There’s Wally! Location Tracking in Android without Permissions

Efthimios Alepis and Constantinos Patsakis

Department of Informatics, University of Piraeus, 80, Karaoli & Dimitriou str., 18534, Piraeus, Greece
{talepis, kpatsak} @unipi.gr

Keywords: Privacy, Location, Android, Wi-fi P2P.

Abstract:

Context-awareness can be considered as one of the biggest advantage of smart mobile devices as it provides

advanced features for developers revolutionizing user interaction and making users more engaged to the ap-
plications. Perhaps, the most important factor is location awareness as applications can refine their results
according to users’ whereabouts. Nonetheless, users’ location is a very sensitive attribute as it can disclose
a lot of personal information about them. To address such issues, mobile operating systems require users to
grant specific permissions to the applications. This work studies a relatively new feature of Android, namely
Wi-Fi P2P, illustrating that the location of the user can be easily disclosed, without using location permissions

even in the recent version of Android.

1 INTRODUCTION

Mobile devices, especially smartphones, have be-
come an inseparable part of our daily lives. While
their processing power cannot be compared with
desktop computers, due to their portability and the
fact that they have many embedded sensors, they are
able to offer advanced user interaction capabilities. In
fact, the embedded sensors allow them to be context-
aware, adjusting user interface, as well as the pre-
sented information accordingly.

To this end, a major advantage of these devices
is that they can become aware of the user’s loca-
tion. Certainly, this feature is very important for the
user, as it can significantly improve the results of any
recommender system, or enable the development of
more advanced applications such as mobile social net-
works. Nonetheless, the location of a user is consid-
ered as a very sensitive piece of information as it can
be used to deduce a lot of other information, like so-
cial connections, political and religious beliefs, med-
ical condition etc. Due to its sensitivity, modern mo-
bile operating systems do not allow applications to
monitor users’ location without the explicit consent
from the user. Therefore, whether an application is
running on iOS or Android, the underlying OS will
notify the user that this application wants to access
the user’s location and the user will decide whether
this permission will be granted or not. After the re-
cent version of Android, Marshmallow, users of both
OSes are able to revoke these permissions whenever
they want.

278

Alepis, E. and Patsakis, C.
There’s Wally! Location Tracking in Android without Permissions.
DOI: 10.5220/0006125502780284

In many cases, applications do not actually need
to access the user’s location, however, since they op-
erate under the “freemium” model and they want to
increase their incomes from ad networks, they result
into requesting this permission, among others, from
their users. Undoubtedly, requesting from a user the
permission to access the GPS creates many issues, as
many users are not willing to share so sensitive in-
formation and decide not to install such application.
Regardless of the privacy issues, using GPS to track
users, results in significant battery consumption. To
overcome these issues, many applications resolve to
other means to locate their users.

While Marshmallow provides many new features
in Android, it can be considered a security upgrade, as
it contains major changes in the security architecture
of the system, with the most outstanding one being the
complete redefinition of its permission model. Un-
doubtedly, a lot of effort has been put in location per-
missions, making applications that used other means
to determine user’s whereabouts to request the user’s
explicit consent. Based on the above, we showcase
that despite this effort, applications can still deter-
mine users’ location efficiently without requiring any
such permission. Actually, our proof of concept ap-
plication does not require any dangerous application
from the user, it can even return the results when it
is running in the background, so the user is unaware
of any of its actions. To achieve this, we exploit the
use of WiFi-P2P, a new feature of Android which ex-
tends the former WiFi Direct. This exploit, enables
us to harvest users’ device IDs, such as device names

In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 278-284

ISBN: 978-989-758-209-7

Copyright (© 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



and corellate them against known spots or with each
other. The issue has been reported to Google which
acknowledged it and declared to fix in future releases,
as it considers it a privacy and not security issue!.

In what follows, we provide a brief overview of
the related work in Section 2. Then, in Section 3 we
provide an overview of the new Android permission
model. Section 4 details our attack, its effectiveness
and its accuracy. Finally, the work concludes with

some remarks and possible solutions to the problem.

