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Abstract: In order to accomplish desired tasks, humanoid robots may have to deal with unpredicted disturbances, 
generated by objects, people and even ground imperfections. In some of these cases, foot placement is 
critical and cannot be changed. Furthermore, the robot has to conduct the actions planned meanwhile 
stabilizing its walking motion. Therefore, we propose a Biologically-inspired Neural Network (BiNN) to 
stabilize the walking motion of humanoid robots by ankle joint control, which minimally affects the current 
movements of the robot. In contrast to other neural networks, which only generate walking patterns, the 
BiNN is adaptive, as it compensates disturbances during the robot motion. Moreover, the BiNN has a low 
computational time and can be used as a module of other control methods. This approach was evaluated 
with Webots simulator, presenting improvements in the compensation of an external force in regard to its 
magnitude and duration. 

1 INTRODUCTION 

Humanoid robots are expected not only to act in the 
same environment and to perform similar tasks as 
humans, but also to act in dangerous environments, 
such as those present in catastrophe or rescue scena-
rios, and to perform tasks that humans are not able 
to, such as lifting heavy weights. In these situations, 
humanoid robots may need to avoid objects and 
people and deal with irregular ground, all of which 
may generate disturbances and affect its balance.  

There are two main alternatives to compensate 
external disturbances and stabilize robot motion: 
stepping (Stephens and Atkeson, 2010; Luo et al., 
2015), and postural control (Sano and Furusho, 
1990; Stephens, 2007; Lee and Goswami, 2012; 
Lober, Padois and Sigaud, 2014; Maalouf et al., 
2015). Stephens and Atkeson (2010) state that 
humanoid robots are able to sustain larger 
disturbances by stepping. However, in some 
situations the robot may have to perform specific 
foot placements due to environment constraints. In 
these cases, postural control is the best alternative to 
guarantee stability without violating any constraints. 

Different strategies were proposed to achieve 
postural control, which can be classified into two 

categories: whole body control (Lee and Goswami, 
2012; Lober, Padois and Sigaud, 2014) and ankle 
joint control (Sano and Furusho, 1990; Stephens, 
2007; Maalouf et al., 2015). Whilst in the whole 
body control strategy all actuators can be used to 
balance the robot motion, strategies based on ankle 
joint control stabilize the motion only with ankle 
actuators. In spite of the effectiveness of the former 
control method against more severe disturbances, as 
shown in (Stephens, 2007), this research focuses on 
ankle joint control, for its simplicity and efficiency.  

By controlling only the ankle joints it is possible 
to compensate significant disturbances without 
changes to other joint trajectories, not interfering 
with the upper limb actions currently being executed 
or previously planned by the robot. Moreover, ankle 
joint control can be used with other control 
approaches, being activated in the cases that external 
disturbances are moderate. 

Sano and Furusho (1990) achieved natural 
dynamic walking by controlling the ankle torque of 
the supporting leg and, thus, manipulating the robot 
angular momentum. Stephens (2007) analyses the 
disturbance compensation capacity based on the 
current state of humanoid robots which adopt the 
ankle stabilization strategy. Maalouf et al. (2015) 
proposed a model-free approach for humanoid robot 
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stabilization, showing improved results in 
comparison to the model-based approach presented 
in (Stephens, 2007). Nevertheless, the authors only 
investigated push recovery situations in which the 
robot was standing still, and their control objective 
was to maintain an upright position. Both aspects do 
not allow the direct application of the approach to 
stabilize a walking motion. 

In this paper, we propose a Biologically-inspired 
Neural Network (BiNN) to stabilize the walking 
motion of humanoid robots. The approach proposed 
is modular, i.e., can be used in conjunction with 
walking pattern generation and stepping approaches, 
and has a low computation time, which is relevant to 
ensure real-time control. We investigate here the 
stability of NAO humanoid robot in regard to lateral 
disturbances (y-direction) during a walking motion, 
evaluating with simulations the BiNN capacity of 
stabilizing different external forces as well as the 
computation time of each control step. 

In contrast to Artificial Neural Networks 
(ANNs), whose focus is on the learning aspect of 
biological neural networks, the BiNN focuses on 
determining its structure and parameters in order to 
achieve a desired behaviour. Whereas ANNs with 
different training methods were proposed to estimate 
humanoid robot models for control purposes (Liu 
and Li, 2003; Rai et al., 2012; Sun et al., 2016), the 
BiNN proposed does not adopt previous training and 
does not have a convergence period.  

