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Abstract: In single view visual target tracking, an occlusion is one of the most challenging problems since target’s
features are partially/fully covered by other targets as occlusion occurred. Instead of a limited single view,
a target can be observed from multiple viewpoints using a network of cameras to mitigate the occlusion
problem. However, information coming from different views must be fused by relying less on views with
heavy occlusion and relying more on views with no/small occlusion. To address this need, we proposed a new
fusion method which fuses the locally estimated positions of a person by the smart cameras observing from
different viewpoints while taking into account the occlusion in each view. The genericity and scalability of the
proposed fusion method is high since it needs only the position estimates from the smart cameras. Uncertainty
for each local estimate is locally computed in a fusion center from the simulated occlusion assessment based on
the camera’s projective geometry. These uncertainties together with the local estimates are used to model the
probabilistic distributions required for the Bayesian fusion of the local estimates. The performance evaluation
on three challenging video sequences shows that our method achieves higher accuracy than the local estimates
as well as the tracking results using a classical triangulation method. Our method outperforms two state-of-
the-art trackers on a publicly available multi-camera video sequence.

1 INTRODUCTION

Despite many years of research, visual target tracking
still remains a very challenging problem in computer
vision. Among various targets, a human body is one
of the most difficult targets to track due to its non-
rigid nature, i.e., the movement of body parts, such as
arms and legs, alters its appearance. The appearance
of a person can also change with the orientation of the
body with respect to a camera view or with the vari-
ation in scene illumination. When the scene contains
more than one moving person, the tracking task be-
comes even more difficult since a person may some-
times be occluded by another person(s) in a camera
view.

Many monocular camera tracking methods (Khan
and Shah, 2000), (Yang et al., 2009), (Henriques
et al., 2011) have been proposed to track occluded
people reliably from a single viewpoint by using var-
ious occlusion prediction and handling techniques.
However, these methods rely on a robust segmenta-
tion of the non-occluded regions of a target when par-
tial occlusion occurs. If a target is fully occluded,
no observation is available and single view occlusion
handling methods just interpolate an unavailable ob-

servation by using motion models and constraints on
temporal continuity. The limitation to a single view-
point in monocular camera tracking systems can be
avoided by deploying a network of cameras with over-
lapping views, observing the same target from differ-
ent viewpoints to handle the occlusion problem. The
emergence of low-cost cameras and cheaper comput-
ing power makes the multi-camera tracking approach
more feasible for practical applications.

However, when a target is observed/tracked from
different viewpoints with multiple cameras, there is
a need for an algorithm which systematically inte-
grates those observations/tracking results to improve
the overall tracking accuracy and precision. Many
algorithms have been proposed to fuse information
from multiple cameras at either the feature level or
the symbol level. Feature level data fusion requires
the transmission of extracted image features from the
cameras to a fusion node which sometimes demands a
large communication bandwidth. Moreover, the fea-
ture level fusion algorithms are usually coupled to a
particular feature or to a set of features. Therefore,
it is usually required to modify a fusion method or to
replace it with a different fusion method, if another
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set of features is used. This limits the scalability and
adaptability of the camera network.

In the symbol level data fusion, only symbols, i.e.,
estimated positions possibly accompanied by corre-
sponding uncertainties, are sent to a fusion node to
generate fused estimates. Since positions are usually
represented with few numbers, the inter-camera com-
munication bandwidth requirement is relatively low.
The lower communication bandwidth requirement re-
sults in a lower latency in the distributed multi-camera
tracking. When there is a power consumption con-
straint on the wireless smart cameras (for example,
battery-powered smart cameras which communicate
with a fusion center over the wireless links), it is de-
sirable to minimize the amount of data exchanges the
since power consumption increases with the amount
of data being sent and received. Moreover, the track-
ing algorithm deployed on the smart cameras is de-
coupled from the fusion algorithm in the symbol level
fusion. It is possible to have different tracking algo-
rithms deployed on different cameras within the net-
work as long as they all estimate the same state of a
target. Therefore, symbol level fusion provides higher
genericity and scalability in multi-camera tracking.

