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Abstract: We consider the concept of "the width of a figure" for objects of complex shapes in order to use it as an 
integral morphological descriptor in image recognition tasks. In this article we propose a new approach to 
the description of this concept on the basis of the figures covering by disks of a certain size. The area of the 
disk cover as a function of the covering disc size is a shape descriptor. Original method for analytical 
calculation the area of disk cover of polygonal shapes is presented. The method is universal because there is 
always the possibility of polygonal approximating of complex digital binary images and geometric objects 
with nonlinear boundary. The method is based on the medial representation of the polygonal figure as a 
skeleton and a radial function. Our approach ensures high accuracy and computational efficiency calculate 
the area of disk cover. The effectiveness of the proposed approach is demonstrated for applications in 
computer font’s recognition problem.  

1 INTRODUCTION 

The width of the objects is an important feature of 
image shape. This feature cannot be well described 
by a scalar value, such as "average" width, for the 
objects of complex shape, in which the different 
parts have different width and length. Therefore, the 
description of width “distribution” that characterizes 
the whole range of its values is required to be used 
as width descriptor.  

Local description of the width can be based on 
the size of the primitive, which can be inscribed in 
the object. The larger width of the object, the larger 
the size of the primitive. If we inscribe in the object 
the primitives of a given size, such as disks of a 
certain diameter, the part of the object covered by 
the primitives can be considered as a region of a 
given width. Then the function describing the 
dependence of the region area from the primitive 
size can be regarded as an integral description of the 
object width. This article proposes an approach to 
the construction of the image width descriptor, 
which is based on the area of the disk cover of the 
object (Fig.1). Selecting a disk as primitive provides 
invariance of the descriptor to the shift, rotation and 
scaling of images.  

The object width descriptor is a diagram 
representing the dependency of the cover area from 
the size of covering disks (Fig.2). 

 

Figure 1: Disk covers of the “lizard” figure (on the right 
the examples of covering disks are shown). 
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Figure 2: Diagram of the dependency of disk cover area of 
the “lizard” figure from the size (radius) of covering disks. 

To compute the cover area, the method of pattern 
spectrum (Maragos, 1989), based on a discrete 
mathematical morphology (Serra, 1982), can be 
applied. In this case, the object width descriptor is 
the pattern spectrum diagram, constructed on the 
base of morphological opening operation using a 
disc structuring element. An example of this 
approach is described in (Ramirez-Cortes et al., 
2008). Pattern spectrum method allows a simple 
software implementation, however, it has a high 
computational complexity, especially when working 
with large high-resolution images. To cope with this 
problem in (Vizilter and Sidyakin, 2012, 2014) a 
combined discrete-continuous approach to the 
calculation of the pattern spectrum was proposed, 
which allowed significantly reduce the computation 
time, but not so much. The task cannot be solved in 
real-time of the computer vision systems.  

Our approach is aimed at drastically reducing the 
computation time of the cover area through the use 
of a continuous model of an image shape. 
Continuous model is a polygonal shape 
approximating a digital image. Selecting a polygonal 
shape (a polygon with polygonal holes) as a model 
of the object shape is due to two reasons. On the one 
hand, polygonal shapes can accurately approximate 
the boundary of complex objects represented by 
discrete raster images. On the other hand, for the 
polygonal figure the regions of a given width can be 
described using the medial representation – the 
skeleton and the radial function. A medial 
representation of a polygonal shape can be obtained 
with high-performance computational geometry 
algorithms (Mestetskiy, 2008). 

 

 

 

 

 
(a)                               (b) 

 
                             (c)                                  (d) 

Figure 3: Continuous model of the disk cover for binary 
image: a) binary image, b) approximating polygonal figure 
c) its skeleton, d) example of r-cover. 

Our method of the calculation of the disk cover 
area for objects on bitmap images includes the 
following steps: 

1. Approximation of a binary image by a 
polygonal shape. 

2. Medial representation of a polygonal shape in 
the form of the skeleton and the radial 
function based on Voronoi diagrams of line 
segments that constitute the shape boundary.  

