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Abstract: A person intentionally concealing or faking their identity from biometric security systems is known to 
perform a ‘presentation attack’. Efficient presentation attack detection poses a challenging problem in 
modern biometric security systems. Sophisticated presentation attacks may successfully spoof a person’s 
face and therefore, disrupt accurate biometric authentication in controlled areas. In this work, a presentation 
attack detection technique which processes biologically-inspired facial features is introduced. The main goal 
of the proposed method is to provide an alternative foundation for biometric detection systems. In addition, 
such a system can be used for future generation biometric systems capable of carrying out rapid facial 
perception tasks in complex and dynamic situations. The newly-developed model was tested against two 
different databases and classifiers. Presentation attack detection results have shown promise, exceeding 94% 
detection accuracy on average for the investigated databases. The proposed model can be enriched with 
future enhancements that can further improve its effectiveness and complexity in more diverse situations 
and sophisticated attacks in the real world.  

1 INTRODUCTION 

Present-day security systems exploit a variety of 
biological characteristics to identify individuals. 
There is an extensive range of security applications 
that utilise such characteristics to safeguard and 
restrict access or control. For example, non-intrusive 
biometric patterns extracted from the finger, palm, 
iris, voice, gait and their fusion in multimodal 
biometric systems, can provide an abundance of 
information about the identity of a person. However, 
none of these metrics are as informative, widely 
adopted or as publicly accepted as an individual’s 
face. Appearance perception and in particular facial, 
plays a vital role in survival and everyday social 
interactions. As a consequence, the human brain 
over millions of years has evolved to perform facial 
perception in an effortless, rapid and efficient 
manner (Ramon et al. 2011). Face perception is a 
challenging problem due to appearance variations 
from illumination, pose, facial expressions, aging, 
clothing accessories and temporal facial changes. It 
remains a widely explored and efficient method, 
applied in diverse environments without 
necessitating substantial participation and 

inconvenience from any individuals. Modern day 
applications making extensive use of facial 
perception tasks include mobile phone 
authentication, border or customs control, visual 
surveillance and human-computer interaction. 
However, the ever increasing complexity, power and 
processing speed has been pushing the biometric 
research community to explore new ways of 
optimising face biometric systems. Therefore, it 
should not come as a surprise that biology has 
recently become an increasingly valuable source of 
inspiration for reliable, power efficient and 
alternative methods (Meyers and Wolf 2008; Wang 
et al. 2013).  

‘Face recognition’ is a generic term that 
describes a set of methods concerning face 
perception. More specifically, face verification 
applies various image processing methods in order 
to confirm an individual’s identity according to their 
travel documents and either accept or reject it. Face 
identification focuses on identifying a particular 
individual and the subject’s face is compared against 
other individuals from a pre-stored database. The 
present research work centres on face verification.  

Every person’s face is continuously evolving in 
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complex ways over time and different facial features 
may unintentionally alter the appearance in a 
significant way e.g. scars, glasses, piercings, 
hairstyles, wrinkles, tattoos. More importantly for 
the purposes of this work, face biometric systems are 
susceptible to intentional presentation attacks. 
Impostors can acquire another person’s high quality 
facial image print with small digital cameras. Such 
cameras help to discretely or secretively capture 
facial images from unsuspected individuals. 
Moreover, with the availability of face images from 
public or social media, it has become relatively easy 
to reproduce a person’s frontal image. Basic 
presentation attacks usually are: a) printed face on a 
paper sheet. Sometimes a printed face is shown with 
eyes cropped out in order for a subject’s eyes to 
blink underneath it. b) Digital face displayed on a 
screen from digital devices such as tablets, 
smartphones, and laptops. This kind of face 
presentation can be static or a video. In video attacks 
facial movements, eye blinking, mouth/lip 
movements or expressions are simulated. c) A 3D 
mask (paper, silicon, cast, rubber etc) specifically 
moulded for a targeted face. 

In addition to the above, an impostor may also 
try spoofing an identity by using more sophisticated 
appearance alteration techniques or their 
combinations: 1) Glasses corrective or otherwise 
and/or contact lenses with possible colour change. 2) 
Hairstyle, change in colour, cut/trim, hair extensions 
etc. 3) Make-up or fake facial scars. 4) Real and/or 
fake facial hair. 5) Facial prosthetics and/or plastic 
surgery.  

All of these elaborate impostor attacks are 
commonly known as ‘Face presentation attacks or 
Spoofing Attacks’ and give rise to another term 
‘Presentation Attack Detection (PAD)’ which 
includes the detection of all intentional impostor 
attempts in face verification and identification with 
the use of algorithm specifically tailored for this 
problem. Accurate and fast PAD is a major concern 
in authentication systems across many platforms and 
applications. Finally, high PAD rates are extremely 
important for matters of personal and public 
security. 