In this paper, we propose a new symbol level data
fusion method which takes into account the degree of
occlusion in each camera view. Each smart camera
locally estimates the position of all targets and sends
them to a fusion center. Since only positions are sent
to a fusion center, the latency of the whole tracking
system is usually low. Using the projective geome-
try, a fusion center locally simulates the occlusions in
each camera view to compute the uncertainty of each
estimate by the corresponding camera. Fused esti-
mates are then made by using a Bayesian approach
based on the local estimates from all cameras and
their corresponding uncertainties. Since our method
requires only local estimates from smart cameras, it is
feasible to deploy any black box single view tracker
on any smart camera in the network.

The main contribution of this paper is the formu-
lation of a fusion algorithm which fuses the local esti-
mates of the same target from different camera views
based on the corresponding uncertainties which are
estimated from simulated occlusions. Our method al-
lows high genericity and scalability while maintain-
ing low latency. Another contribution is the per-
formance evaluation of the proposed fusion method
on three challenging multi-camera video sequences.
The evaluation shows that our method drastically im-
proves the accuracy in the video sequences containing
frequent and severe person–person occlusions. We
also demonstrate that a complete decentralized multi-
camera tracking system which is the combination of

our fusion method and previously implemented single
view tracker (Bo Bo et al., 2015) outperforms state-
of-the-art trackers in terms of multiple object tracking
accuracy.

The rest of this paper is organized as follows. In
Section 2, we gives a brief description of related work
in the literature. Section 3 thoroughly discusses the
details of our proposed fusion method. The perfor-
mance evaluation of our method and the interpretation
of the results are presented in 4. Finally, this paper is
concluded in Section 5.

2 RELATED WORK

According to a categorization by (Luo and Kay,
1990), data or information from multiple sensors can
be fused at signal, pixel, feature and symbol levels
of representation. The majority of multi-view track-
ers belongs to either the feature level or the symbol
level data fusion scheme. In multi-view tracking, fea-
tures or measurements to be fused can be foreground
detected images, histograms, occupancy maps, object
detector responses and so on. A central tracker uses
the output of the feature level fusion to estimate the
positions of the targets. For symbol level fusion in
multi-camera tracking, symbols to be fused are the
local position estimates of the smart cameras, which
are sometimes accompanied by the corresponding un-
certainties.

Some trackers (Mittal and Davis, 2003), (Fleuret
et al., 2008), (Grünwedel et al., 2012) build prob-
abilistic occupancy maps (POM) from foreground
detected images of different cameras views using
Bayesian or Dempster-Shafer theory. The trajecto-
ries of the targets are estimated from the resulting
POM. The trackers of (Du and Piater, 2006), (Du
and Piater, 2007) and (Mori et al., 2008) deploy par-
ticle filters in which the weight of each particle is
calculated from measurements from multiple views
using the Bayesian fusion approach. The approach
of (Munoz-Salinas et al., 2009) is similar but image
measurements are fused using Dempster-Shafer the-
ory to computed the particles’ weights. In the work
of (Andriyenko and Schindler, 2010), person detector
response scores from different views are fused into
an observation model, which is one of the terms in
their proposed energy function. This energy func-
tion is minimized to find the best trajectories. Feature
level fusion is also used in our previous works (Bo Bo
et al., 2014a) and (Bo Bo et al., 2016), in which likeli-
hoods of people positions computed from foreground
images of different cameras are fused in a fusion cen-
ter based on Bayesian theory.
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The aforementioned feature level fusion based
trackers require the transmission of image fea-
tures which are computed on each camera such as
foreground detected images, histograms, occupancy
maps, etc. to a central tracker or a fusion cen-
ter. Therefore, the communication bandwidth require-
ments can be high and some of these trackers are not
feasible for implementing in a distributed computing
scheme. Moreover, feature level data fusion meth-
ods are usually coupled to specific feature/set of fea-
tures as well as the tracking method. Adaptation of
the fusion method to a new feature/set of features is
usually not straightforward. Therefore, data fusion at
the feature level sometimes results in lower generic-
ity and scalability. However, symbol level fusion al-
lows higher scalability since cameras send locally es-
timated positions, which is much more compact than
image features, to the fusion center. In people track-
ing applications, symbols we consider are the locally
estimated positions of persons in either image coor-
dinates or world coordinates. Since data fusion is
performed at the symbol level, different single view
tracking algorithms can be deployed on cameras in
the network.