3. Representation of a complex-shaped 
polygonal figure as a union of bicircles – 
elementary geometric shapes corresponding 
to the edges of the skeleton. 

4. Representation of the figure disk cover as the 
union of a subset of bicircles and calculating 
the cover area through bicircles' areas. 

5. Construction of the distribution function of 
the disk cover area as a function of the disk 
size. 

2 DISK COVER AND FIGURE 
SKELETON 

Definition 1. A figure is a closed region in the plane 
bounded by a finite number of disjoint closed Jordan 
curves. 

Definition 2. A circle is considered to be empty 
if it is located entirely in the figure. 

Definition 3. Disk ݎ-cover of the figure is the 
union of all empty circles of the radius ݎ. Examples 
of disk ݎ-cover for different values of ݎ are shown in 
Fig.1. 

Definition 4. ݎ-area of the figure is the area of its 
disk ݎ-cover. 

According to this definition, the area of the entire 
figure is its 0-area. 

Definition 5. Morphological width ܨሺݎሻ of the 
figure is its ݎ-area as a function of ݎ. Morphological 
width is a non-increasing function of the ݎ. 

Morphological width could be calculated by 
using pattern spectrum (Maragos, 1989) through the 
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opening operation of a discrete mathematical 
morphology (Serra, 1982). The disk is used as a 
primitive. This approach requires a lot of 
computation time, and may be applied only to 
discrete images. Our method is much faster and is 
more universal because it allows you to work with 
discrete and continuous images through 
approximation by polygonal figure.  

Definition 6. An inscribed circle of the figure is 
an empty circle, which is the maximum, i.e., is not 
contained in any other empty circle. 

Definition 7. A skeleton of a figure is the set of 
all points that are centers of inscribed circles. 

Definition 8. The radial function is defined in 
the skeleton points and assigns to the skeleton point 
the radius of the inscribed circle centered at this 
point. 

Obviously, each empty circle of radius more than 
 can be represented as the union of empty circles of ݎ
radius ݎ. Therefore, any inscribed circle with radius 
 .cover-ݎ or more is contained in the disk ݎ
Consequently, the disk ݎ-cover of the figure 
coincides with the union of all the inscribed circles 
of radius at least ݎ. The centers of the inscribed 
circles constitute a subset of the skeleton points. 
Thus, for calculating the morphological width of the 
figure it is sufficient to consider only the circles 
whose centers lie on the skeleton. The challenge is 
to obtain for given values of argument ݎ the 
corresponding values of figure ݎ-area. The solution 
to this problem for the polygonal shapes will be 
obtained in an explicit form. 

3 POLYGONAL FIGURES AND 
BICIRCLES 

Definition 9. A polygonal figure is a figure whose 
boundary consists of closed polylines. 

The boundary of a polygonal figure can be 
represented as the union of a finite number of 
subsets, called sites: point-sites (vertices of the 
figure) and segment-sites (sides of the figure without 
end points). 

A skeleton of a polygonal figure (Fig.4) looks 
like geometric graph whose edges are segments of 
straight lines and quadratic parabolas, and the 
vertices are the endpoints of edges. Each edge is a 
connected set of points that are centers of inscribed 
circles having the same incident pair of sites, called 
site-generators of the edge. If both site-generators 
are of the same type (two point-sites or two 
segment-sites) then the edge is a straight line 

segment. If site-generators are of different types 
(point-site and segment-site) then the edge is a 
segment of a quadratic parabola. 

   

Figure 4: Polygonal figure and its skeleton. 

Polygonal approximation of the digital binary 
image and the construction of the continuous 
skeleton and radial function are performed by 
means of high-performance algorithms 
(Mestetskiy, 2008). The proposed method for 
calculating ݎ-area, using the special properties of a 
skeleton of a polygonal shape, is based on the 
decomposition of the figure on the constituent 
elements – bicircles.   