2 RELATED WORK

Android is by far the most widely used platform in
mobile smart devices. In general, Google has a very
open platform, compared to its peers, allowing devel-
opers to have access to its internals and share their
applications easier and cheaper. Moreover, due to its
licensing model and wide support for manufacturers,
Android is currently used by more than one billion
users. All the above, have attracted millions of de-
velopers who host their applications on Google Play
or other markets. This humongous user base, whose
users are most prone to install applications under the
“freemium” model, trade functionality with access to
their data. Consequently, many companies are striv-
ing to monetize the wide base of user’s data. To this
end, simple applications result into requesting absurd
permissions with the sole purpose to harvest user data
(SnoopWall, 2014). This constant increase for re-
quests for more and more permissions has made users
to relax their standards, ignore notifications and dis-
regard the risks they are exposed to (Felt et al., 2012;
Kelley et al., 2012; Balebako et al., 2013). Clearly,
of specific interest are the ad libraries which have the
actual role of harvesting users’ information. Unfortu-
nately, their role in many instances is not benign, as
some of them have been proven to use undocumented
permissions (Stevens et al., 2012) or probing applica-
tions to determine whether they have more privileges
and abuse them to derive sensitive user information
(Grace et al., 2012; Book et al., 2013) as permissions
in Android are granted per application and not per
component.

To counter privacy exposure, several solutions
have been proposed in the literature (Zhou et al.,
2011; Kim et al.,, 2012; Gibler et al., 2012; Pan-
dita et al., 2013; Enck et al., 2014) where they try
to monitor what information is used by applications
and whether they try to transmit it. Location is a very
sensitive piece of information, highly valued by the

IBug report 216235 https://code.google.com/p/android/ is-
sues/list

There’s Wally! Location Tracking in Android without Permissions

users (Danezis et al., ), which can be used by adver-
tisers very easily and improves very much the recom-
mendations in case of targeted advertisements. There-
fore, many applications and ad frameworks try to ex-
tract it (Fu et al., 2014; Almuhimedi et al., 2015),
as there are many means to infer individuals’ loca-
tion, such as Wi-Fi signal (Krumm and Horvitz, 2004;
Wind et al., 2016; Sapiezynski et al., 2015; Vanhoef
et al., 2016), accelometers (Han et al., 2012), power
consumption (Michalevsky et al., 2015) or even am-
bient sound, light, and color (Azizyan et al., 2009).
Several attacks have already been made for location
based services, such as (Kune et al., ; Qin et al.,
2014; Wernke et al., 2014; Polakis et al., 2015; Farn-
den et al., ; Shaik, 2016), therefore, several measures
have been proposed (Narayanan et al., 2011; Guha
et al., 2012; Fawaz and Shin, 2014; Theodorakopou-
los et al., 2014; Kotzanikolaou et al., 2016; Patsakis
et al., 2015; Polakis et al., 2015). For a more detailed
study on the privacy issues in mobile devices, the in-
terested users may refer to (Spensky et al., 2016).

However, to determine one’s location, one could
also use other means, as many users switch off lo-
cation services in their devices, not only for privacy,
but for battery consumption as well. While Wi-Fi po-
sitioning system (WPS) is a very well-known method
to achieve location services indoors where GPS signal
cannot be reached but the same concept can be used
counter-wise. Using the MAC addresses of hotspots,
one could determine the position of an individual,
knowing of course where these hotspots are located.
Therefore, many applications scan to find the avail-
able Wi-Fis to collect their MAC addresses and trans-
mit them. Since for some of them the service provider
already knows where they are located, it is fairly easy
for him to approximate user’s location, without re-
questing access to GPS.

Another twist of the previous method is to collect
the MAC addresses of devices that want to connect
to a Wi-Fi. Generally, most people leave the Wi-Fi
of their devices open, for convenience, regardless of
whether they are in proximity to a known network.
Since the device does not know whether there is a
known network close, it will periodically send a bea-
con for its preferred Wi-Fis. Up to recently, this bea-
con contained the original MAC address of the device,
enabling an adversary to collect it and correlate it with
other captures. Consequently, installing many capture
devices around a city, one can easily monitor the loca-
tion of thousands of people as in the case of London’s
smart thrash cans?. To counter this issue some OSes
randomize the MAC addresses when they send these

http://www.theverge.com/2013/8/9/4604980/smart-uk-
trash-cans-smartphone-speed-proximity-Wi-Fi

279



ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

beacons, however, more advanced tools like mana> or

attacks such as the one of Vanhoef et al. (Vanhoef
et al., 2016) can bypass this security measure.