Most widely used symbol level fusion methods in
visual people tracking include triangulation, Bayesian
estimation and so on. In the multi-view tracking
method proposed by (Bredereck et al., 2012), each
smart camera in the network locally estimates the po-
sition of a target in image coordinates. The fused
estimate of a target position in world coordinates is
the centroid of the pairwise triangulations of local
estimates from all cameras. Similarly, locally esti-
mated positions on the ground plane from each ob-
serving smart camera are fused by triangulation in
our previous work of (Bo Bo et al., 2014b). A dis-
tributed tracking method proposed by (Gruenwedel
et al., 2014) fuses positions estimated by each camera
using a Bayesian estimating methods. However their
fusion method does not take into account of occlu-
sion.

Recently (Niño-Castañeda et al., 2016) proposed a
Bayesian method to fuse trajectories produced by dif-
ferent tracking methods into more accurate trajecto-
ries. This method is used for a semi-automatic anno-
tation of large visual target tracking datasets. In that
work, probability distributions required for Bayesian
fusion are learned from the data. An important re-
quirement is that the training data must contain ex-
amples of all scenarios (occlusion, illumination varia-
tion, etc.), which usually cause performance degrada-
tion in each tracker. Since that method is intended for
an automatic annotating of large datasets with some
manual human interventions, it is not feasible to use

Figure 1: Building blocks of distributed multi-camera
tracking system.

for fully automatic people tracking.

3 OCCLUSION ROBUST FUSION

In this paper, we consider a decentralized multi-
camera tracking system as depicted in Fig. 1. Each
smart camera c independently estimates the ground
plane position of a person m in its view denoted as
sm,c = (xm,c,ym,c)

T . If M persons are in the scene,
a smart camera c estimates the positions s1,c, . . .sM,c
of all M persons. As depicted in Fig. 1, C cam-
eras are observing and tracking M persons at the
same time. Upon the completion of local estima-
tion, each smart camera c sends its local estimates
to a fusion center. Therefore, C different estimates
for M persons are received by the fusion center as
s1,1, . . .sM,1,s1,2, . . .sM,C. The task of the fusion center
is to integrate these local estimates systematically into
more accurate and reliable global estimates s1, . . .sM
by taking into account of the occlusion in each camera
view. The detailed description of the proposed fusion
algorithm will be presented in the following subsec-
tions. The more accurate fused positions can be fed
back to all smart cameras, as shown with dotted ar-
rows in Fig. 1. Upon receiving of more accurate fused
estimates, tracker on each smart camera can correct
the current state of a target if its locally estimated po-
sition is far from the fused estimate.

3.1 Bayesian Fusion

As mentioned before, the main task of the fusion cen-
ter is to estimate the fused positions s1, . . .sM from
local estimates s1,1, . . .sM,1,s1,2, . . .sM,C sent by all C
smart cameras. In probabilistic terms, this estimation
problem can be formulated as finding s1, . . .sM that
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maximizes the posterior distribution

P(s1, . . .sM|s1,1, . . .sM,1,s1,2, . . .sM,C). (1)

However, searching for s1, . . .sM that maximizes the
posterior distribution in expression (1) is computa-
tional complex. This complex simultaneous maxi-
mization of all fused positions can be simplified as
a maximization of individual fused positions if we as-
sume that the fused positions s1, . . .sM are condition-
ally independent. This assumption implies that the
fused position of a person is independent of the fused
positions of other persons. The complex maximiza-
tion problem is now reduced to

P(sm|s1,1, . . .sM,1,s1,2, . . .sM,C), (2)

where m ∈ {1, . . .M}. Due to the assumption of inde-
pendence between fused positions, it is possible that
the same ground plane position can be occupied by
multiple persons. However, this rarely occurs in prac-
tice.