However, other characteristics of the BiNN 
proposed resemble biological neural networks, such 
as: inhibitory synapses, which represent negative 
influences between neurons; sensorial inputs, which 
resemble biological sensorial receptors; and different 
activation functions, as in the different types of 
biological neurons (Kandel et al., 2012). 

Works related to BiNNs were proposed to 
control different types of robots, as surveyed by Yu 
et al. (2014). In addition to the robots presented in 
(Yu et al., 2014), which adopt BiNNs with an 
oscillatory behaviour inspired by the biological 
Central Pattern Generator (CPG) of humans, 
Nichols, Mcdaid and Siddique (2013) and 
Helgadóttir et al. (2013) proposed other BiNNs to 
control the motion of wheeled robots. Different 
BiNNs have different network structures, neuron 
models, which comprise membrane potential 
(activation) and neuron output determination, types 
of synapses and neural adaptation mechanisms.  

BiNNs for humanoid robot control, such as those 
proposed by Taga, Yamaguchi and Shimizu (1991), 
Cao and Kawamura (1998), Endo et al. (2008) and 
Saputra et al. (2016), focus on the walking pattern 

generation part of the robot motion, not being able to 
adaptively compensate external disturbances. 
Contrary to these approaches, the BiNN proposed 
does not focus on the walking pattern generation, but 
on the walking stabilization. 

2 HUMANOID ROBOT WALKING 
STABILIZATION 

Stable walking of a humanoid robot can be defined 
as the realization of any walking motion in which 
the humanoid robot achieves the final position 
desired without falling down. In order to guarantee 
the dynamical balance of the walking motion, the 
Zero Moment Point (ZMP) of the robot must remain 
inside its support polygon during its entire motion 
(Vukobratović, Borovac and Potkonjak, 2006). 
Thereby, ZMP is the point at which the resultant 
ground reaction force acts, whereas the support 
polygon is the projected area beneath the robot’s feet 
which is formed by the convex hull of its footprints 
(Vukobratović and Stepanenko, 1972). Equation (1) 
represents this stability criterion for the y-direction, 
which is the focus of this paper. In the equation, ݕ௓ெ௉ represents the current ZMP, and ݕ௨௕ and ݕ௟௕ 
represent the upper and lower bounds of the support 
polygon in the y-direction. 

௟௕ݕ   ൑ ௓ெ௉ݕ ൑  ௨௕ (1)ݕ

The grey area in Fig. 1a corresponds to the 
support polygon of NAO robot – used in this 
research – when both feet are on the ground. In the 
figure, the labels (LFsrFL, LFsrFR, etc.) indicate the 
position of eight Force Sensitive Resistors (FSR), 
which measure resistance changes according to the 
variation of the pressure applied. When only one 
foot is on the ground, the support polygon 
corresponds to the footprint area of that foot. 

To determine the current ZMP in the y-direction, 
the ZMP equation rewritten by Kajita et al. (2003) 
from (Vukobratović and Stepanenko, 1972) is 
 

 

Figure 1: (a) Support polygon of NAO robot. (b) Ankle 
joint control. 
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adopted, as represented by (2). In the equation, ݕ஼௢ெ 
and ݖ஼௢ெ represent the center of mass position in y- 
and z-directions, g represents the gravitational 
acceleration, and ݕሷ஼௢ெ represents the center of mass 
acceleration in y-direction. 

௓ெ௉ݕ  = ஼௢ெݕ − ௭಴೚ಾ௚  ሷ஼௢ெ (2)ݕ

The approach presented in this paper controls the 
robot ankle motors in order to control the ZMP, 
guaranteeing a stable walking by satisfying the 
stability criterion even in scenarios with external 
disturbances. Thus, the BiNN influences the centre 
of mass position and acceleration by determining the 
ankle angular position ߠ௔௡௞௟௘ (and angular velocity ߠሶ௔௡௞௟௘), as illustrated in Fig. 1b. The hip motors are 
also controlled, but only to maintain the robot torso 
vertical, reducing the overall motion range and 
increasing its stability.  

