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Dynamic scene understanding is a challenging problem and motion segmentation plays a crucial role in solving
it. Incorporating semantics and motion enhances the overall perception of the dynamic scene. For applications
of outdoor robotic navigation, joint learning methods have not been extensively used for extracting spatio-
temporal features or adding different priors into the formulation. The task becomes even more challenging
without stereo information being incorporated. This paper proposes an approach to fuse semantic features and
motion clues using CNNs, to address the problem of monocular semantic motion segmentation. We deduce
semantic and motion labels by integrating optical flow as a constraint with semantic features into dilated
convolution network. The pipeline consists of three main stages i.e Feature extraction, Feature amplification
and Multi Scale Context Aggregation to fuse the semantics and flow features. Our joint formulation shows
significant improvements in monocular motion segmentation over the state of the art methods on challenging

KITTI tracking dataset.

1 INTRODUCTION

Visual understanding of dynamic scenes is a critical
component of an autonomous outdoor navigation sys-
tem. Interpreting a scene involves associating a se-
mantic concept, also referred to as a label with each
image pixel. These semantics can then be incorpo-
rated in a higher-level to reason about the image holis-
tically. Traditional scene understanding approaches
(Chen et al., 2014)(Athanasiadis et al., 2007) (Shotton
et al., 2008) have focused on extracting pixel-level se-
mantic labels, and have demonstrated superior perfor-
mance in static scenes. Motion and semantics provide
complementary cues about a dynamic scene, and can
be used to generate a comprehensive understanding
of the scene. Some recent approaches (Reddy et al.,
2014) (Wedel et al., 2009) leverage stereo information
to incorporate motion cues into the scene understand-
ing framework.

We focus on the problem of obtaining semantic
motion segmentation from monocular images. Recent
success in scene understanding using convolutional
neural networks, motivated us to extend existing mod-
els that perform semantic segmentation to incorporate
motion cues. The success of deep neural network ar-
chitectures can be attributed to the efficient learning
and inference mechanisms employed. Learning in-
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volves determining a set of parameters using multi-
ple iterations of stochastic gradient descent over ran-
domly sampled batches of labeled images, and infer-
ence on a target image involves only a forward pass
of the image through the network.

Building ! '
Pavement
Vegetation

Figure 1: The eventual output of our Semantic Motion
Segmentation approach. Semantic labels get prefixed with
motion labels such as Moving Car and Stationary Pedes-
trian.(Best viewed in color).

Deep learning architectures used for scene un-
derstanding incorporate semantic labels for learning
scene descriptions. We aim to generate richer descrip-
tions by prefixing motion labels to semantics such
as 'Moving Car’ and ’Stationary Car’, and do so
in a joint framework. Currently, deep architectures
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model either motion (Fischer et al., 2015) or seman-
tics (Long et al., 2015) in an exclusive manner. To
the best of our knowledge, this is the first effort to-
wards seamlessly integrating motion cues with deep
architectures that are trained to predict only seman-
tics. The proposed joint learning pipeline is efficient,
and learning can be performed end-to-end. Fig. 1
shows a sample output of the proposed framework.

In settings where images are obtained from a
monocular camera, motion detection has been tack-
led by taking into account the optical flow between
two subsequent images, which tends to fail with large
camera displacements. For outdoor robotic vision,
the camera displacement is unavoidable. Although,
this has been tackled in (Tourani and Krishna, 2016)
where motion models are generated and merged using
trajectory clustering into different motion affine sub-
spaces. The moving object proposals generated from
the prior model are sparse collection of points lying
on the object, resulting into a sparse motion segmen-
tation.(Fragkiadaki et al., 2015) exploit appearance
similarity to capture parts of moving objects using
two stream CNN with optical flow and rank spatio-
temporal segments over a video sequence by map-
ping clustered trajectories to the pixel tubes. In con-
trast, our approach performs joint optimization for
pixel wise motion and semantic labels, owing to the
fact that they are interrelated. An intuitive example
to demonstrate the relation is that the likelihood of
a moving car or moving pedestrian is more than that
of a moving tree or wall. To exploit the correlation,
our pipeline proposes integration of semantic and mo-
tion cues in three stages, namely, Feature extraction,
Feature amplification and multi-scale context aggre-
gation. The proposed approach is shown to be ef-
fective for motion segmentation even with a moving
camera, on outdoor scenes.