The posterior distribution in expression (2) must
take into account the possible occlusions over a per-
son m in the view of each smart camera. Given the lo-
cal position estimates s1,c, . . .sM,c of a smart camera c,
the possible occlusions over a person m can be quan-
tified as wm,c. The detailed description on the com-
putation of wm,c will be discussed in the following
Subsection 3.2. Since wm,c summarizes the possible
occlusions of other people over a person m, the con-
dition of the posterior distribution in expression (2)
can be rewritten as

P(sm|sm,1, . . .sm,C,wm,1, . . .wm,C). (3)

According to Bayes rule, maximization of the pos-
terior distribution in expression (3) can be done by
maximizing the product of a likelihood and a prior
distribution:

P(sm,1, . . .sm,C,wm,1, . . .wm,C|sm)P(sm). (4)

Since we do not have a prior knowledge of which lo-
cation is more likely to be the true position of a person
m, the prior distribution P(sm) is set to be a uniform
distribution, i.e, all locations are equally likely to be
the true position of a person m. Finally, a intractable
maximum a posteriori estimation problem becomes a
maximum likelihood estimation problem as:

ŝm = arg max
sm

P(sm,1, . . .sm,C,wm,1, . . .wm,C|sm). (5)

Here we make an additional assumption of con-
ditional independence between the local estimations
by the smart cameras. This assumption implies that
conditioned on the fused position of a person, the

local estimation of the person’s position in a par-
ticular camera is independent of other cameras. It
is a practically valid assumption since a single view
tracker in each smart camera independently estimates
the position of a person based only on image mea-
surements from its own view. Therefore, the likeli-
hood of the local estimates of all smart cameras being
sm,1, . . .sm,C,wm,1, . . .wm,C given the fused position sm
is the product of the likelihood of the local estimates
of each smart camera given the the fused position sm.
Hence, the likelihood can be written as:

P(sm,1, . . .sm,C,wm,1, . . .wm,C|sm)

=
C

∏
c=1

P(sm,c,wm,c|sm).
(6)

What we need now is to compute the likelihood
P(sm,c,wm,c|sm) for each camera.

3.2 Likelihood from Occlusion

As discussed before, a fusion center receives locally
estimated positions from smart cameras. Depending
on the tracking algorithm deployed on the smart cam-
eras, it is possible to send the uncertainty of each es-
timate to the fusion center. However in this work, we
assume that smart cameras do not send any kind of un-
certainty for each estimate. This assumption increases
the genericity of our fusion methods since local esti-
mates of different single view tracking methods can
be fused without caring about how each method com-
putes uncertainties of the estimates. Therefore, the
likelihood P(sm,c,wm,c|sm) for each camera must be
computed from local estimates of cameras and other
pre-acquired knowledge such as the geometric rela-
tionships between the cameras. Since a fusion center
does not have any prior knowledge of the uncertainty
of the local tracker on each camera, it assumes that the
uncertainty of a local estimate of a target correlates to
the severity of occlusion over the target.

Given that a fusion center knows the calibration
matrices of a smart camera c, person–person occlu-
sion in the view of a camera c can be simulated from
the camera c’s locally estimated positions of people.
First, a 3D model of a person (cuboid, cylinder, etc.)
is placed at position of each person being tracked, that
is, at s1,c, . . .sM,c. These 3D models are projected on
the image plane of the camera c as ω(s1,c), . . .ω(sM,c).
For simplicity we denote Ωc = {ω(s1,c), . . .ω(sM,c)}
as a set of projections of 3D models of all M persons.
Person m at position sm,c is possibly occluded by one
or more other persons if the projection ω(sm,c) of per-
son m overlaps with the union of the projections of
all other persons. The severity of a possible occlusion
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can be quantified as

ω̂c(sm,c) = ωc(sm,c)∩
⋃

ω∈(Ωc\ωc(sm,c))

ω. (7)

The area of ω̂c(sm,c) increases as more body parts
of a person m are covered by other persons in the view
of a camera c. However, the maximum possible size
of ω̂c(sm,c) is ωc(sm,c). Therefore occlusion severity
can be normalized as

wm,c =
|ω̂c(sm,c)|
|ωc(sm,c)|

, (8)

where the operator |.| denotes the area of a geometric
shape. When a person m is completely occluded by
one or more other people, wm,c is at its highest, i.e.,
wm,c = 1. Likewise, it is at its lowest, i.e., wm,c = 0 if
no one is occluding a person m.