Definition 10. A bicircle is the union of all 
inscribed circles centered on one edge of the 
skeleton. The edge line is called the axis of the 
bicircle. 

Three types of bicircles are distinguished 
depending on the pair of their site-generators: linear 
(two segment-sites – Fig.5a-b), parabolic (segment-
site and point-site – Fig.5c) and hyperbolic (two 
point-sites – Fig.5d). This terminology is caused by 
the dependency of the radial function on the position 
of a point on the axis of the bicircle. 

Circles with centers at the vertices of the 
skeleton are called the end circles of the bicircle. 
The boundary of the bicircle is the envelope of the 
family of its constituent circles. The boundaries of 
linear and parabolic bicircles include, fully or 
partially, their generating segment-sites (Fig.5a-c). 
In addition, the boundaries of all kind of bicircles 
contain arcs of end circles. 

     
         (a)                    (b)                   (c)                (d) 

Figure 5: Bicircles: axes, proper regions, external sectors 
of end circles. 

Definition 11. The sector of end circle relied on 
the arc of the bicircle boundary is called an external 
sector of a bicircle. 
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Definition 12. A spoke is a line segment 
connecting the skeleton point with the nearest point 
of figure boundary. 

Definition 13. A proper region of a bicycle is the 
union of all spokes of the bicircle incident to points 
of its axis. 

The bicircle is the union of its proper region and 
the pair of external sectors. The shape of the proper 
area depends on the type of bicircle (Fig.5). For a 
linear bicycle it is the union of two triangles (Fig.5a) 
or two trapezoids (Fig.5b). In the parabolic bicircle 
it is a “house-shaped” figure, which can be regarded 
as the union of a trapezoid and a triangle (Fig.5c), in 
the hyperbolic one it is the union of two triangles 
(Fig.5d). 

 

Figure 6: Coverage of the polygonal figure by proper 
regions of bicircles. 

Let ܯ is a polygonal figure, ܯ is a subset of the 
figure formed by the union of all spokes of length ݎ 
and more. It is obvious that ܯ is entirely contained 
in ݎ-cover. Proper areas of bicircles form the cover 
of the whole polygonal figure, the cover coincides 
with the union of all spokes, i.e. ܯ ൌ   .(Fig.6) ܯ

Definition 14. Bicircle is called monotonic if the 
radial function monotonically decreases or increases 
along its axis.  

It is clear that a linear bicircle is monotonic, 
because the linear radial function is monotonic on 
the axis. A linear bicircle of constant width 
considered to be monotonic by definition. 

In the parabolic bicircle, if the vertex of the 
parabola is an interior point of the bicircle axis, 
when passing through the vertex the behavior of the 
radial function changes from the decreasing to the 
increasing (Fig.5c). The vertex of the parabola is a 
point of local minimum of the radial function and 
the bicycle at this time is not monotonic. In other 
cases, when the vertex of the parabola lies outside 
the axis or coincides with the end point of the axis, 
the parabolic bicircle is monotonic. 

In the hyperbolic bicircle, the monotonic 
property is determined by the position of the centers 
of end circles with respect to the site line (the line 
passing through the point-sites). If the centers are on 

different sides of this line, the point of intersection 
of this line with the bicircle axis is inside the axis 
and the minimum of radial function is achieved in 
this point – therefore, the bicircle is not monotonic 
(Fig. 5d). In other cases, the hyperbolic bicircle is 
monotonic. 

Calculation of morphological width for 
monotonic bicircles involves a simpler problem than 
for non-monotonic ones. Therefore each non-
monotonic bicircle can be replaced with a pair of 
monotonic ones. So its axis can be divided into two 
monotonic segments by adding vertices in the 
bicircles’ minimal points and splitting the respective 
edges into two parts. In the example (Fig.6) four 
extreme bicircles are divided into monotonic pairs. 
The dotted line shows the corresponding proper 
areas of the bicircles. 