In summary, following are the key contributions
of our work.

e We present an end-to-end convolutional neural
network architecture that performs joint learning
of motion and semantic labels, from monocular
images.

e We provide a novel method for seamless integra-
tion of motion cues with networks trained for pre-
dicting semantic labels.

e We present results on several sequences of the
challenging KITTI benchmark and achieve results
superior to the state of the art.

The remainder of the paper is organized as fol-
lows. Section 3 presents the architecture and ap-
proach used for joint learning of motion and semantic
labels. In section 4, we summarize the experiments
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carried out, dataset used and training procedure for
our joint module. We also show evaluation and com-
parison of our approach in section 4.3.

2 RELATED WORK

Fair amount of literature has been done in the field of
semantic and motion understanding of scene. Tradi-
tional approaches for semantic segmentation involve
extracting features from a image and use different
methods to classify each pixel. Multiple works have
been used to train for semantic labels (Fields, 2001)
(Reddy et al., 2014) (Russell et al., 2009) (Koltun,
2011). However, with the emerging era of Deep
Learning, there has been a large amount of litera-
ture in the field of semantic segmentation which has
shown large improvements compared to the previous
baselines. Approaches using deep convolutional neu-
ral networks (LeCun et al., 1989) have shown to out-
perform most of the methods in all the basic problems
of vision. The literature includes works by (Lin et al.,
2015) (Liu et al., 2015)(Dai et al., 2015), where tech-
niques such as bounding box, Deep net followed by
CRF formulation and MRFs were put to use, achiev-
ing significant results. Further, (Long et al., 2015)
adapted the VGG Net model (Simonyan and Zisser-
man, 2014b) to predict pixel-to-pixel semantic labels,
with fusion at pool layers for output up-sampling. Yu
and Koltun(Yu and Koltun, 2015) proposed an adap-
tation of VGG-16 architecture for systematic expan-
sion of receptive fields using dilated convolutions for
dense image segmentation, giving more accurate re-
sults than prior adaptations. The approach involves
carrying over a global perspective without loss in res-
olution using repetitive deep convolutional layers.
Motion segmentation has been extensively ad-
dressed, particularly for outdoor robotic navigation.
Most of the works use geometric constraints to at-
tain significant accuracy. In the seminal work con-
tributed by (Elhamifar and Vidal, 2009), trajectory
points were modeled as sparse combination of evalu-
ated trajectories. (Tourani and Krishna, 2016) used in
frame shear constraints to generate and merge affine
models, achieving state of art results in sparse mo-
tion segmentation using monocular camera. Recently
many deep convolution nets have been used to learn
motion labels (Rozantsev et al., 2014) (Fragkiadaki
et al., 2015) (Tokmakov et al., 2016) for motion seg-
mentation. Although they work very well, they suffer
from unavailability of large datasets or rely on stereo
information, therefore proving ineffective for monoc-
ular systems. (Fragkiadaki et al., 2015) presents state
of art results in the detection of per frame moving ob-
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Figure 2: Illustration of the proposed approach. Images at t and t+1 are provided to the network(A). The dilated network
undergoes fine tuning with addition of motion labels and the last Conv. features are extracted(B).Optical flow between the
two frames(C) is scaled and resized to the size of feature maps(D). The dilated features are amplified using optical flow
magnitude by element wise product(E). Further, convolution layers are freezed and fully connected layers are fine tuned.
The augmented feature maps are further enhanced with end-to-end training with the Context Module, learning dependencies
between object class and motion labels. The predictions obtained from the softmax layer are upsampled to give a joint label

to each pixel(F).(Best viewed in color).

ject proposals. The work emphasizes segmentation on
monocular uncalibrated video sequences by a ranking
heuristics and regression using a two stream network
with optical flow, followed by supervoxel projection.

Joint classification of semantic and motion labels
is relatively new in the field, and much of the work has
been carried out by (Reddy et al., 2014) using dense
CREF joint formulation on stereo image sequences.
This however would prove ineffective for monocular
situations as it heavily relies on the depth information.
We draw analogy from works (Fischer et al., 2015)
(Simonyan and Zisserman, 2014a) (Karpathy et al.,
2014) (Park et al., 2016) where two parallel streams
of convolution neural networks are fused for action
recognition in videos or generating optical flow. Due
to unavailability of large scale datasets for semantic
motion segmentation, training a neural network from
scratch becomes unfeasible. However, we adapt the
concept of feature amplification highlighted in (Park
et al., 2016) to our problem in a joint formulation ap-
proach, resulting in an end-to-end model for seman-
tic motion segmentation. We outperform state of art
results for monocular motion segmentation using our
joint model.