The control cycle of the method proposed is 
illustrated by a block diagram in Fig. 2. The first 
block, ‘Walking pattern generation’, has as inputs 
the walking parameters that determine the motion 
desired, such as step height, step length and walking 
speed. The robot joint angles compose the outputs of 
this block. The second block is the control cycle 
plant, i.e., the robot. To accomplish closed loop 
control, FSR measurements, such as the ZMP, are 
sent as a feedback to the BiNN, which is the main 
contribution of this paper. The neural network 
processes this information and produces an output 
with two components, one positive (Out1) and one 
negative (Out2), altering the ankle and hip angles 
sent as references to the robot. 

3 WALKING PATTERN 
GENERATION 

The walking pattern generation approach adopted in 
this research is based on three fundamental 
movements (transfer, lift and extend), illustrated in 
Fig. 3, and does not have as an objective the robot 
stabilization during its entire motion. These 
fundamental movements are sequential and may 
overlap, depending on the walking speed desired. 
Despite the disadvantage of not considering the 
robot stability to generate its joint trajectories, this 
approach has an advantage: its simplicity, which 
provides low design and computation times.  

The equations that describe the fundamental 
movements, presented in this section, are derived 
from geometrical relationships between their 
variables. These equations are shown in their final  
 

 

Figure 2: Control cycle. 

form, as they are not the main focus of this paper. 
The first fundamental movement is ‘transfer’. Its 

objective is to transfer the centre of mass position to 
the next support foot of the walking motion by 
changing the ankle roll angle of both legs. Equation 
(3) determines the ankle roll angles ߠ௔,௥ based on the 
desired centre of mass shift ∆ݕ஼௢ெ and on the 
current support leg length ܮ௦௟. The support leg 
length, calculated by (4), is the actual length of the 
support leg, which considers changes in the ankle 
and knee pitch angles (ߠ௔,௣ and ߠ௞,௣). Constants ݈௄ 
and ݈ு correspond to the lower and upper leg 
lengths, respectively.  Fig. 4 illustrates all leg 
parameters, as well as the maximum angle values in 
each direction. In order to maintain the torso 
vertical, the hip roll angles ߠ௛,௥ are equal to the 
opposite value of the ankle roll angles ߠ௔,௥, as 
represented in (5).  

௔,௥ߠ   = asin	ቀ∆ݕ஼௢ெ ௦௟ൗܮ ቁ (3) 

௦௟ܮ   = ݈௄ ௔,௣൯ߠ൫ݏ݋ܿ ൅ ݈ு ௔,௣ߠ)ݏ݋ܿ ൅  ௞.௣) (4)ߠ

௛,௥ߠ   =  ௔,௥ (5)ߠ−

 

Figure 3: Fundamental movements: ‘transfer’, ‘lift’ and 
‘extend’. 

The second and third fundamental movements 
(lift and extend) are based on the same equations, 
(6)-(10). These movements change hip and knee 
pitch angles (ߠ௛,௣ and ߠ௞,௣) of the moving leg 
according to (6) and (7) to achieve the foot height 
desired (∆ݖ). Whilst in the second fundamental 
movement (‘lift’), the foot height has a positive 
value, in the third fundamental movement (‘extend’)  
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Figure 4: Leg parameters of NAO robot. 

it is equal to 0, so that the foot touches the ground. 
Simultaneously, the ankle pitch angle ߠ௔,௣ of the 
moving leg is adjusted by (10) to maintain the 
moving foot parallel to the ground. 

In (6), the hip pitch angle is adjusted by the torso 
pitch angle ߠ௧,௣, defined by (8) as the sum of the hip, 
knee and ankle pitch angles of the supporting leg, 
because the torso inclination directly affects the hip 
pitch angle of the moving leg. The current moving 
leg length is determined by (9) based on the current 
support leg length and on the desired foot height. 
The roll angles are used in the equation to account 
for the lateral inclination of both legs.  

Free parameter α is used to simplify (6). α 
defines the relationship between hip and knee pitch 
angles, as shown in (7), and may have different 
values in ‘lift’ and ‘extend’, with a higher value in 
‘extend’ to produce a more natural motion. The 
more negative α is, the straighter the moving leg is 
and the larger the step will be (until α is equal to ߠ௛,௣ 
and ߠ௞,௣ reaches 0). 