Occlusion usually degrades the performance of all
types of visual trackers. Some trackers are designed
to be more robust against occlusion. However, re-
gardless of tracker robustness to occlusion, if a per-
son m is partially occluded in the view of a camera
c but not occluded in the view of another camera c′,
it is more likely that the positional error on the es-
timate sm,c made by the camera c is larger than the
positional error of sm,c′ . Therefore the distribution
P(sm,c,wm,c|sm) must model the uncertainty of the lo-
cal position estimates based on the severity of the oc-
clusion. If a person is not occluded the standard devi-
ation σ of P(sm,c,wm,c|sm) should be small and the σ
should increase with the severity of the occlusion.

As in the work of (Niño-Castañeda et al., 2016),
the distribution P(sm,c,wm,c|sm) can be learned from
the training data. Another approach is to select the
probability density function and the parameters that
best fit the training data. However, this method re-
quires a large training data and it is probably nec-
essary to retrain with a new training data if orienta-
tion and/or location of a camera is changed. More-
over, the shape of the distribution differs depending
on many factors such as the position and orientation
of a camera with respect to the scene, the deployed
tracking algorithm, the calibration accuracy and so
on. Therefore, to make our solution generic, we as-
sume that the uncertainty of the local estimate due
to occlusion can be modeled as a normal distribu-
tion: mean µ is at a locally estimated position and
standard deviation σ is directly proportional to wm,c.
Therefore, the likelihood of the locally estimated po-
sition and its uncertainty being sm,c and wm,c, given
the fused position sm is computed as

P(sm,c,wm,c|sm) = N (sc,m,

[
σ2 0
0 σ2

]
) (9)

where
σ = e−(1−wm,c). (10)

3.3 Implementation

To demonstrate how our fusion method handles oc-
clusion problem well, we implement a complete de-
centralized multi-camera tracking system as depicted
in Fig. 1 in which the proposed fusion method is de-
ployed on a data fusion block. An existing single
recursive tracker which was proposed in our previ-
ous work (Bo Bo et al., 2015) is used for the local
tracking on smart camera blocks. The tracker on each
camera tracks multiple persons by recursively maxi-
mizing the likelihood of an observation given the po-
sitions of all persons. Foreground detected binary im-
ages computed by a texture-based foreground detec-
tion method (Bo Bo et al., 2012) are used as obser-
vations Fc in the likelihood computation. The whole
system is implemented in C++ as a single executable
in which local tracking of each camera and fusion is
computed sequentially.

For the local tracking on each smart camera, we
simply use the likelihood function P(Fc|s1,c, . . .sM,c)
together with the default parameters reported in
(Bo Bo et al., 2015). The search space for maximiz-
ing P(Fc|s1,c, . . .sM,c) is defined based on the known
positions of all persons at the previous frame and the
physical limitation that a person cannot move very far
between two consecutive frames. Then, the real-time
likelihood maximization is performed by applying a
greedy search algorithm. The fused estimates are fed
back to all smart cameras so that local trackers can
correct their local estimates, which are used as prior
for the next cycle of position estimation. This pre-
vents the local trackers from potential drifting due to
error accumulation during the recursive state estima-
tion.

4 PERFORMANCE EVALUATION

4.1 Videos for Evaluation

We evaluate the performance of the proposed fusion
method on both indoor and outdoor multi-camera
video sequences. For Indoor video, we capture a
video sequence in a room of 8.8×9.2 m2 using four
calibrated cameras with overlapping views. The video
is captured with the resolution of 780×580 pixels at
20 fps and it has a total duration of approximately six
minutes. Up to four people are walking in the scene
and they often occlude each other.

For the outdoor scenario, we use the publicly
available Campus 1 video sequence,1 which is cap-

1http://cvlab.epfl.ch/data/pom
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tured by Fleuret et al. for the performance evaluation
of their tracker based on occupancy mapping (Fleuret
et al., 2008). Three cameras with overlapping views
are used to capture the video sequence with a resolu-
tion of 360×288 pixels at 25 fps while up to four peo-
ple are walking in front of the cameras. Due to the low
camera pitch angle, this sequence is very challenging
with respect to accurate position estimation with local
tracking on smart cameras.