3 MONOCULAR SEMANTIC
MOTION SEGMENTATION

In this section, we present our semantic motion seg-
mentation framework. A joint formulation is pro-
posed for the overall learning task and is composed of
three main modules, viz. features from dilated convo-
lutions, feature amplification, and multi-scale context
aggregation. We also provide an illustration of our

approach in Fig. 2.
3.1 Features from Dilated Convolutions

To obtain semantic features, we use a neural net-
work architecture which employs dilated convolu-
tions, specifically engineered for dense predictions.
Originally proposed in (Yu and Koltun, 2015), a di-
lated convolution operator is a traditional convolution
operator modified to apply a filter at different ranges
using different dilated factors.

In relation to a discrete function H : Z> — R
and g : Q; — R, a discrete filter with size (25 + 1),
where Q; = [—s,s]*> N Z?, the convolution operator is
defined as:

Y H(r)q() (D

r+dt=c

where, d is the dilation factor. Such an operator *,4
is referred to as d-dilated convolution. The operator
can be intuitively understood as follows. Given a 1D
signal f and a kernel g, with dilated convolution the
kernel touches the signal at every d'" entry.

Expansion of receptive fields in existing pooled
architectures leads to an ungainly increase in parame-
ters to the same extent. The architecture proposed by
Fisher et. al. (Yu and Koltun, 2015) is inspired from
the fact that dilated convolutions sustain exponential
expansion of the effective receptive field without loss
in coverage area. While pooling architectures leads
to loss in resolution, the dilated architecture enables
initialization with the same parameters and producing
higher resolution output.

(H*aq)(c) =
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Figure 3: Network Architecture - w X h_s: Layer with ker-
nels of width w, height A, and stride s. The dilated factor
in layers, if any, is shown on the top of each layer. Number
of channels in the outputs from each layer is depicted be-
low each layer. For instance, the fully connected has 4096
channels in its output block.
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3.1.1 Network Architecture

Our network architecture is primarily adapted from
the VGG-16 framework proposed by (Simonyan and
Zisserman, 2014b), with modifications applied from
the work by Fisher on dilated convolutions. The
VGG-16 architecture incorporates a stack of convolu-
tions, followed by three fully-connected layers. This
was tailored for dense predictions by Long et al.
(Long et al., 2015). The architecture proposed by
Long includes two major shifts. First, the inner prod-
uct layers are converted to convolutions. This over-
comes the restriction on the size of the input image
owing to the fact that the architecture does not con-
tain any inner product layers. Second, an upsampling
layer is introduced, which brings back the spatial res-
olution of the output through a learned operation. The
upsampling operation is carried out at different inter-
mediate layers and are fused to obtain dense predic-
tions. This allows the architecture to predict finer de-
tails with global or high level information in place.

We adapt the fully convolutional network of Long.
and integrate modifications proposed by (Yu and
Koltun, 2015). Our network architecture is shown in
Fig. 3. The last two pooling layers in the VGG-16 ar-
chitecture (Simonyan and Zisserman, 2014b) were re-
moved. Furthermore, for each of the removed layers,
the following convolution layers are replaced with a
dilation factor of 2. This enables the network to gen-
erate high resolution features with the same initializa-
tion parameters.

3.1.2 Network Initialization

We present a novel method for initialization of the
ConvNet for obtaining convolution features. We use
the model by (Yu and Koltun, 2015), pre-trained for
semantic labels. For training with joint semantic and
motion labels, we modify the final convolution layer
and change the number of outputs to (C+M), where C
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is the number of semantic labels predicted by the di-
lated ConvNet and M is the number of motion labels.
For instance, M can be 2, with two labels being mov-
ing car and moving Pedestrians in an outdoor scene.
Furthermore, we copy the weights from the pretrained
dilated ConvNet to the modified network for all layers
except the final layer. For the final convolution layer,
we copy the weights in the given fashion:

weights[ final'|[i] — data[l: C,:,:,:]
= weights,[ final'|[i]| — data

where, i € {0,1}, 1 for weights and O for bias,
weights, is the pre-trained weights array of the
dilated network for semantic features and weights is
the weights array of the modified network. Weights
for M motion labels in the final convolution layer
are initialized using Xavier initialization (Glorot and
Bengio, 2010).