Apart from the Wi-Fi beacons, Bluetooth can also
be used to track users’ location. Similarly to Wi-Fi,
one could perform a scan for available Bluetooth de-
vices and use the aforementioned techniques to de-
termine the user’s location. More recently, exploit-
ing Bluetooth Low Energy (BLE) wireless transmit-
ters, beacons can be used to track a mobile device’s
location and trigger notifications once a device is in
proximity or leaves a location. The difference in the
case of BLE to traditional Bluetooth is that the power
consumption is far less, but can transmit shorter mes-
sages. Thus, similar to Wi-Fi beacons, Bluetooth ones
can be used to identify devices in proximity which is
very practical for devices that have low power require-
ments, such as proximity sensors, heart rate monitors,
and fitness devices. Nonetheless, due to the nature of
Bluetooth, devices have to be real close to be identi-
fied.

3 PERMISSIONS IN
MARSHMALLOW

Despite the numerous changes in the latest version of
Android, codenamed Marshmallow, this version can
be characterised as a major security upgrade. Google
abandoned the permission model it had adopted since
2007, in which application permissions where granted
by users on application installation. This model in-
ferred a one time offer where the user would either
accept to grant the permissions and install the applica-
tion, or he would not and thus would not be allowed to
install the application. Following the example of i0S
and custom ROMs, Google decided to completely re-
design its permission model, enabling “Runtime Per-
missions” so that users could install the desired ap-
plications and then, during runtime, decide whether
access to specific resources would be granted. How-
ever, the most important aspect of the new model is
that users may revoke permissions to specific appli-
cations whenever the want to, enabling them to have
fine-grained permission policies.

According to the new model the permissions are
categorized according to the risk they expose the user
into four categories:

e Normal: These permissions imply the least pos-
sible user exposure, so Android automatically
grants them upon installation. Not only these per-
missions are automatically granted, but addition-

3https://github.com/sensepost/mana

280

ally they cannot be revoked and are not transpar-
ent to the user.

e Dangerous: These permissions imply, as the name
suggests, serious risk for the user’s privacy and se-
curity. Therefore, to be granted, Android requests
explicit user approval, which can be revoked at
any time by the user. Figure 1 illustrates the com-
plete list of dangerous permissions.

e To guarantee that specific applications are granted
some permissions, Google has introduced the sig-
nature permission. This permission grants access
to an application only if the requesting application
is signed with the same certificate as the appli-
cation that declared the permission without user
notification. This permission facilitates interoper-
ability between applications.

e Finally, to provide advanced privileges for man-
ufacturers, Google introduced the system permis-
sion which is granted only to applications that re-
side in the Android system image or signed with
the same certificate as the application that de-
clared the permission. Such privileges provide ap-
plications with low level control to the device as
they are able to reboot, clear the caches or even
monitor other processes.

This new model decreases the notifications that a user
has to respond to as the amount of interactions involve
only the seven categories of dangerous permissions..

4 RETRIEVING USER’S
LOCATION

In order to retrieve the user’s location we use Wi-
Fi P2P*, the new feature of Android which extends
Wi-Fi Direct’. Wi-Fi P2P allows two devices to con-
nect directly without the use of another entity achiev-
ing greater distances and speeds than Bluetooth. To
enable programmatic access to this feature, a de-
veloper has only to declare the following permis-
sions ACCESS_Wi-Fi_STATE CHANGE_Wi-Fi_STATE
and INTERNET in AndroidManifest.xml. Clearly,
all of them are considered “normal” permissions from
Google, therefore, users not only cannot revoke them,
but they cannot even be notified about them. Figures
2a and 2b illustrate the screenshots from our proof
of concept application, showing that the afforemen-
tioned permissions are not reported to the user. It
is important to note that the underlying architecture

“https://developer.android.com/guide/topics/connectivity/
Wi-Fip2p.html
SWe need to add a link/ref if possible



There’s Wally! Location Tracking in Android without Permissions

ACCESS FINE LOCATION

[ GET ACCOUNTS: ]

[WRITE mNTAcTs]

[ READ CONTACTS ]

ACCESS COARSE LOCATION Location

RECORD AUDIO lf Microphone I

BODY SENSORS I —I Sensors '7 Android Permissions —[:one

RECEIVE MMS
RECEIVE WAP PUSH

Contacts |

l Storage |

Camera |—————— Camera

READ PHONE STATE CALL PHONE
READ CALL LOG
WRITE CALL LOG

ADD VOICEMAIL

[ PROCESS OUTGOING CALLS ]

READ CALENDAR

[ USE SIP. ]

[ RECEIVE SMS ] [ READ EXTERNAL STORAGE ] [ WRITE EXTERNAL STORAGE ]

WRITE CALENDAR

Figure 1: Dangerous permissions Marshmallow.

of this specific attack allows a device to simply scan
for the available devices without the need to actually
connect with them to recover the needed information.
Therefore, after a scan, an adversary can easily peri-
odically scan for available devices, see Figure 2c, and
harvest their MAC addresses and device names, see
Figure 2d, which can uniquely identify them.