We also evaluate our method on the PETS2009
S2.L1 video sequence,2 which is widely used as a
benchmark in the multi-person tracking literature. Up
to 8 persons are present in the scene and the video
lasts for about 1.5 minutes. Although it is a relatively
short video, it contains various kinds of multi-people
tracking challenges such as low frame rate (7 fps), fre-
quent person–person occlusions and close proximity
between persons. The PETS2009 S2.L1 is captured
with eight cameras but calibration accuracy of four
cameras are quite low. Therefore, only four cameras
with the higher calibration accuracy is used in our per-
formance evaluation. accuracy of the unused cameras.
Ground plane positions for each person have been
manually annotated every 20 frames for both Indoor
and Campus 1 video sequences. However, annotated
ground truth for PETS2009 S2.L1 video sequence is
publicly available3.

4.2 Performance Metrics

For the performance evaluation measurement, we
choose the CLEAR-MOT metrics (Bernardin and
Stiefelhagen, 2008) since they are the most widely
used systematic evaluation metrics in literature. Many
state of the art trackers (Andriyenko and Schindler,
2011), (Yang et al., 2009), (Berclaz et al., 2011),
(Bredereck et al., 2012) use these metrics to measure
the performance of their methods. These metrics take
into account all types of errors produced by multiple
object tracking systems and summarize them into the
Multiple Object Tracking Precision (MOTP) and the
Multiple Object Tracking Accuracy (MOTA). MOTP
measures the positional error between the ground
truth and the tracker’s estimate pairs over all frames.
It is computed as

MOT P = (Td−
∑m,t dm,t

∑t ct
) · 100

Td
, (11)

where dm,t is the Euclidean distance between the
tracker’s estimate sm,t and the corresponding ground
truth. The total number of matches ct is the number

2http://www.cvg.reading.ac.uk/PETS2009/
3http://www.milanton.de/data/

of ground truth and tracker’s estimate pairs, for which
the Euclidean distance is less than the threshold Td .

If the Euclidean distance between a tracker’s esti-
mate and its nearest ground truth exceeds the thresh-
old Td , it is counted as the number of object miss
denoted as misst . Moreover, if a ground truth point
has no matching tracker estimate, it is counted as the
number of false positives denoted as f pt . When mul-
tiple objects are getting close to each other, the tracker
sometimes confuses the identity of the objects. This
misidentification of two objects made by a tracker
is counted as the number of identity mismatches de-
noted as mmet . These error types are summarized into
MOTA as

MOTA =

(
1− ∑t(misst + f pt +mmet)

∑t gt

)
·100,

(12)
where gt is the total number of available ground truths
at time t. For both MOTP and MOTA, a higher
value indicates a better performance. Ideally track-
ers should have high MOTP and MOTA but some-
times one of the two metrics may be more important
depending on higher level applications which use the
trajectories of the tracker.

4.3 Quantitative Evaluation

We run our complete multi-camera tracker implemen-
tation on the aforementioned three video sequences.
To observe how much our fusion method improves
the performance, we also use the classical triangula-
tion method to fuse the local estimates from the cam-
eras. Both results are compared against the ground
truths in terms of MOTA and MOTP, and listed in
Table 1. The table shows that both triangulation and
our method perform equally on the Indoor video se-
quence. The Indoor video sequence is captured with
cameras installed at the height of approximately three
meters with high camera pitch angle. Therefore, full
person–person occlusion rarely occurs in this video
sequence. If there is only small partial occlusion, the
single view tracker (Bo Bo et al., 2015) can handle it
well and the local estimates are quite accurate. Since
the accuracy of all local estimates is high, the trian-
gulation of those local estimates are also accurate.
This makes the Indoor video sequence the least chal-
lenging of all three test video sequences. Therefore,
both methods achieve the highest MOTA of 98% and
MOTP of 82% on Indoor video sequence.