We propose that the initialization scheme works
well for training with fairly small annotated datasets.
The proposed initialization subjugates the limitation
of unavailability of large scale annotated dataset
to perform training for joint semantic and motion
labels. The network is trained on our annotated
dataset with the given initialization. Furthermore, the
’Convolution features’(see Fig.3) from the network
are extracted for joint learning with flow features.
Also, the joint labels obtained from the softmax layer
forms our Baseline results for future comparisons.

3.2 Feature Amplification

We leverage optical flow for learning motion cues in
an image. Conventionally, training two stream net-
works is found useful to the task where one is focused
on learning semantic features using RGB image in-
put, while the other is tasked for learning motion cues.
The features from the two streams are fused at an in-
termediate layer for joint learning. However, unavail-
ability of a large annotated dataset with joint semantic
and motion labels is a major bottleneck for learning
with two stream architectures. Akin to the ideas pro-
posed in (Park et al., 2016), we present an approach
for learning relationship between semantic and mo-
tion class of an object. The method proposed in (Park
et al., 2016) is used primarily for action recognition
tasks. Features from the last convolution layer in a
Convolutional Network tasked for learning semantic
features is amplified using optical flow magnitude to
identify the moving parts in an image before the fully
connected layers are evaluated. However, we extend
the underlying idea for the task of semantic motion
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segmentation. An intuitive reasoning behind such an
adaptation is the similarity in recognition of motion
cues and integration with semantic features in both
the problems.
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Figure 4: Fine tuning fully connected layers using amplified
features as described in (Park et al., 2016). Amplified fea-
tures are obtained by taking element wise product of scaled
optical flow magnitude with the feature maps obtained from
last convolution layer.

We propose a method to augment feature maps
obtained from the last convolution layer of our di-
lated network (see Fig 3), for incorporating motion
cues. Optical flow is generated between the consec-
utive frames at t and t+1. Next, we compute Eu-
clidean norm of the flow vector and normalize the
magnitudes in the range 1-2. With the flow infor-
mation in hand, we quantize the scaled magnitudes
and subsequently convert it to grayscale image. The
image is further resized to the size of feature maps
of the last convolution layer obtained from our spa-
tial network. Given a 900x900 RGB image as in-
put, our dilated network outputs feature maps of di-
mension 512x90x90. Hence, flow image is resized to
90x90 dimension. Thereafter, element wise product
is performed between the flow image and each feature
map in the stack. The intuition of scaling the magni-
tudes from 1 rather than O is to not zero out the fea-
ture values obtained from the spatial network, which
is equally important. Further, we freeze the convolu-
tion layers of the network and fine tune the fully con-
nected layers with the amplified feature maps as input
to the fully connected layers. The amplification pro-
cess is visualized in Fig. 4. The semantic features are
enhanced with motion cues, as a consequence of fea-
ture amplification. We benefit with the amplification
due to incorporated temporal consistency with optical
flow and difference in flow magnitude between mov-
ing objects and it’s surroundings. Also, object bound-
aries are retained due to amplification over baseline
semantic motion features, thereby handling disorien-
tation in optical flow boundaries. Label probabilities
obtained after fine tuning from the softmax layer are
up-sampled to obtain dense predictions with joint la-
bels. Image predictions obtained forms our Joint re-
sults for evaluations.

3.3 Multi-Scale Context Aggregation

We use the context module introduced by Fisher (Yu
and Koltun, 2015) for enhancement of the amplified
features. The architecture was proposed as an exten-
sion to existing CNN architectures for overall increase
in accuracy for dense predictions. The module im-
proves upon the feature maps, by successive dilated
convolutions, supporting exponential expansion of re-
ceptive field, without losing resolution. This is effec-
tuated by continuous increase in dilation with increas-
ing layer depth. The architecture consists of 7 convo-
lution layers. The layers are dilated with factors - 1,
1,2,4, 8,16 and 1, and each of these layers apply 3x3
convolutions with the specified dilation factors. The
module aggregates contextual information at multiple
scales and outputs feature maps of the same size as
that of input by padding the intermediate layers.