Based on the above, tracking users’ location with-
out their consent or knowledge is quite straightfor-
ward. To showcase the attack scenario, we consider
the use case of an ad network, which as already dis-
cussed, often tries to collect such information. There-
fore, an ad network provides a Wi-Fi P2P library
within its package and periodically scans the network
for available P2P devices. Moreover, the ad network
has installed or cooperated with other entities which
provide it with P2P nodes, static or mobile, whose lo-
cation is always disclosed, and they can be installed
in malls, hotels, restaurants, or carried in concerts
etc. with a minimal cost. Knowing the location of
these end points, the ad network can easily tell where
individuals are located, with an accuracy of 100m.
Note that at the time of writting, this accuracy can-
not be improved by e.g. using the signal strength,
as it is hardcoded to be always 60dB. For more fine-
grained results, more sophisticated methods could be
used such as (Curtis et al., 2014).

Some possible attack scenarios are illustrated in
Figure 3. In the firstcase 3a, we have an adversary,
whose location is known and can be fixed or mobile.
The adversary scans the network using Wi-Fi P2P and
finds the MAC addresses of the users nearby, send-
ing them to a remote server. In the second case, we
might not have the actual location of any of the users,
nonetheless, professional and social connections of
users can be inferred using time as an additional pa-
rameter, e.g2. how long they stay close, what times

of day etc. thus resulting in harvesting users’ relative
location.

It is worth noticing that Google introduced some
new rules in the permissions to counter such ac-
tions. For instance, in Marshmallow, to perform
Wi-Fi or Bluetooth scans, Google mandates develop-
ers to request the permission for location, more pre-
cisely ACCESS_COARSE_LOCATION. Clearly, exploiting
the Wi-Fi P2P feature overcomes the restriction of re-
questing location permission to the user, which can-
not be later revoked, but this is not the only case as it
is going to be discussed later on. More interestingly,
while Marshmallow decided to follow the example of
10S and randomize the MAC addresses during Wi-
Fi Scans, this does not happen in the case of Wi-Fi
P2P. Actually, the devices disclose most of their ac-
tual MAC addresses each time, as it only changes the
first two bytes of the address. Clearly, this method
does not hide the user’s MAC address, in many cases,
one can use the bytes from positions 3 to 6 to recover
the obfuscated ones, as they characterise a vendor so
they are publicly known. Another method is to use as
MAC address all bytes apart from the first two, as the
chances of collisions are very low, or improve this fin-
gerprint using the device name, something that most
users hardly change. Moreover, the devices disclose
their name which in many occasions can be consid-
ered a unique identifier.

Two permissions are required by a mobile

device to perform any Bluetooth communi-
cation, such as initiating device discovery,
requesting  Bluetooth  connections,  accepting

Bluetooth connections, and transferring data,
namely android.permission.BLUETOOTH and
android.permission.BLUETOOTH_ADMIN which
are both considered normal. However, in order to
perform a BLE scan, like in Wi-Fi scan, one needs

281



ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

8 WiFi P2P Unipi

60

UNINSTALL FORCE STOP

Storage

6 KB of Internal storage use

Data usage
No data L

. No permissions
Permissions

No permissions required

Notifications
Allowed

Set as default
Nor et as defal
Battery

T .1 90% @ 01:05 =8

E} wiFi P2P Unipi

ndroid_

Connect ~ Disconnect

12:68:3f:76:0a:49

Device: Android_9237
deviceAddress: 12:68:3f.76:0a:49
primary type: 10-0050F204-5
secondary type: null

wps: 392

grpcapab: 0

devcapab: 37

status: 3

wfdinfo: null
groupownerAddress: null
GOdeviceName: null
interfaceAddress:
SConnectinfo : null
contactinfoHash : null
ssDevinfo: 0

(a) Permissions for Wi-Fi P2P (b) Permissions for Wi-Fi P2P (c) Scan for available Wi-Fi (d) Details of available Wi-Fi

proof of concept application. proof of concept application, P2P devices.

detailed.

