can be applied if we wish
to identify different targets of the same type between
consecutive frames. Although not part of the tri-GM-
PHD strategy, this is commonly required so we in-
clude results from this post-labeling process for com-
pleteness in Section 5. For data association, the Eu-
clidean distance between each previous filtered cen-
troid (track) and the current filtered centroids is com-
puted and we compute an assignment which mini-
mizes the total cost returning assigned tracks to cur-
rent filtered outputs. This assignment problem repre-
sented by the cost matrix is solved using Munkres’s
variant of the Hungarian algorithm (Bourgeois and
Lassalle, 1971).

This also returns the unassigned tracks and unas-
signed current filtered results. The unassigned tracks
are deleted and the unassigned current filtered out-
puts create new tracks if the targets are not created

earlier. If some targets are mis-detected and incor-
rectly labeled, labels are uniquely re-assigned by re-
identifying them using the approach in (Ahmed et al.,
2015).

5 EXPERIMENTAL RESULTS

Referring to (1), our state vector includes the centroid
positions, velocities, width and height of the bound-
ing boxes, i.e.
xk = [pcx,xk, pcy,xk, ṗx,xk, ṗy,xk,wxk,hxk]

T . Similarly,
the measurement is the noisy version of the tar-
get area in the image plane approximated with a w
x h rectangle centered at (pcx,xk, pcy,xk) i.e. zk =

[pcx,zk, pcy,zk,wzk,hzk]
T .

As stated above, the detection and confusion prob-
abilities are set by experimental evaluation of the ACF
detection processes. Additional parameters are set
from simulation and previous experience. For each
target type, we set survival probabilities p1,S = p2,S =
p3,S = 0.99, and we assume the linear Gaussian dy-
namic model of (12) with matrices taking into account
the box width and height at the given scale.

Fi,k−1 =




I2 ∆I2 02
02 I2 02
02 02 I2


 ,

Qi,k−1 = σ2
vi




∆4

4 I2
∆3

2 I2 02
∆3

2 I2 ∆2I2 02
02 02 ∆2I2


 , (23)

where In and 0n denote the n x n identity and zero
matrices, respectively and ∆ is the sampling period
defined by the time between frames. σvi = 5 pixels/s2

are the standard deviations of the process noise for
target type i where i ∈ {1,2,3} i.e. type 1 (red team),
target type 2 (white team) and target type 3 (referee).

Similarly, the measurement follows the observa-
tion models of (13) with matrices taking into account
the box width and height,

Hi j,k =

[
I2 02 02
02 02 I2

]
,

Ri j,k = σ2
ri j

[
I2 02
02 I2

]
, (24)

where σri j are the measurement standard deviations
taken from the distribution of distance errors of the
centroids from ground truth in the evaluation of the
detection process, effectively 6 pixels.

Accordingly, in our approach, positive detections
specify the possible birth locations with the initial co-
variance given in (25). The current measurement and
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Figure 1: Extracting detection probabilities for three target types (red, white and referee) from ROCs of 3 detectors: red
team detector (left), white team detector (middle) and referee detector (right) when tested on red team instances, white team
instances and referee instances, respectively.

Figure 2: Results of detections (left), three independent GM-PHD trackers (middle) and tri-GM-PHD tracker (right), for frame
25.

Figure 3: Results of detections (left), three independent GM-PHD trackers (middle) and tri-GM-PHD tracker (right), for frame
57.

zero initial velocity are used as a mean of the Gaus-
sian distribution using a predetermined initial covari-
ance for birthing of targets, i.e. new targets are born
in the region of the state space for which the likeli-
hood will have high values. Very small initial weight
(e.g. 10−4) is assigned to the Gaussian components
for new births as this is effective for high clutter rates.

P1,γ,k = P2,γ,k = P3,γ,k = diag([100,100,25,25,20,20]).
(25)

We evaluate the tracking methodology of the tri-
GM-PHD tracker in comparison with first, repeated
independent detection on each frame, and second,
with three independent GM-PHD trackers. Using the

football video sequence, the examples shown in Fig-
ures 2, 3 and 4 are for repeated detection (left), three
independent GM-PHD trackers (middle), and the tri-
GM-PHD tracker (right) for frames 25, 57 and 73, re-
spectively. Hence, Figure 3 (left) designates detec-
tions in which the red, white footballers and the ref-
eree are detected both correctly and incorrectly, i.e.
one object may be detected by many detectors. For
example, the referee is detected 3 times: by the red
team detector (red), by the white team detector (yel-
low) and the referee detector (black). Moreover, there
are many background false positives that arise from
our choice to set the detection probability high at the
expense of higher clutter. Using the three independent
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Figure 4: Results of detections (left), three independent GM-PHD trackers (middle) and tri-GM-PHD tracker (right), for frame
73.

Table 1: Frame-averaged cardinality and OSPA errors, time taken and discrimination rate at the extracted detection probabil-
ities for tri-GM-PHD filter, three independent GM-PHD filters and Detections.