The weights in this module are initialized with a
form of identity initialization, commonly used for re-
current networks. In mathematical terms:

¢’ (t,i) = li—gliz; )

where i and j are index of input and output feature
maps respectively. The identity initialization of such
a form, initiates filters which can relay the inputs to
the next layer.

We learn the parameters for the context module
with our amplified feature maps as input to the mod-
ule. Fully connected and softmax layers from our net-
work is appended to the module. We obtain joint label
predictions from the softmax layer.

4 EXPERIMENTS AND
EVALUATION

Experiments were carried out with pre-existing archi-
tectures, adapted to our problem. Concept of two
stream architectures have been recently used in the
field of action recognition, where spatial and tempo-
ral nets are combined at the fully connected layer. We
tailor the architecture to our problem. Two VGG-
16(Simonyan and Zisserman, 2014b) networks with
image and optical flow as input to the respective net-
works were trained on our annotated dataset. The
weights for both the streams were initialized with
VGG models pre-trained for semantic segmentation
task. We also inspect and implement Flow net (Fis-
cher et al., 2015) to our problem, which has shown to
outperform state of art in learning optical flow. The
network was initialized with pretrained FlowNet-C
weights and trained on our annotated dataset with in-
puts as image at t and t+1 respectively for the two
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streams. However, both the formulations did not
work well in combining motion cues with semantic
information in hand. This is attributed to the fail-
ure of CNNss in learning and extracting useful features
with smaller datasets. Collection of large scale scene
datasets with joint semantic and motion labels is very
expensive. In contrast, our joint learning approach
reduces the burden of learning motion features from
scratch with large labeled datasets and proves effec-
tive with fairly smaller annotated datasets.

In this section, we describe the details of ConvNet
training and evaluations on KITTT tracking dataset.

4.1 Dataset

We have used renowned KITTI dataset (Geiger et al.,
2012), for evaluation of our approach. The dataset
contains over 40,000 images taken by a camera
mounted on a driving car through European Roads.
The driving sequences contain images from resi-
dential and urban scenes posing it as a challenging
dataset. The dataset was chosen to showcase profi-
ciency of our approach with multiple moving cars for
outdoor scenes, which is uncommon in other datasets.
40 images were chosen from five sequences each, giv-
ing 200 images for training. Each of the images were
manually annotated with 13 labels. To be specific, the
labels given were Building, Vegetation, Sky, Car, Sign,
Road, Pedestrian, Fence, Pole, Sidewalk, Cyclist and
Moving Car, Moving Pedestrian for objects in mo-
tion. For testing, 60 images from KITTI tracking se-
quences were chosen as validation set and annotated
with the given label spectrum. For validation set, we
use challenging sequences with multiple moving cars
and ensure no overlap between train and validation
deck. We have used DeepFlow(Weinzaepfel et al.,
2013) for dense optical flow computation, known for
its state of art results for KITTI benchmark dataset.
We plan to release the code, trained models and
dataset with joint labels to encourage future work in
the field.

4.2 Learning

In this section we describe the training procedure for
our proposed approach. Our implementation is based
on publicly available Caffe(Jia et al., 2014) frame-
work. First, we describe the input to the data chan-
nel in the network. This applies to all modules in our
proposed method. Input image resolution is 1242 x
375, obtained from KITTI tracking dataset. Images
are padded using reflection padding and 900x900 ran-
dom crops are sampled. It then undergoes randomized
horizontal flipping. Further, each input batch contains
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crops from randomly selected images from the train-
ing dataset. This shapes the input to the module.

Training: Training is performed in three stages.
At first, the network architecture (see Fig. 3) is fine
tuned with motion labels added, to obtain convolu-
tion features and weights initialization for joint train-
ing with flow features. Learning rate and momentum
was set to 10™* and 0.9, respectively. Training was
carried out for 10,000 iterations with batch size 1, us-
ing stochastic gradient descent. The dense predictions
obtained from the module forms our baseline for fur-
ther comparisons. We use these learned weights to
train the joint model with augmented feature maps as
input. Optical flow magnitude is computed between
the frame at t and t+1. Flow image is padded and
cropped to 900x900, with respect to the RGB crop.
Furthermore, the convolution layers are freezed and
the network is trained with the amplified feature maps
as input to the fully connected layers. Training was
carried out for 10,000 iterations. Other parameters
stay the same.