P2P devices.

Figure 2: Wi-Fi P2P proof of concept application.

Y
L}

‘s,

~
s,
s,
.,
Y
Y
(Y
)

s

e ———
e

o

"
.é'
o
+
&

.
MAC,, MAC;MAQ*

(a) Attack scenario with an attacker whose location is

known.

.
.
.
K
'
5
5
4
Stimme --”

»
o

‘s,
o,

&"
e

o,
RTINSt ZNEOR S

(b) Attack scenario without knowing locations.

Figure 3: The attack model.

to request the ACCESS_COARSE_LOCATION permission
in Marshmallow. However, this restriction has been
repeadely reported to be lifted by simply switching
from startScan method of the current API to the
deprecated startLeScan method of API 18. Finally,
we highlight that the results of the aforementioned
scans can be transmitted and stored to a remote server,
again without requesting any permissions from the
user, since access to the Internet is considered a
normal permission.

All the above indicate that the problem of loca-
tion is very complex as the introduction of new fea-
tures perplexes the problem since manufacturers can-
not always foresee how independent features can be
exploited for other purposes. Moreover, the huge

282

fragmentation of Android into many versions which
cannot actually be upgraded to newer ones, traps the
users and prevents them from properly securing their
devices. More importantly, however, the new per-
mission model, does not provide the necessary trans-
parency and control to the users over their applica-
tions, allowing developers to exploit it and hide po-
tentially malicious actions in applications which may
not require any permissions from the user at all.

It must be highlighted that the security issue we
are disclosing does not affect mobile devices that have
a “special” setting turned on, therefore it affects po-
tentially every Android device. Once our proof of
concept application is executed on a mobile device
and its Wi-Fi P2P discovery process is initiated, ev-



ery available node gets exposed by revealing its iden-
tity to other phones running our software. In order to
support our claims we have experimented with mo-
bile devices running in Android version 4.4.2, to de-
termine whether older smartphones are susceptible, as
well as with newer mobile devices as of version 6.0.1.
The experiments also included identification of cross-
version devices, meaning that a victim device was
running on Android version 4.4.2, while the attacker
was running on Android version 6.0.1 and vice versa.
According to Google, Android devices that run on
Android KitKat (more specifically API level 19) and
later represent approximately 73,9% of all Android
devices that are active on Google Play Store (Decem-
ber 2016). Apparently, this means that the vast ma-
jority of Android devices, more than 87% of the total
devices if we add the devices running Android 6, are
exposed to this vulnerability. Furthermore, Google,
has already acknowledged this issue and is expected
to be solved in a future Android release.

S CONCLUSIONS

This work highlights issues related to the location pri-
vacy in modern mobile devices. More specifically, by
utilizing Wi-Fi P2P, a novel standard which enables
devices to easily connect with each other without re-
quiring any additional wireless access point, we show
that we can easily determine passively the location of
mobile devices, within a radius of at most 100 meters.
It is quite important to notice that the resulting proof
of concept mobile application is actually a zero per-
mission application installed in an Android OS device
running on the latest version, namely Marshmallow,
API level 23.

A possible solution to the aforementioned prob-
lem would be to incorporate the same security
permission model that is adopted in Android for API
level 23 and above concerning traditional Wi-Fi and
Bluetooth connections. More precisely, to provide
users with greater data protection, starting with
Android Marshmallow, the OS removes program-
matic access to the device’s local hardware identifier
for apps using the Wi-Fi and Bluetooth APIs.
Correspondingly,  Wi-FilInfo.getMacAddress ()
and the BluetoothAdapter.getAddress () meth-
ods are returning a constant value of “02:00:00
:00:00:00”, when called. To access the hardware
identifiers of nearby external devices via Blue-
tooth and Wi-Fi scans, smartphone applications
must be granted the ACCESS_FINE_LOCATION or
ACCESS_COARSE_LOCATION permissions. We believe
that this approach could be also applied in the case of

There’s Wally! Location Tracking in Android without Permissions

Wi-Fi P2P to ensure users’ privacy. Nonetheless, our
work signifies that similar features, Wi-Fi access and
Wi-Fi P2P, can have different rules and not generic
ones due to the maturity of some solutions and that
new features are not properly communicated to all
the stakeholders, leaving security and privacy issues
which can be easily exploited.