4 PROPER REGIONS AND 
EXTERNAL SECTORS 

Figure 6 presents the monotonic bicircles of all three 
types. Here, ݎ and ܴ are the radii of the small and 
the large end circles, ݈ is the distance between their 
centers. If the bicircle is linear or parabolic, it has 
the generating segment-site, and then ݐ is the length 
of the projection of the bicycle axis at this site: 

ݐ ൌ ඥ݈ଶ െ ሺܴ െ  .ሻଶݎ

In the parabolic bicircle  is the distance between 
the point-site and a line of the segment-site (the 
focal parameter of the parabola). In the hyperbolic 
bicircle ݍ is the distance between point-sites. 

For the linear bicircle (Fig.7a) the proper region 
area is determined as the sum of the areas of two 
trapezoids, with the bases ݎ and ܴ and the height ݐ: 

ܵ ൌ 2 ∙
ோା

ଶ
∙ ݐ ൌ ሺܴ  ሻݎ ∙ (1) .ݐ

The angular size of the external sector of the 
small end circle is 

߮ ൌ ߙ2 ൌ 2 ∙ ݊݅ݏܿݎܽ
௧


 . (2)

For parabolic bicircle (Fig.7b) the proper region 
area is composed of the area of the same trapezoid 
and the area of the triangle with vertices at the 
centers of end circles and at the point-site. The area 
of the triangle is calculated by Heron's formula: 

ܵ ൌ
ோା

ଶ
∙ ݐ  ඥܲሺܲ െ ܴሻሺܲ െ ሻሺܲݎ െ ݈ሻ, (3)

where ܲ ൌ ሺܴ  ݎ  ݈ሻ/2.  
The angular size of the external sector of the 

small end circle of parabolic bicircle is 
߮ ൌ

గ

ଶ
 ߙ ൌ

గ

ଶ
 ݊݅ݏܿݎܽ

ି


. (4)
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         (a)                           (b)                     (c) 

Figure 7: Proper regions and external sectors of bicircles: 
(a) linear, (b) parabolic, (c) hyperbolic. 

Proper region area of the hyperbolic bicircle 
(Fig.7c) is the sum of the areas of the two triangles, 
calculated according to Heron's formula: 

ܵ௬ ൌ 2ඥܲሺܲ െ ܴሻሺܲ െ ሻሺܲݎ െ ݈ሻ. (5)

The angular size of the external sector of the 
small end circle is 

߮௬ ൌ ݊݅ݏܿݎܽ	2


ଶ
. (6)

5 TRUNCATED BICIRCLES 

Disk ݎ-cover of the polygonal figure at ݎ ൌ 0 
coincides with the polygonal figure. As ݎ increases, 
the cover shrinks and the part of the figure, covered 
with disks, diminishes (Fig.8). This cover is a figure 
whose boundary consists of line segments and arcs. 

Disk ݎ-cover is the union of circles with a radius 
greater than or equal to ݎ, inscribed in the polygonal 
figure. We call the set of the centers of these circles 
the axis of the ݎ-cover. Obviously, the axis of the ݎ-
cover is the subset of the polygonal figure skeleton. 
This subset is connected at small values of ݎ, but as 
 increses it can split into several connected ݎ
components (Fig.8). 

Therefore, the polygonal figure skeleton is 
divided into two parts: ݎ-cover axis – the subset 
where the radial function is equal to  ݎ or more, and 
the rest – the subset where the radial function is less 
than ݎ. Both of these subsets can be considered as 
geometric graphs. 

 
(a)                                            (b) 

 
(c)                                            (d) 

Figure 8: Changing of disk ݎ-cover with increasing disk 
radius. 

For ݎ  0, all bicircles of the polygonal figure 
are broken down into three groups: wide (all the 
circles of the bicircle belongs to the ݎ-cover 
completely), narrow (no circle belongs completely), 
and truncated (part of the circles belong completely). 

Let ܴଵ and ܴଶ are the minimum and the 
maximum radii of circles in the monotonic bicircle. 
Than ܴଵ  in the wide bicircle, and ܴଶ ݎ ൏  in the ݎ
narrow bicircle.  