௛,௣ߠ  = −acos ቀ௅೘೗ି௟಼ୡ୭ୱ	(ఈିఏ೟,೛)௟ಹ ቁ ൅  ௧,௣ (6)ߠ

௞,௣ߠ  = ߙ −  ௛௜௣,௣௜௧௖௛ (7)ߠ

௧,௣ߠ  = ௛,௣,௦௟ߠ ൅ ௞,௣,௦௟ߠ ൅  ௔,௣,௦௟ (8)ߠ

௠௟ܮ  = ௅ೞ೗ୡ୭ୱ	(ఏೌ.ೝ)ି∆௭ୡ୭ୱ	(ఏ೓,ೝ)  (9) 

௔,௣ߠ  = ௧,௣ߠ − ൫ߠ௛,௣ ൅  ௞,௣൯ (10)ߠ

4 BIOLOGICALLY-INSPIRED 
NEURAL NETWORK 

4.1 Fundamentals 

A general neuron model, represented in the right-
hand side of Fig. 5, may have different types of 
inputs, which determine the neuron activation and, 
consequently, its output. Whilst inhibitory inputs 
have only negative values and excitatory inputs have 

only positive values, sensorial inputs can have either 
negative or positive values. Activation Ai of a neuron 
i is determined by the weighted sum of its n inputs 
Qj, as shown in (11). Output Oi of a neuron i is a 
function of its activation Ai. In this research, a 
sigmoid function is adopted as the activation 
function, as represented in (12). Parameters s and m 
determine the activation function shift and slope, 
respectively, and the effects of their modification are 
shown in Fig. 6. 

௜௧ାଵܣ  = ∑ ௝ܳ௝௧௡௝ݓ  (11) 

 ௜ܱ௧ାଵ = 1 ቂ1 ൅ ݁ି௠൫஺೔೟ି௦൯ቃൗ  (12) 

 

Figure 5: Biologically-inspired Neural Network. 

 

Figure 6: Activation functions of neurons. 

4.2 Network Structure and Parameter 
Determination 

The left-hand side of Fig. 5 illustrates the BiNN 
structure proposed to stabilize the humanoid robot 
walking motion. This research focuses on stabilizing 
the humanoid robot from lateral disturbances (y-
direction).  Hence, two BiNNs with this structure 
would be necessary in order to stabilize the robot in 
both x- and y-directions. The sensorial inputs of this 
network are: the difference between the sums of all 
FSR values of the left foot ∑ܨ௟௙  and of all FSR 
values of the right foot ∑ܨ௥௙; and the ZMP, 
calculated with the measurements and positions of 
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FSR sensors by the method detailed in (Tamura, 
Nozaki and Kawamura, 2015).    

The former sensorial input is processed by the 
first layer of inhibitory interneurons (lf, bf and rf), 
which determine whether each foot is on the ground 
or not. Thereby, the slope coefficient modulus of 
their activation function (m) is high (500) to 
originate a steep threshold function. The slope 
coefficient of lf is positive and its shift coefficient is 
0.1, causing an input higher than 0.1 to produce an 
output, which indicates that the left foot is on the 
ground. In contrast, the slope coefficient of rf is 
negative and its shift coefficient is -0.1, causing 
inputs lower than -0.1 to produce outputs. The 
activation function of bf is a combination of the 
activation functions of lf and rf, causing values 
between -0.1 and 0.1 to produce outputs. 

The first layer of excitatory neurons (q1, q2, q3 
and q4) has the ZMP as one of its inputs and 
represents the support polygon boundaries in the y-
direction, producing outputs if these boundaries are 
violated. Therefore, their shift coefficients exactly 
match the values of the boundaries. However, only 
the neurons that represent the boundaries of the 
current support polygon do not have their outputs 
inhibited by the inhibitory interneurons.  

Whilst q1 represents the right boundary of the 
support polygon when either only the right foot or 
both feet are on the ground, q2 represents the left 
boundary when only the right foot is on the ground, 
q3 represents the right boundary when only the left 
foot is on the ground and q4 represents the left 
boundary when either only the left foot or both feet 
are on the ground. The slope coefficient modulus of 
these neurons is 100 so that outputs are produced 
before the ZMP approaches the boundaries, creating 
a safety margin.  