ACKNOWLEDGEMENTS

This work was supported by the European Commis-
sion under the Horizon 2020 Programme (H2020), as
part of the OPERANDO project (Grant Agreements
no. 653704).

REFERENCES

Almuhimedi, H., Schaub, F., Sadeh, N., Adjerid, I., Ac-
quisti, A., Gluck, J., Cranor, L. F., and Agarwal, Y.
(2015). Your location has been shared 5,398 times!:
A field study on mobile app privacy nudging. In Pro-
ceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems, pages 787-796.
ACM.

Azizyan, M., Constandache, I., and Roy Choudhury, R.
(2009). Surroundsense: mobile phone localization via
ambience fingerprinting. In Proceedings of the 15th
annual international conference on Mobile computing
and networking, pages 261-272. ACM.

Balebako, R., Jung, J., Lu, W., Cranor, L. F., and Nguyen,
C. (2013). Little brothers watching you: Raising
awareness of data leaks on smartphones. In Proceed-
ings of the Ninth Symposium on Usable Privacy and
Security, page 12. ACM.

Book, T., Pridgen, A., and Wallach, D. S. (2013). Longitu-
dinal analysis of android ad library permissions. arXiv
preprint arXiv:1303.0857.

Curtis, P.,, Banavar, M. K., Zhang, S., Spanias, A., and We-
ber, V. (2014). Android acoustic ranging. In Bour-
bakis, N. G., Tsihrintzis, G. A., and Virvou, M., edi-
tors, 1ISA 2014, The 5th International Conference on
Information, Intelligence, Systems and Applications,
Chania, Crete, Greece, July 7-9, 2014, pages 118—
123. IEEE.

Danezis, G., Lewis, S., and Anderson, R. J. How much is
location privacy worth? Citeseer.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-
G., Cox, L. P, Jung, J., McDaniel, P., and Sheth,
A. N. (2014). Taintdroid: an information-flow track-
ing system for realtime privacy monitoring on smart-
phones. ACM Transactions on Computer Systems
(TOCS), 32(2):5.

Farnden, J., Martini, B., and Choo, K.-K. R. Privacy risks in
mobile dating apps. In Proceedings of 21st Americas
Conference on Information Systems (AMCIS 2015),
volume 13, page 15.

283



ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

Fawaz, K. and Shin, K. G. (2014). Location privacy protec-
tion for smartphone users. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 239-250. ACM.

Felt, A. P, Ha, E., Egelman, S., Haney, A., Chin, E., and
Wagner, D. (2012). Android permissions: User atten-
tion, comprehension, and behavior. In Proceedings of
the Eighth Symposium on Usable Privacy and Secu-
rity, page 3. ACM.

Fu, H., Yang, Y., Shingte, N., Lindqvist, J., and Gruteser,
M. (2014). A field study of run-time location access
disclosures on android smartphones. Proc. USEC, 14.

Gibler, C., Crussell, J., Erickson, J., and Chen, H. (2012).
Androidleaks: automatically detecting potential pri-
vacy leaks in android applications on a large scale.
In International Conference on Trust and Trustworthy
Computing, pages 291-307. Springer.

Grace, M. C., Zhou, W., Jiang, X., and Sadeghi, A.-R.
(2012). Unsafe exposure analysis of mobile in-app
advertisements. In Proceedings of the Fifth ACM Con-
ference on Security and Privacy in Wireless and Mo-
bile Networks, WISEC ’12, pages 101-112. ACM.

Guha, S., Jain, M., and Padmanabhan, V. N. (2012). Koi:
A location-privacy platform for smartphone apps. In
Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages
14-14. USENIX Association.

Han, J., Owusu, E., Nguyen, L. T., Perrig, A., and Zhang,
J. (2012). Accomplice: Location inference using ac-
celerometers on smartphones. In 2012 Fourth Inter-
national Conference on Communication Systems and
Networks (COMSNETS 2012), pages 1-9. IEEE.

Kelley, P. G., Consolvo, S., Cranor, L. F., Jung, J., Sadeh,
N., and Wetherall, D. (2012). A conundrum of per-
missions: installing applications on an android smart-
phone. In Financial Cryptography and Data Security,
pages 68—79. Springer.