On the Campus video sequence, our method out-
performs other methods with a MOTA of 80% while
triangulation method only achieves a MOTA of 72%.
However, the MOTP of the triangulation method is a
bit higher than our method. Since MOTP is sensitive
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Table 1: Comparison of MOTA and MOTP for triangulation
(TRI) and Bayesian (BAY) fusion.

MOTA MOTP
Video TRI BAY TRI BAY
Indoor 98% 98% 82% 82%

Campus 72% 80% 79% 77%
PETS2009 79% 94% 66% 72%

to annotation errors in the ground truth, a small dif-
ference in MOTP is not significant. The performance
difference is the largest in terms of both MOTA and
MOTP on PETS2009 video sequence. The MOTA of
our method is 15% higher and MOTP is 6% higher
than the triangulation method. Unlike in the Indoor
video sequence, cameras are installed at a height
of approximately two meters with a relatively low
camera pitch angle in the Campus and the PETS2009
video sequences. Therefore, severe/full occlusions
often occur in these video sequences. Since single
view trackers usually can not handle full occlusion
well, local estimates in a view with severe/full occlu-
sion are sometimes far from the actual positions.

When the majority of the cameras provide local
estimates with low accuracy, the position obtained by
triangulation usually has a large positional error al-
though the local estimates from the minority of the
cameras with no or small occlusion are very accurate.
However, our fusion method simulates occlusion in
each camera view to assess the uncertainty of each lo-
cal estimates. This uncertainty defines the importance
of the corresponding local estimate in the computa-
tion of a fused position. Based on this uncertainty,
our method assigns a higher weight to the local es-
timates from the views with no/small occlusion and
a lower weight to the local estimates from the views
with severe/full occlusion. By suppressing the influ-
ence of the local estimates with potentially low accu-
racy and relying more on the local estimates which are
more likely to have a higher accuracy, our method can
handle occlusion efficiently and improves the overall
tracking accuracy.

To validate the contribution of the proposed
method, we compare the performance of our tracker
with two state-of-the-art multi-camera trackers pro-
posed in the work of (Berclaz et al., 2011) and
(Bredereck et al., 2012). As a recap, the tracker of
(Berclaz et al., 2011) is based on the feature level fu-
sion scheme whereas the tracker of (Bredereck et al.,
2012) is implemented in symbol level fusion scheme.
In their work, the PETS2009 S2.L1 video sequence
is used to evaluate the performance of their tracker
and tracking performance is also reported in term
of MOTA and MOTP. Since MOTA is more robust
against bias and mistakes in manual ground truth an-

(a)

(b)

(c)
Figure 2: Time series plots of: (a) occlusion severity w2,4
of Person 2 in the view of the camera 4, (b) positional error
of Person 2’s position locally estimated by the camera 4
in centimeter and (c) positional error of person 2’s fused
estimate in centimeter.

notation, only the MOTA of the trackers is compared.
The reported MOTA of (Berclaz et al., 2011) and
(Bredereck et al., 2012) is 76% and 80% respectively.
Our method achieves a significantly better MOTA of
94%.

4.4 Analysis and Discussion

We further analyze the results of the local estimations
and the proposed fusion method by comparing it to
the ground truth. Figure 2 (b) shows the positional
error made by a local tracker on the camera 4 when
estimating the position of a person with ID 2 (denoted
as Person 2) between frame 0 to 180 of the PETS2009
video sequence. If the positional error is compared to
the occlusion severity wm,c, we found that high error
peaks in Fig. 2 (b) usually correspond to occlusion ra-
tio wm,c peaks in Fig. 2 (a). However in some cases,
the local trackers are still able to make local estimates
despite the presence of heavy occlusions. An exam-
ple of this scenario can be seen between frame 100
and 120 of plots in Fig. 2 (a) and (b). Moreover, the
positional error can be increased by other factors such
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(a)

(b)
Figure 3: Distributions of P(s2,1,w2,1|s2), P(s2,2,w2,2|s2),
P(s2,3,w2,3|s2) and P(s2,4,w2,4|s2): (a) tilted profile view,
and (b) top view.

as occlusion by objects (table, lamp post, car, etc.) in
the scene, variation in lighting, or when a target is
partially outside of the field of view.