The second layer of inhibitory interneurons (h1 
and h2) also have a steep activation function (m 
equal to 500) and a low threshold value (s equal to 
0.1). Their purpose is to inhibit the activity of the 
opposite p neuron with lateral inhibition dynamics, 
which allows only one p neuron to become active at 
a time. These neurons receive inputs from p neurons, 
generating feedback inhibition, as well as from q 
neurons, generating feedforward inhibition. Whilst 
feedback inhibition reflects the current state of p 
neurons, feedforward inhibition anticipates 
variations in their inputs. 

The second layer of excitatory neurons (p1 and 
p2) produces the neural network outputs (Out1 and 
Out2). Their activation functions have a low slope 
coefficient (10) and a shift coefficient of 0.5, 
providing a varying output in the input range of 0 to 

1.0. These neurons receive inputs based on the 
distance of the ZMP to the support polygon 
boundaries and produce outputs with values from 0 
to 1.0, which are transformed into angle increments 
by the synaptic weight w.  

The synaptic weights of all connections between 
neurons are set to 1 in order to simplify the 
parameter determination. However, the synaptic 
weight w of the outputs (Out1 and Out2) is a free 
parameter. w determines the angle increment Δθ 
generated by the BiNN, which alters the ankle joint 
angles provided by the ‘Walking pattern generation’ 
block to stabilize the robot motion. Hence, w has a 
direct influence on the centre of mass position, 
generating a shift in the y-direction ΔyCoM with Δθ. 

From (2), and assuming that the centre of mass 
variation in the z-direction is negligible, as in [6], 
there are two possibilities to control the ZMP in the 
y-direction: by ݕ஼௢ெ or by ݕሷ஼௢ெ. But, in the case of 
the NAO robot, the maximum value of the second 
part of (2) is 0.0014m, due to a low centre of mass 
height (0.27m) and a low stall torque (73.44mNm), 
which affects the maximum ݕሷ஼௢ெ generated 
according to (13). In the equation, m is the robot 
mass (5.18kg) and F is the force generated by the 
torque T. 

ሷ஼௢ெݕ  = ܨ ݉ൗ = ܶ ൗ(஼௢ெݖ	݉)  (13) 

In contrast, the maximum value of ݕ஼௢ெ is 
0.06m, due to an ankle angle limitation (22o). The 
first part of (2) influences the ZMP position 42 times 
more than the second part and, therefore, generating 
a ΔyCoM by choosing the appropriate value of w is 
the stabilization method proposed herein.  

The ankle angle increment generated by the 
BiNN is represented by (14). As the maximum 
BiNN output is equal to 1, the maximum ankle 
increment is equal to w, as stated in (15). Hence, the 
synaptic weight w required to generate a centre of 
mass shift ΔyCoM is determined by (17), which is 
derived from (16) and (15). 

ߠ∆  = 1ݐݑܱ)ݓ −  (14) 	(2ݐݑܱ

௠௔௫ߠ∆  =  (15) 	ݓ

஼௢ெݕ∆  = (ߠ∆)݊݅ݏ  ஼௢ெ (16)ݖ

ݓ  = asin	ቀ∆ݕ஼௢ெ ஼௢ெൗݖ ቁ (17) 

To guarantee the compensation of an external 
disturbance with short duration (less than one 
second), the centre of mass variation generated by 
the ankle motors ݕሶ஼௢ெ must be higher than the 
center of mass variation caused by the external force 
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 .ሶ௘௫௧, as stated in (18). Thereby, a safety factor γ (e.gݕ
1.1) can be used to transform the inequality into an 
equality, as shown in (19). In the equation, the 
center of mass velocity caused by the external force 
is considered to be equal to the centre of mass 
acceleration caused by the external force ݕሷ௘௫௧ 
multiplied by its duration ∆t. Subsequently, the 
center of mass acceleration caused by the external 
force is assumed to be equal to the external force ܨ௘௫௧ divided by the robot mass. 

ሶݕ	<ሶ஼௢ெݕ  	௘௫௧ (18) 

ሶ஼௢ெݕ  = ሶݕ	ߛ 	௘௫௧ = ሷ௘௫௧ݕ	ݐ∆	ߛ = ఊ	∆௧	ி೐ೣ೟௠  (19)   

Assuming the centre of mass variation to be 
equal to the centre of mass shift divided by the 
iteration step value, as in (20), the synaptic weight w 
required to compensate an external force ܨ௘௫௧ is 
given by (21). This equation allows tuning w 
according to the maximum value of the expected 
external disturbance. Whilst a higher value of w 
compensates higher external forces and causes a 
more aggressive behaviour, a lower value of w 
causes a smoother behaviour, but cannot compensate 
higher external forces. 