If ܴଵ ൏ ݎ  ܴଶ, then the ݎ-cover includes only 
those circles of the bicircle, whose radius is not less 
than ݎ. We define the truncation operation of such 
bicircle, which is to remove the circles with a radius 
smaller than ݎ. The resulting new bicircle will be 
called truncated. The minimum circle of the 
truncated bicycle changes to the circle of radius r, 
and the maximum one remains the circle with a 
radius ܴଶ.  

 

(a) 

(b) 

(c)

Figure 9: Correction of truncated bicircles. 

Let ܥଵ,  ଶ are the centers of the small and theܥ
great end circles. We determine the new position of 
the small end circle. Let the point ܥ is the desired 
center of the circle with radius ݎ (Fig.9). 

For the linear bicircle (Fig.9a), we have 
ܥ ൌ ଵܥ  ሺܥଶ െ ଵሻܥ ∙   ,ߣ

where ߣ ൌ
ିோభ
ோమିோభ

. In the particular case when     

ܴଶ ൌ ܴଵ, we suppose ߣ ൌ 0. 
For the parabolic bicircle (Fig.9b) choose a polar 

coordinate system ሺߩ, ߮ሻ with the origin at the point- 
site ܸ of the bicircle and the axis orthogonal to the 
segment-site. The equation of the parabola in these 
coordinates is ߩ ൌ



ଵାୡ୭ୱ	ሺఝሻ
 , where  is the focal 

parameter of the parabola. The end circles centers 

VISAPP 2017 - International Conference on Computer Vision Theory and Applications

488



 

have coordinates ܥଵሺܴଵ, ߮ଵሻ and ܥଶሺܴଶ, ߮ଶሻ, where 

߮ଵ ൌ ݏܿܿݎܽ ቀ


ோభ
െ 1ቁ,  ߮ଶ ൌ ݏܿܿݎܽ ቀ



ோమ
െ 1ቁ. The 

required point is ܥሺݎ, ߮ሻ, ߮ ൌ ݏܿܿݎܽ ቀ



െ 1ቁ 

Without loss of generality, we assume ߮ଵ ൏ ߮ଶ. 
Vector ܸܥതതതത is obtained through rotating ܸܥଵതതതതത by angle 
ߠ ൌ ߮ െ ߮ଵ and multiplying by factor 



ோభ
. Then the 

desired center of the circle is ܥ ൌ ܸ 


ோభ
∙ ࡳ ∙  ,തതതതܥܸ

where ࡳ is the rotation matrix by angle ߠ:  

ࡳ ൌ ቀcos	ߠ	 െsin	ߠ
sin	ߠ cos	ߠ

ቁ. 

In the hyperbolic bicircle (Fig.9c) the point ܥ 
lies between ܥଵ and ܥଶ. Let q is the distance between 
point-sites. If  ܸ is a point-site, the projections of the 
vectors ܸܥതതതത, ܸܥଵതതതതത, ܸܥଶതതതതത on the bicircle axis have 
lengths 

ܮ ൌ |തതതതܥܸ| ൌ ටݎଶ െ ቀ


ଶ
ቁ
ଶ
, 

ଵܮ ൌ |ଵതതതതതܥܸ| ൌ ටܴଵ
ଶ െ ቀ



ଶ
ቁ
ଶ
,  

ଶܮ ൌ |ଶതതതതതܥܸ| ൌ ටܴଶ
ଶ െ ቀ



ଶ
ቁ
ଶ
. 

Then ܥ ൌ ଵܥ  ሺܥଶ െ ଵሻܥ ∙ ߣ where ,ߣ ൌ
ିభ
మିభ

. 

These formulas allow us to find a new position 
of the small end circle, then the calculation of the 
area of the bicircle and the angular sizes of the 
external sectors is carried out by the same formulas 
(1)‒(6), as for wide bicircles. 