Then, the context model is plugged into the ar-
chitecture and end-to-end training is performed for
20,000 iterations with batch size 1. Learning rate and
momentum is set to 107> and 0.99, respectively. We
refer joint label predictions obtained from the softmax
layer of this model as Joint+Context.

INPUT

+Context Joint Baseline

Figure 5: Figure outlining the labels from each stage of our
end-to-end module. Image is taken from our KITTI track-
ing test dataset. The baseline predictions outputs wrong la-
beling to moving car patches and the motion labels of the
car[Cyan] improve significantly using our joint model.(Best
viewed in color).

4.3 Results

We evaluate the proposed approach on our manually
annotated KITTI Tracking test dataset. The testing
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OURS-M STMOP-M GT-M

Figure 6: Qualitative evaluation - Motion segmentation on our KITTI test dataset. On the left, the images, consist of single
moving car. On the contrary, we have multiple cars in the image, on the right. Blue pixels represent stationary and red pixels
depict motion. We compare our approach with STMOP-M moving object proposals (Fragkiadaki et al., 2015). In the figure,
GT - M is ground truth motion annotation, STMOP - M is output from (Fragkiadaki et al., 2015) and OURS - M is the motion
segmentation obtained from the proposed approach. In contrast to STMOP-M where over-segmentation and False Positive
cases are observed on the roads and fence, our proposed approach yields better segmentation and motion boundaries with cars

in motion. (Best viewed in color).

images(see Sec. 4.1) chosen from different sequences
pose challenging scenarios for motion segmentation
with multiple moving objects. Also, there are promi-
nent cases where moving cars lie in the camera sub-
space. To demonstrate qualitative results we take four
sequences consisting of 116, 143, 309 and 46 images.
Qualitative results are provided in Fig. 7, Fig. 8 and
on complete sequences in the supplementary video.
To the best of our knowledge, there are no avail-
able monocular joint semantic and motion baseline.
Hence, we show independent semantic and motion
evaluation with the existing state of art in the respec-
tive fields. For instance, for a pixel bearing joint label
- "Moving Car’, we say "Car’ as the semantic label or
object class and "Moving’ as the motion class of the
pixel. Comparative evaluations are carried out for se-
mantic segmentation and monocular motion segmen-
tation. However, for joint semantic and motion labels,
we demonstrate evaluations against manually anno-
tated Ground Truth labels.

4.3.1 Qualitative Evaluation

In this section, we show our results with joint labels
for different stages proposed in the paper, in compar-
ison to Ground Truth. We also show qualitative as-

Table 1: Quantitative evaluation on our KITTI test tracking
dataset. We compare PPV (Positive predicted value) from
our approach with the state of the art sparse motion segmen-
tation SHEAR-M(Tourani and Krishna, 2016) and STMOP-
M(Fragkiadaki et al., 2015). We achieve 4.9% gain in the
metric over the existing state of art.

Model Stationary | Moving
STMOP-M 98.34 83.91
SHEAR-M 99.85 84.37

Ours ( Joint+Context ) 99.55 89.28

sessment of motion segmentation in monocular set-
tings with STMOP-M. (Fragkiadaki et al., 2015). In
the Figures, ’Stationary Car’ and ’Stationary Pedes-
trian’ labels are abbreviated as *Car’ and ’Pedestrian’
respectively, while the label is prefixed with "Moving’
in case of motion.

Motion: We show improvements over our base-
line results in Fig. 5. Baseline results labels parts
of moving car as stationary. However, with optical
flow based feature amplification, pixels for cars in
motion are rectified as moving. Further, via feature
enhancement with Context Module, labels improve
significantly. We attribute the improvements shown
by using feature amplification, to the fact that tem-
poral consistency has been incorporated using opti-

81



VISAPP 2017 - International Conference on Computer Vision Theory and Applications

RGB
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Baseline

+Context Joint

Sequence 3

Figure 7: Qualitative evaluation of joint labels with Ground Truth annotations on our KITTI test dataset. Top to Bottom:
(1) Input image from KITTI sequences (2) Ground Truth for semantic motion segmentation (3) Baseline predictions: joint
labels using dilated convolution. (4) Joint Module: Results obtained after feature amplification with optical flow.(5) Context
Module: joint predictions after feature enhancement with context module.(Best viewed in color).

cal flow into the baseline. Further, the proposed fea-
ture amplification has clear demarcation between the
boundaries of the moving objects and stationary sur-
roundings due to variance in flow vector magnitude,
which is being incorporated into the final segmenta-
tion.