ሶ஼௢ெݕ  = ∆௬಴೚ಾ௧ೞ೟೐೛  (20) 

ݓ  = asin	൬ఊ	∆௧	ி೐ೣ೟	௧ೞ೟೐೛௠	௭಴೚ಾ ൰ (21) 

Fig. 7 shows (21) for γ equal to 1.01, ∆t  equal to 
0.2s, ݐ௦௧௘௣ equal to 0.01s and ݖ஼௢ெ equal to 0.27m, 
showing the stable and unstable regions that the 
equation originates. Force duration of 0.2s was 
chosen so that the force acts for a sufficient time so 
as not to be considered an impulse. In the figure, the 
maximum force that the robot is physically able to 
sustain is also shown. This value can be obtained by 
substituting the centre of mass acceleration ݕሷ஼௢ெ by 
the external force ܨ௘௫௧ divided by the robot mass m 
in (2), and rearranging the equation as shown in 
(22). 

௘௫௧ܨ  = ௠௚(௬಴೚ಾି௬ೋಾು)௭಴೚ಾ  (22) 

Thereby, substituting the constants m, g and ݖ஼௢ெ 
in the equation and assigning to ݕ௓ெ௉ the value of 
the support polygon boundary (-0.06m) and to ݕ஼௢ெ 
its best feasible position (0.06m), the maximum 
external force of 22.48N is obtained. External forces 
higher than 22.48N cause a center of mass 
acceleration that drives the ZMP out of the support 
polygon regardless of the center of mass position 

(among its feasible values). In this case, a stepping 
approach would be necessary to avoid falling. 

5 SIMULATION RESULTS 

In this section the BiNN performance for stabilizing 
the walking motion of the humanoid robot NAO is 
evaluated in two manners. The first regards the 
computation time of the BiNN for each iteration 
step, whereas the second evaluates the BiNN 
capacity of compensating external forces with 
different magnitudes and durations. Two software 
were used to conduct the simulations: Choregraphe 
(v. 2.1.4) and Webots (v. 8.4.0). 

 

Figure 7: Synaptic weight w as a function of the external 
force Fext. 

5.1 Computation Time 

The personal computer used to perform the 
simulations has an Intel Core i7-3517U processor 
with 1.9GHz and 8GB of random access memory 
(RAM). Twenty runs, with 106 iteration steps each, 
were conducted to obtain the results. The average 
computation time of the BiNN for each iteration step 
was 0.0027ms and its coefficient of variation was 
0.62%. This computation time corresponds to the 
calculation of (11) and (12) for each neuron of the 
BiNN.  

As an iteration step of 10ms was adopted for 
robot control, the BiNN computation time 
corresponds to less than 0.1% of the complete 
iteration step. Moreover, the low computation time 
obtained allows the combination of the BiNN with 
other control methods, which have average 
computation times of 20ms (Ishihara and Morimoto, 
2015), 40ms (Carpentier et al., 2016) and 300ms 
(Tedrake et al., 2015) for each iteration step.  

Figure 8 illustrates the computation times of 
these control methods, showing that the BiNN 
computation time is negligible in comparison to 
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them. This occurs because the BiNN only computes 
the current activation and output of its neurons, 
whilst predictive approaches are recurrent, i.e., they 
compute a sequence of iteration steps in the future in 
order to make a decision in the present.  

5.2 Walking Stabilization 

In order to evaluate the BiNN capacity of 
compensating external forces during a walking 
motion, the ‘Walking pattern generation’ block and 
the BiNN were programmed in Choregraphe 
platform. The walking pattern generated had an 
average duration of 0.05s for the double standing 
phase and of 0.5s for the single standing phase. The 
BiNN was evaluated in two simulation studies. 

In the first simulation study, a force of 20N in 
the y-direction was applied to NAO for 0.2s during 
the single standing phase in Webots simulator with a 
physics plugin. This force is sufficient to knock the 
robot down in the cases in which it is being 
controlled either by the default Model Predictive 
Control (MPC) method of Choregraphe (Wieber, 
2006) or by the open loop version of the control 
method proposed (i.e., without the BiNN feedback).  