Suppose that a local estimation of a person’s po-
sition made by a tracker on the camera A is accurate
although the person is heavily occluded by other per-
sons and the camera B makes a huge positional error
in its local estimation although the person is not oc-
cluded in its view. In this situation, our method gives
lower uncertainty to the local estimation of the camera
B and higher uncertainty to the local estimation of
the camera A. Therefore, the fused position will be
closer to the position estimate of the camera B and
will have a large positional error. A large positional
error sometimes causes a tracker to drift away from
a target which can lead to the tracking loss and the
identity switching problems. Fortunately in practice,
only a few cameras in the network usually make such
mistakes and accurate estimations from the remaining

cameras usually pull the fused positions closer to the
true positions. Therefore our method achieves a better
MOTA than the triangulation methods in videos that
contain heavy/full person–person occlusion.

An example of a large positional error in the local
estimation caused by severe occlusion can be seen in
the view of camera 4 in Fig. 4 (a). Since Person 2 is al-
most fully occluded by a person with ID 3 (denoted as
Person 3), the local tracker is not able to estimate the
position of Person 2. Due to this error, the projected
bounding box of Person 2 is severely misaligned with
the actual person in the view of camera 4. Although
the person–person occlusion in the view of camera 1
in Fig. 4 (a) is severe, a local tracker is able to make
accurate local estimates since the projected bounding
boxes are well-aligned with their corresponding tar-
gets. However, the fusion center quantifies the un-
certainty of each local estimate based on how much a
person is involved in the occlusion with other persons
in its local simulation.

The fusion method assigns higher uncertainty to
local estimates of Person 2 from the camera 1 and 4.
The local estimate of Person 2 from the camera 2 has
lower uncertainty and the camera 3 gets the lowest
uncertainty. Therefore probability distributions of the
camera 2 and 3 are having smaller standard deviations
than the distribution of the camera 1 and 4 as shown
in Fig. 3 (a). Moreover, it is visually difficult to
locate the peak of the distribution for the camera 4
in Fig. 3 (a) since its standard deviation is very large.
Since our method suppresses the influence of local es-
timates from views with heavy occlusion and relies on
views with less occlusion, the fused position is closer
to peak of the distribution of the camera 2 and 3 as
shown in Fig. 3 (b). The projected bounding boxes of
the fused estimated are depicted in Fig. 4 (b). Well-
aligned projected bounding boxes over all targets in-
dicates that the fused positions are accurate.

5 CONCLUSION

We presented a symbol level data fusion method for
efficiently fusing the locally estimated positions from
trackers deployed on smart cameras. Our method as-
signs the uncertainty of each local estimate by assess-
ing how much a person is covered by other persons
in the view of the camera. A key contribution of our
method is its genericity since any tracking method can
be deployed on camera nodes as long as they produce
position estimated in a common coordinate system.
Moreover, the proposed method allows highly scal-
able multi-camera tracking since a new camera can
be added without worrying about communication and
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Camera 1

Camera 2

’

Camera 3

’

Camera 4

’
(a) (b)

Figure 4: Projection of (a) locally estimated and (b) fused positions on the image plane of each camera. The same target in
different views is shown with bounding boxes in the same ID number above the bounding boxes.
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computation bottlenecks.
We demonstrated the performance of our method

by an evaluation on three multi-camera video se-
quences, confirming the accuracy improvement over
the classical triangulation method when there are fre-
quent and severe occlusions. Performance compar-
ison with state-of-the-art trackers on the widely used
PETS2009 video sequence shows that our tracker out-
performs other methods. Furthermore, the analysis of
the local estimations as well as the fused result reveals
that huge positional errors in local estimation often
correspond to occlusion and that our fusion method is
able to minimize these errors.

As future work, we will explore the possibility of
integrating other view specific attributes, which can
potentially correlate to the accuracy of the local po-
sition estimations, into the proposed fusion method.
These attributes include calibration accuracy at the
target’s position, distance between the target and the
camera, and so on. We will also conduct experiments
to show the genericity of our fusion method by de-
ploying different single view tracking algorithms on
different camera views and observing the accuracy
improvement in the fused results.
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