STMOP (Fragkiadaki et al., 2015) generates mov-
ing object proposals on video sequences. We use
the code available and generate proposals on KITTI
sequences. For fair comparison, we take the pro-
posals with best supervoxel projection on the ob-
jects.  We show our monocular motion segmen-
tation results in comparison to Ground Truth and
STMOP(Fragkiadaki et al., 2015) moving object pro-
posals. In Fig. 6, consisting of images with single
and multiple moving cars, STMOP-M leads to over
segmentation, while our approach correctly segments
the moving car, also removing extra segments of road
and fence. In the above cases, STMOP fails in out-
door robotic scenarios essentially due to large camera
motion and optical flow bleeding, while our approach
uses semantic priors and benefits from motion and se-
mantic correlation.

Joint Semantic and Motion: We also evaluate
our approach with the Ground Truth semantic motion
labeling. In the sequences demonstrated in Fig. 7,
the Baseline results incorrectly labels patches of the
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moving car closer to the camera(in Sequence 1) as
stationary(seen with Violet color). Similar observa-
tion is found in the baseline results of the moving car
in Sequence 2. The patches are rectified as moving
as a consequence of joint training with amplified fea-
tures. This again reiterates the utility of joint learn-
ing and inference between motion and semantic cues.
The improper patches on the moving cars in the se-
quences are further rectified by the context module us-
ing multi scale context aggregation. To perceive joint
segmentation, other than car scenes, we consider a se-
quence(Sequence 3) from KITTI with Moving Pedes-
trians. The results for each stage are depicted in Fig.
7. Parts of moving pedestrians on the left are labeled
as stationary in baseline results. The joint learning
with context aggregation corrects the motion domain
of pedestrians. Also, for pedestrians far away from
the camera, false positive cases are observed from our
approach in tiny patches due to inconsistency in op-
tical flow magnitude of the pedestrian with large dis-
tance from the camera. Further, for consistency of our
joint labels in challenging outdoor scenes, we show
joint semantic motion results on both highway and
city street scenes in Fig. 6.



Joint Semantic and Motion Segmentation for Dynamic Scenes using Deep Convolutional Networks

Table 2: Quantitative analysis of motion label predictions with STMOP. Left: On our annotated Kitti(tracking sequence 4)
test dataset - consisting of lone moving object. Right: On our annotated kitti images, consisting of multiple moving cars. We
compare our results with (Fragkiadaki et al., 2015) moving object proposals.

Model Stationary | Moving Model Stationary | Moving
(Fragkiadaki et al., 2015) 97.75 62.97 (Fragkiadaki et al., 2015) 97.63 44.53
Baseline 99.44 76.36 Baseline 99.05 66.23
Joint 99.35 81.94 Joint 99.03 70.67
Joint+Context 99.28 83.69 Joint+Context 98.97 71.98

Table 3: Quantitative evaluation of semantic label predictions from our proposed approach - Joint+Context (Ours - S) on
our KITTI test dataset. We compare our method with DeepLab-LFOV(Chen et al., 2014) and Segnet(Badrinarayanan et al.,
2015), known for semantic segmentation on outdoor driving scenes.

= =] )

g % = ® § 2 S

= © = 3 & Q o D = =

= ) > = & < = = — = Q &

Method | & 2 @ S n & & ia £ n ) g
Segnet | 66.70 | 78.11 | 89.32 | 69.74 | 12.45 | 71.69 | 12.09 | 25.03 | 21.12 | 44.01 | 11.2 | 45.61
Deeplab | 73.35 | 84.17 | 91.33 | 70.76 | 7.66 | 69.63 | 24.41 | 68.30 | 16.51 | 26.14 | 13.53 | 49.62
Ours-S | 78.52 | 84.99 | 90.07 | 88.18 | 19.28 | 75.82 | 8.46 | 76.60 | 29.31 | 36.84 | 66.70 | 59.53

4.3.2 Quantitative Evaluation

In this section, we perform a quantitative assessment
of both semantic and motion segmentation. We show
evaluations with (Tourani and Krishna, 2016) and
(Fragkiadaki et al., 2015). For semantic segmenta-
tion we compare our results with (Chen et al., 2015)
and (Badrinarayanan et al., 2015), which have shown
results for semantic segmentation on driving scenes.