In this simulation, w was set to 1.63, according to 
(21). The centre of mass trajectory and the ZMP in 
the y-direction, illustrated in Fig. 9 and Fig. 10, 
respectively, show that the BiNN was able to 
compensate the applied force and that the robot was 
able to continue its walking motion. Moreover, the 
results also prove that the parameter determination 
method proposed is adequate. 

Fig. 9 shows the centre of mass position in the y-
direction ݕ஼௢ெ as well as its derivative ݕሶ஼௢ெ, whose 
combined trajectory present a limit-cycle behaviour. 
This trajectory is highlighted in red from the 
moment in which the external force was applied. 

 

Figure 8: Computation time comparison. 

 

Figure 9: Centre of mass trajectory. 

 

Figure 10: ZMP as a function of time. 

The figure shows that the BiNN stabilizes the robot 
when the centre of mass trajectory deviates from its 
limit-cycle, bringing the trajectory back to it and 
allowing the robot to continue its walking motion 
without interruption.  

The walking stabilization is also showed in Fig. 
10, in which the ZMP, the support polygon 
boundaries and the BiNN threshold are plotted as 
functions of time. The BiNN threshold represents 
the ZMP values from which the q neurons start 
generating outputs, which originates a safety margin 
that prevents the ZMP from approaching the support 
polygon boundaries. In this figure, the ZMP is also 
highlighted in red from the moment the external 
force was applied. After crossing the BiNN 
threshold, the ZMP returned to the stable region in 
0.084s, showing a fast response of the BiNN.   

The second simulation study regards the 
evaluation of the BiNN capacity of compensating 
forces with different magnitudes and durations. In 
each simulation a force in the y-direction was 
applied to NAO in the exact same moment during 
the ‘lift’ movement of the single standing phase. The 
BiNN performance was compared to the 
performance of the default MPC used by 
Choregraphe (Wieber, 2006). 
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Fig. 11 illustrates the simulation results, showing 
that the BiNN was able to compensate a higher force 
magnitude for every force duration tested. Each 
combination of force magnitude and duration was 
evaluated 20 times for each control method. The 
lines plotted in the figure correspond to force 
magnitudes and durations which the robot was able 
to withstand in all 20 simulated experiments.  

The BiNN was on average 52.55% better than 
the MPC, having higher improvements for shorter 
force durations. This occurs due to the BiNN fast 
response, which becomes less relevant for longer 
force durations. The maximum force compensated 
by the BiNN was 22N, applied for 0.1s, 
corroborating the theoretical result obtained with 
(22) by a margin of 2.14%. 

 

Figure 11: External force compensation. 

These results reaffirm that the use of a simpler 
stabilization strategy, i.e. to control the ankle joint 
with the BiNN, is not only possible due to its low 
computation time, but also more effective than the 
standard stepping approach of NAO robot. Thereby, 
in the cases that the disturbance is moderate (10N-
22N), the ankle joint control proposed would be 
active, whereas for stronger disturbances the robot 
could use a supplementary stepping approach, such 
as those proposed by Stephens and Atkeson (2010) 
and Luo et al. (2015).   

6 CONCLUSION 

This paper presented a Biologically-inspired Neural 
Network (BiNN) to stabilize the walking motion of 
humanoid robots. The approach proposed considers 
scenarios in which foot placement cannot be 
changed. Thus, the BiNN uses the Zero Moment 
Point (ZMP) as input and alters ankle joint angles to 
stabilize the robot. 

Simulation studies evaluated the BiNN perfor-
mance in compensating lateral forces with different 

magnitudes and durations, which were applied 
during the walking motion. The BiNN presented a 
fast response to disturbances and had a performance, 
on average, 52.55% better than a MPC proposal. The 
simplicity and low computation time of the BiNN 
(0.0027ms) allows its combination with other 
control methods, such as reactive stepping 
approaches. 

Future research directions encompass using two 
BiNNs with the proposed structure to compensate 
external forces contained in the x-y plane and three 
BiNNs to compensate omnidirectional external 
forces. Moreover, experiments will also be planned 
in order to evaluate the BiNN performance in 
compensating external forces with different 
magnitudes and durations applied to the actual NAO 
robot. 
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