Kim, J., Yoon, Y., Yi, K., Shin, J., and Center, S. (2012).
Scandal: Static analyzer for detecting privacy leaks in
android applications.

Kotzanikolaou, P., Patsakis, C., Magkos, E., and Korakakis,
M. (2016). Lightweight private proximity testing for
geospatial social networks. Computer Communica-
tions, 73:263-270.

Krumm, J. and Horvitz, E. (2004). Locadio: inferring mo-
tion and location from wi-fi signal strengths. In Mo-
bile and Ubiquitous Systems: Networking and Ser-
vices, 2004. MOBIQUITOUS 2004. The First Annual
International Conference on, pages 4-13. IEEE.

Kune, D. E,, Koelndorfer, J., Hopper, N., and Kim, Y. Lo-
cation leaks on the gsm air interface.

Michalevsky, Y., Schulman, A., Veerapandian, G. A.,
Boneh, D., and Nakibly, G. (2015). Powerspy: Loca-
tion tracking using mobile device power analysis. In
24th USENIX Security Symposium (USENIX Security
15), pages 785-800.

Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg,
M., and Boneh, D. (2011). Location privacy via pri-
vate proximity testing. In NDSS.

284

Pandita, R., Xiao, X., Yang, W., Enck, W., and Xie, T.
(2013). Whyper: Towards automating risk assessment
of mobile applications. In Presented as part of the
22nd USENIX Security Symposium (USENIX Security
13), pages 527-542.

Patsakis, C., Kotzanikolaou, P., and Bouroche, M. (2015).
Private proximity testing on steroids: An ntru-based
protocol. In International Workshop on Security and
Trust Management, pages 172—184. Springer.

Polakis, 1., Argyros, G., Petsios, T., Sivakorn, S., and
Keromytis, A. D. (2015). Where’s wally?: Precise
user discovery attacks in location proximity services.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages
817-828. ACM.

Qin, G., Patsakis, C., and Bouroche, M. (2014). Playing
hide and seek with mobile dating applications. In /IFIP
International Information Security Conference, pages
185-196. Springer.

Sapiezynski, P., Stopczynski, A., Gatej, R., and Lehmann,
S. (2015). Tracking human mobility using wifi sig-
nals. PloS one, 10(7):e0130824.

Shaik, A. (2016). Practical attacks against privacy and avail-
ability in 4g/lte mobile communication systems.
SnoopWall (2014). Flashlight apps threat assessment re-
port. http://www.snoopwall.com/wp-content/uploads/

2015/02/Flashlight-Spyware-Report-2014.pdf.

Spensky, C., Stewart, J., Yerukhimovich, A., Shay, R., Tra-
chtenberg, A., Housley, R., and Cunningham, R. K.
(2016). Sok: Privacy on mobile devices—it’s compli-
cated. Proceedings on Privacy Enhancing Technolo-
gies, 2016(3):96-116.

Stevens, R., Gibler, C., Crussell, J., Erickson, J., and Chen,
H. (2012). Investigating user privacy in android ad
libraries. In Proceedings of the 2012 Workshop on
Mobile Security Technologies (MoST).

Theodorakopoulos, G., Shokri, R., Troncoso, C., Hubaux,
J.-P,, and Le Boudec, J.-Y. (2014). Prolonging the
hide-and-seek game: Optimal trajectory privacy for
location-based services. In Proceedings of the 13th
Workshop on Privacy in the Electronic Society, pages
73-82. ACM.

Vanhoef, M., Matte, C., Cunche, M., Cardoso, L. S., and
Piessens, F. (2016). Why mac address randomization
is not enough: An analysis of wi-fi network discovery
mechanisms. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Secu-
rity, pages 413-424. ACM.

Wernke, M., Skvortsov, P., Diirr, F., and Rothermel, K.
(2014). A classification of location privacy attacks
and approaches. Personal and Ubiquitous Computing,
18(1):163-175.

Wind, D. K., Sapiezynski, P., Furman, M. A., and Lehmann,
S. (2016). Inferring stop-locations from wifi. PloS
one, 11(2):e0149105.

Zhou, Y., Zhang, X., Jiang, X., and Freeh, V. W. (2011).
Taming information-stealing smartphone applications
(on android). In International conference on Trust and
trustworthy computing, pages 93—107. Springer.