Therefore, the disk ݎ-cover is the union of two 
sets of bicircles: full bicircles, where ܴ   and ,ݎ	
truncated bicircles, where ܴ ൏ ݎ  ܴ௫. This 
cover is composed from proper regions of these 
bicircles and external sectors of small circles of the 
truncated bicircles. 

At Figure 8 proper regions are highlighted in 
light gray, and the external sectors – in dark gray. 
The total area of the union of the proper regions is 
the sum of areas of bicircles’ proper regions. 

End circles of truncated bicircles in the ݎ-cover 
have a radius ݎ. The area of the external sector with 
an angle ߮ is ܵ௦ ൌ

ఝ

ଶ
∙  ଶ. But the sectors can haveݎ

a nontrivial intersection (Fig.8c).  

6 BICIRCLES' INTERSECTIONS 

Define those of the bicircles, which can have 
significant intersections with each other. When 
calculating ݎ-area it is only necessary to find the 
intersections of adjacent bicircles, i.e. those between 

which gaps are formed by removing narrow bicircles 
having a width smaller than ݎ. 

We are interested in only the external sectors of 
the small end circles of the bicircles. In the 
monotonic bicircle the angular size of the external 
sectors of the small end circle ߮   .ߨ

Definition 15. Two truncated bicircles in the ݎ-
cover called adjacent if there is a route in the 
skeleton connecting the centers of the end circles, 
such that the radial function at all points of the route 
is less than ݎ.   

The external sector of the truncated bicircle may 
have the intersection not only with the external 
sector of another bicycle, but also with its proper 
region. Figure 9 shows examples of possible mutual 
arrangements of the external sectors of the two 
truncated bicircles. In the first case (Fig.10a) in the 
intersection of two sectors the “lens” figure, the 
boundary of which consists of two equal circular 
arcs, is formed. In the second case (Fig.10b) the 
intersection of the sectors is a more complex figure 
whose boundary includes straight-line segments of 
the spokes and the circular arcs. The gray 
highlighted areas in Figure 10 are formed by the 
union of the external sectors except for the 
intersection of them with the proper areas of the 
bicircles. Such areas will be called the outer zone of 
the bicircle pair. 

(a) (b) 

Figure 10: Mutual arrangement of the pair of crossing 
external sectors of truncated bicircles. 

We denote: 
ܵௗ௦ is the area of the end circles of the 

bicircles; 
ܵ௦ is the area of the lens formed by the 

intersection of the end circles; 

ଵܵ
ሺ௫௧ሻ, ܵଶ

ሺ௫௧ሻ are the areas of the bicircles’ 
external sectors; 

ଵܵ
ሺ௧ሻ, ܵଶ

ሺ௧ሻ are the areas of internal sectors of 
the end circles. 

Internal sector is the addition of the external 
sector in the end circle. Internal sectors of two 
adjacent truncated bicircles do not intersect each 
other. Since the angular size of the external sector 
does not exceed ߨ, it turns out that the internal sector 
size is not less than ߨ. 

The area of the outer zone formed by a pair of 
external sectors of the two intersecting truncated 
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bicircles is the sum of the areas of these sectors less 
the area of the lens formed by the intersection of the 
end circles: 

ܵ ൌ ଵܵ
ሺ௫௧ሻ  ܵଶ

ሺ௫௧ሻ െ ܵ௦. (7)
Indeed, the total area of the union of two 

intersecting end circles is equal to 
2ܵௗ௦ െ ܵ௦.  
Since internal sectors of the circles do not 

intersect: 
ܵ ൌ ሺ2ܵௗ௦ െ ܵ௦ሻ െ ൫ ଵܵ

ሺ௧ሻ  ܵଶ
ሺ௧ሻ൯. 