Motion: For quantitative evaluation of motion
segmentation, we compare our results with STMOP
moving object proposals. Evaluation is staged by
cross verification of each predicted pixel with cor-
responding ground truth motion label - stationary or
moving. The evaluation is unfolded in two mod-
els. First, we compare our dense motion segmenta-
tion with STMOP moving object proposal. We use
intersection over union as the evaluation metric for
dense motion segmentation. The metric is defined as
TP/(TP+FP+FN), where TP denotes true positive, FP
false positive and FN false negative. Table 2 sum-
marizes our quantitative motion segmentation evalua-
tion.

The assessment is done in two broad cate-
gories,i.e, on annotated sequences with lone moving
object and sequences with multiple objects in mo-
tion. In the case with single moving car, we achieved
70.67% accuracy in detection of the moving car from
our joint module, while STMOP yields 59.97% detec-
tion accuracy. The increase in accuracy is attributed
to incorporated label and motion correlation. Fur-
ther, using context aggregation, the context module
yields further improvement in the efficiency. In case

of multiple moving objects, STMOP yields 41.53%
efficiency. The decrease in accuracy from STMOP is
due to large camera motion observed in the scenes,
while our joint module provides 70.67% success rate.
The joint learning exploits the fact that the likelihood
of a moving tree or pole is less compared to a mov-
ing car or moving person, resulting in substantial im-
provement in motion segmentation.

Another keynote observation would be a slight de-
crease in stationary accuracy over our baseline results.
This is due to the fact that different objects can exhibit
different optical flow depending on the depth from the
camera, even though they share the same global mo-
tion. The decrease is although marginal as shown in
Table 2. We also show motion segmentation evalu-
ation with existing state of art in sparse monocular
motion segmentation. The IOU metric used for dense
motion segmentation is not known to be used in case
of sparse evaluations. Therefore, for fair comparison
with sparse segmentation, we use positive predictive
value (PPV) or precision- (TP/TP+FP) as the evalua-
tion metric. The results are summarized in Table 1.
We gain 4.9% in motion label precision over the state
of art SHEAR-M(Tourani and Krishna, 2016) on our
test dataset.

Semantics: For quantitative evaluation of seman-
tic image segmentation, we use per class Intersection
over Union similar to the metric used for dense mo-
tion segmentation evaluation. This is done for 11
semantic labels on our KITTI test dataset. We per-
form quantitative semantic evaluation of our approach
against Segnet(Badrinarayanan et al., 2015), which
has shown results on outdoor driving scenes such as
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Figure 8: Joint Semantic and motion labeling obtained from the proposed approach on challenging urban scenes. Specifically,
in the figure, from Left to Right: Highway scene, City Streets and a drive scene with relatively less traffic. The joint labels
obtained in these settings depict robustness and consistency of our proposed approach.(Best viewed in color).

KITTI, and DeepLab-LFOV (Chen et al., 2015). For
comparison with (Chen et al., 2015) we use the pub-
licly available pre-trained model on PASCAL dataset
and fine tune it on our KITTI training dataset. We
run both the algorithms, Segnet and DeepLab, on our
KITTI test dataset. The semantic label accuracy of
the models on the test set is reported in Table 3. Our
approach (Joint+Context) outperforms the other two
architectures. This is due to the fact that dilated ar-
chitecture produces higher resolution output crucial
to dense prediction in comparison to the strided and
pooled architectures in the former propositions.

S CONCLUSIONS

In this paper, we have proposed a joint approach to
predict semantic and motion labels using a monoc-
ular camera. We incorporate spatial and temporal
information to learn object class and motion labels
jointly. Evaluations show an increase in pixel wise
motion segmentation accuracy without using stereo
information. We learn pixel wise labels without the
need for training temporal networks for motion cues,
which has proved to be a pitfall with unavailability of
large annotated datasets. To contribute and encourage
future works on monocular semantic motion segmen-
tation, we plan to release the annotated dataset and
trained models.

We believe that the proposed work will be ex-
tended for pixel-wise labelling of individual moving
objects. The end-to-end system can be used for bet-
ter dynamic scene understanding in complex outdoor
environments.
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