Method Cardinality error OSPA error time taken discrimination rate
Detections 10.22 37.61 pixels 0.59 seconds/frame 0%
3 GM-PHDs 5.76 30.86 pixels 0.80 seconds/frame 0%
Tri-GM-PHD 0.11 10.59 pixels 3.00 seconds/frame 99.20%

GM-PHD trackers to effectively eliminate false pos-
itives, confused detections are not resolved as shown
in Figure 3 (middle). However, our proposed tri-GM-
PHD tracker effectively eliminates the false positives
and confused detections as shown in Figure 3 (right).

The tri-GM-PHD filter is evaluated quantitatively
for the whole test sequence and compared with three
independent GM-PHD filters and repeated detection
using cardinality, OSPA metric (Schumacher et al.,
2008), discrimination rate and time taken. We use
OSPA metric which is designed for evaluating RFS-
based filters rather than multi-object tracking accu-
racy (MOTA) (Bernardin and Stiefelhagen, 2008)
which is widely used for evaluating other traditional
multi-target tracking algorithms (Yoon et al., 2016;
Choi, 2015). Furthermore, our algorithm is devel-
oped not only for tracking but also for discriminat-
ing different target types overcoming their confusions
unlike algorithms such as (Yoon et al., 2016; Choi,
2015). Therefore, OSPA is the right evaluation met-
ric to evaluate our approach. The computational costs
arise from experiments on a i5 2.50 GHz core pro-
cessor with 6 GB RAM using Matlab and we ac-
knowledge that these are not definitive and give a
rough guide only. Though labeling of the targets us-
ing Munkres’s variant of the Hungarian assignment
algorithm works well as shown in Figures 2 (right), 3
(right) and 4 (right), we didn’t include this in our eval-
uation as it is not part of the quantitative comparison
of the filtering and type labeling of either the detection
or distinct GM-PHD filters. We present the cardinal-
ity and OSPA error plots in Figure 5 (left) and Fig-
ure 5 (right) respectively, in red for ground truth (car-

dinality), green for the tri-GM-PHD filter, blue for the
three independent GM-PHD filters and magenta for
repeated detection. As summarised in Table 1 the av-
erage absolute cardinality error using detection only is
10.22, reduced to 5.76 using the standard GM-PHD
filter and to 0.11 using the tri-GM-PHD filter. The
overall frame-averaged value of OSPA error for the
tri-GM-PHD filter is 10.59 pixels, compared to three
independent GM-PHD filters of 30.86 pixels, and re-
peated detections of 37.61 pixels. The proposed ap-
proach reduces the cardinality and OSPA errors by a
large margin over three independent GM-PHD filters
and repeated detection, although this has more com-
putational cost as also shown in Table 1. Overall,
this demonstrates that our approach can effectively
discriminate true positives from clutter, while elimi-
nating confused detections with a discrimination rate
of 99.20%. The mis-discrimination rate of 0.80% oc-
curs primarily during the initial frames (e.g. the first 7
frames) until the prediction-update process stabilises
and the true detections are confirmed by the motion
between adjacent frames.

Figure 6 shows another example in which the in-
dividual footballers are detected, filtered, tracked and
labeled for 100 frames. The image has been cropped
and and immediately follows a throw-in as the players
move away left from the touchline. The figures show
the individual tracks, the labels of the footballers and
the referee as small numbers over the targets. From
this sequence, we see for example that the red player
number 6 and the white player number 10, and several
others, are consistently tracked through the sequence.
However the labeling does occasionally make mis-
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Figure 5: Cardinality error (left) and OSPA error (right): Ground truth (red for cardinality only), tri-GM-PHD filter (green),
three independent GM-PHD filters (blue), detections (magenta).

Figure 6: Tracking the red and white teams, and referee from frame 193 (left) to frame 293 (right).

takes, for example red player 3 who starts near the
touchline is finally labeled as red player number 49 in
frame 293. This is due to occlusion and lack of persis-
tence in the detection and tracking as it uses succes-
sive frames only, so that if a player disappears then
re-appears after several frames he is treated as a new
target. Nevertheless, although this evaluation is not
part of the Tri-GM-PHD filter, the labeling that we
apply has good performance with a mean label switch
error of only 0.43%.

6 CONCLUSIONS

We have developed an extension of the PHD filter
in the RFS framework to account for three different
types of multiple targets with separate observations
in the same scene, allowing for different probabilities
of detection, scene clutter and confusion between tar-
gets of different types at the detection stage. This ex-
tends the standard GM-PHD filter (Vo and Ma, 2006)
to a tri-GM-PHD filter. This has been evaluated us-
ing video sequences with the separate targets defined

as different team players and the referee. We also ap-
plied Munkres’s variant of the Hungarian assignment
algorithm as data association on the filtered results of
the filter as a post-process.

The key finding is that by considering and mod-
eling confusions between the different types of target
and detector we can improve the target discrimina-
tion rate, demonstrated by quantitative measurement
of cardinality and the OSPA score. In comparison
with separate PHD filters, as is usual practice, we can
reduce the mean absolute error in cardinality to less
than 1 target, with a corresponding reduction in the
OSPA location metric to a mean of 10.59 from 30.86
pixels. Application of the Hungarian labeling method
shows good data association so that we are able to
track individual targets over the sequence with a mean
label switch error of only 0.43. The work we have
done has shown that the tri-GM-PHD filter has poten-
tial both to track targets in video data, and to better
address multiple target confusions than the standard
method.
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