Obviously,  

ܵௗ௦ ൌ ଵܵ
ሺ௫௧ሻ  ଵܵ

ሺ௧ሻ ൌ ܵଶ
ሺ௫௧ሻ  ܵଶ

ሺ௧ሻ.   
Taking this into account, we obtain the desired 

relation to the area of the outer zone: 

ܵ ൌ ሺܵௗ௦ െ ଵܵ
ሺ௧ሻሻ  ሺܵௗ௦ െ ܵଶ

ሺ௧ሻሻ െ ܵ௦ ൌ 

ൌ ଵܵ
ሺ௫௧ሻ  ܵଶ

ሺ௫௧ሻ െ ܵ௦. 
Let ߮ଵ, ߮ଶ are the angular sizes of two 

intersecting external sectors. Then 

ଵܵ
ሺ௫௧ሻ ൌ

ఝభ∙మ

ଶ
	,  ܵଶ

ሺ௫௧ሻ ൌ
ఝమ∙మ

ଶ
. 

The angular size of the lens formed by the two 
circles of radius ݎ, with centers located at a distance 
݄ ൏  of each other, is ݎ2

ߠ ൌ ݏܿܿݎܽ


ଶ
.  

The area of this lens is 
ܵ௦ ൌ ߠଶሺݎ െ sin  .ሻߠ

Thus, the area (7) of the outer zone of the pair of 
intersecting bicircles is equal to 

ܵ ൌ
ఝభ∙మ

ଶ


ఝమ∙మ

ଶ
െ ߠଶሺݎ െ sin ሻ. (8)ߠ

The case of three or more intersecting external 
sectors seems more difficult. Possible options for the 
intersection of three equal circles are depicted in 
Figure 11.  

                          

(a)                           (b)                                (c) 

Figure 11: Intersections of three end circles of the 
truncated bicircles. 

However, as shown in (Lomov and Mestetskiy, 
2016), in the case of the intersection of three 
truncated bicircles options shown in Figure 11a,b 
are impossible. The only possible option for the 
intersection of three truncated bicircles is pairwise 
intersections as in the example on Figure 11c.  

Consequently, the area of the outer zone formed 
by the external sectors of three pairwise 
intersecting truncated bicircles, is the sum of the 
areas of these sectors minus the areas of lenses 

formed by the intersection of end circles. The area 
of the disk cover is the sum of areas of proper 
regions of all bicircles and areas of external sectors 
of the truncated bicircles minus the areas of 
intersections of adjacent truncated bicircles. 

Search for the pairs of adjacent truncated 
bicircles is performed on the base of the polygonal 
figure skeleton, starting from the minimum points 
of the radial function. As a result of the sequential 
analysis of width of these bicircles, we find all 
truncated bicircles, bordering the narrow 
component of the skeleton, adjacent to the given 
minimum point of the radial function.    

7 STRUCTURE OF THE 
ALGORITHM 

Thus, to calculate the ݎ-area we can use the 
representation of the disk ݎ-cover as the union of 
bicircles. To do this, take the following steps: 

1. Build the medial representation of a 
polygonal figure in the form of a skeleton and 
a radial function. The algorithm described in 
(Mestetskiy, 2008). 

2. Find the edges, in which the minimum points 
of the radial function are located, and divide 
them down into monotonic parts (Section 3). 
Build the set of monotonic bicircles covering 
the polygonal figure.  

3. For a given value of ݎ find the set of 
truncated bicircles and calculate the positions 
of their small end circles (Section 5). 

4. For complete and truncated bicircles calculate 
the areas of proper regions and take their sum 
(Section 4).  

5. For truncated bicircles determine their 
external sectors and find their total area 
(Section 5). 

6. Find all the lenses in the intersections of the 
external sectors and calculate their total area 
(Section 6).   

7. Find the ݎ-area as the sum of areas of proper 
regions and end sectors of the bicircles minus 
the total area of the lens. 

8 COMPUTER FONT 
RECOGNITION 

As an example of the proposed method of 
morphological image analysis we consider the 
problem of computer font recognition by some 
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context. Currently, thousands of computer fonts 
developed.The need to identify what font is used in 
the text arises for designers, font developers and 
copyright holder companies. The aim of the 
experiment is to evaluate the possibilities of using 
the proposed method for solving these problems.  

Example (Fig.12a) demonstrates width 
diagrams for 5 letters of the Times New Roman 
font, belonging to the word HORSE. The example 
shows that the font characters have clearly 
distinguishable individual portraits. 

 

(a) 

 

(b) 

Figure 12: Width diagrams of different characters of the 
same font (a) and the same character in different fonts (b).  

Differences between the portraits of the same 
letter H, typed by different fonts (Times New 
Roman, Aria, Garamond, Britannic Bold, 
Rockwell) are shown in next example (Fig.12b).  
These diagrams are obtained for high-resolution 
images, which are considered as reference samples. 

To conduct the experiment under more realistic 
conditions, reference images of 52 characters of the 
Latin alphabet (26 uppercase and 26 lowercase 
letters) for 1848 typefaces ParaType digital font 
collection (Yakupov et al., 2015) have been 
constructed. For the reference images the width 
diagrams were obtained by the method described in 
this article. To do this, each character was drawn 
on a binary raster image on such a scale that the 
height of a capital letter H was 1000 pixels. For 
these images continuous skeletons were 
constructed and their basis width histograms were 
calculated with the radius step of 0.5 pixel.  

For the same fonts the images of the characters 
were obtained in a lower resolution, so that the 
height of letter H was 100 and 70 pixels. For these 

characters, width diagrams also were built. Step 
radius in the calculation was 0.05 and 0.035 pixels, 
respectively. These diagrams were normalized so 
that they could be compared with the diagrams of 
reference font characters. Normalization was done 
by stretching the diagrams 10 times along the ݔ-
axis and 100 times along the ݕ-axis and 14.29 
times along the ݔ-axis and 204.08 times along the 
 axis for low resolutions of 100 and 70 pixels-ݕ
respectively. As a result, all the normalized 
diagrams used the same set of radius values. 

Creating of the skeletons and the calculation of 
width diagrams (for 52 glyphs of 1848 fonts) took 
in total less than 4 minutes on the computer with 
Intel® Core i5TM processor and 6GB of RAM  

Further, for each font images of the 1000 
common English words, random 30% of which were 
converted to upper case, were composed from the 
letters in low resolution. These images were used as 
the test set. Next, the diagrams of the letters on test 
images were compared with the diagrams of 
reference images in ܮଵ metric. As an integral font 
similarity metric we use a linear combination of 
distances between all characters present in the 
word. The coefficients of the linear form for each 
word were obtained by training on the entire set of 
test fonts. In the experiment, we calculated the 
distances for 52 letters between all pairs of 1848 
typefaces, which took 18 minutes, and 1000 times 
trained the linear form, which took 32 minutes.  
This means that the time of the request – checking 
the typeface in the basis of the references – is 2 
seconds and most of this time is spent to training of 
the linear form. 

The experimental results showed that the font 
recognition accuracy by one word at the resolution 
of 100 was 91%, and at a resolution of 70 – more 
than 81%. Using the imaginary word containing all 
52 characters we achieved the accuracy of 97% and 
95% respectively. 

Thus, the experiment confirmed the efficiency 
of the proposed method and showed its efficiency 
on the practical task of comparing a large number 
of images (1848184852) with a fairly high 
recognition quality. 

9 CONCLUSION 

The proposed approach opens up new possibilities 
for the use of highly efficient computational 
geometry algorithms in image analysis and shape 
recognition. The continuous model of width of 
polygonal figures on the basis of the disk cover 
allowed to make the decomposition of the original 
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problem and reduce the computation to simple 
geometric calculations. 

The developed algorithm is the first to provide 
accurate analytical representation of the width 
distribution function of a polygonal figure. Raster 
objects approximation with polygonal figures makes 
it possible to use the method in the analysis and 
recognition of images. The high efficiency of the 
proposed method allows to compare and measure the 
similarity of figures by their width in real-time 
computer vision systems. 
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