2 RELATED WORK 

Presentation attacks in images are usually detected 
from motion, liveness, texture, quality and by 
spectral information from sensor-based approaches. 
Motion-based techniques are mostly employed with 
video sequences to detect motion anomalies between 

frames. Some representative methods apply Eulerian 
Video Motion Magnification (Wu et al. 2012), 
Optical Flow (Anjos et al. 2014), and non-rigid 
motion with face-background analyses fusion (Yan 
et al. 2012). Liveness-based approaches extract 
image features that investigate the liveness of a 
particular subject. Using this approach, algorithms 
scan liveness patterns of certain facial parts such as 
facial expressions, mouth or head movements, eye 
blinking, and facial vein maps (Pan et al. 2008; 
Chakraborty and Das 2014). Texture based methods 
investigate texture, structure and overall shape 
information of faces. Commonly used texture-based 
methods rely on Local Binary Patterns (Chingovska 
et al. 2012; Maatta et al. 2011; Kose et al. 2015), 
Difference of Gaussians (Zhang et al. 2012) and 
Fourier frequency analysis (Li et al. 2004).  For 
quality characteristics, a notable image quality 
method in (Galbally et al. 2014) proposes 25 
different image quality metrics as extracted between 
real and fake images in order to train classifiers 
which are used for detecting potential attacks. 
Sensor-based approaches involve the use and fusion 
of various sensors. A method that uses a light field 
camera sensor with 26 different focus measures with 
image descriptors and authors in (Raghavendra et al. 
2015) have reported promising PAD scores. With 
the aid of infrared sensors authors in (Prokoski and 
Riedel 2002) analyse facial thermograms for rapid, 
and varied illumination environments. Similar 
thermography methods are presented in (Hermosilla 
et al. 2012; Seal et al. 2013).  

In general, a biologically-inspired vision 
architecture consists of alternating hierarchical 
layers mimicking the various processing stages of 
the primary visual cortex (Hubel and Wiesel 1967). 
It is known that as visual stimuli travel up the 
cortical layers, visual information progressively 
exhibits a combination of selectivity and invariance 
to object translations such as size, position, rotation, 
depth etc. In the past, there have been many vision 
models and variants inspired from this layered 
approach such as the ‘Neocognitron’ (Fukushima et 
al. n.d.), ‘Convolutional neural network’ (LeCun et 
al. 1998), and ‘Hierarchical model and X’ 
(Riesenhuber and Poggio 2000). Over the years, 
these models produced remarkable results on a 
variety of different object perception tasks and today 
they are being recognised as an equal alternative to 
statistical approaches in computer vision. In face 
perception, biologically-inspired methodologies 
have been applied successfully for some years and 
have been proven reliable as well as accurate 
(Meyers and Wolf 2008; Rose 2006; Wang and 
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Chua 2005; Lyons et al. 1998; Slavkovic et al. 2013; 
Li et al. 2013; Wang et al. 2013; Perlibakas 2006; 
Pisharady and Martin 2012). There are many 
common characteristics between all of these 
algorithms and perhaps the most important aspect is 
the extensive use of Gabor filters i.e. texture-based 
features, as their building block operation. The main 
reasons for designing a biologically-inspired model 
would be its projected efficiency, parallelisation and 
speed in extremely demanding future biometric 
applications with uni-sensor and multi-sensor data. 
Contemporary state-of-the-art methods are efficient 
for current processes and sensors but would struggle 
to cope with an increase in available sensor 
information and sifting through each frame for 
example with sliding windows or pixel-by-pixel 
approaches would require an incredible amount of 
available resources in storage capacity, processing 
speed and power. Until today there hasn’t been a 
complete biologically-inspired schema specifically 
developed to tackle sophisticated PADs in face 
verification systems. The main contributions of this 
research work were to: 

a) Present a novel hierarchical biologically-
inspired algorithm which behaves comparably 
to other state-of-the-art texture-based 
algorithms.  

b) Introduce visual area V2 of the brain texture 
operations for face perception for the first time 
and integrate them with the existing biological-
like approach. 

c) Explore the model’s applicability in 
face presentation attack detection using standard 

databases and classifiers. 
d) Propose the basis for further research in this 

particular area. 

2.1 Structure 

There is undeniable evidence (D and D 1991; Van 
Kleef et al. 2010; Axelrod and Yovel 2012) 
concerning the layered hierarchical structure of the 
mammalian brain. The main advantage of this 
topology is the progressive creation of a view-
invariant representation of objects with some 
important invariance properties such as size, 
position, rotation and illumination. Similarly, the 
structure of the model here follows an alternating 
layer configuration that pools bio-inspired features 
as extracted from face images (Figure 1). 

The extracted features at higher dimensions can 
be either used with classifiers or directly with 
distance measures as will be demonstrated in the 
results section 5. Ultimately, the main purpose of 
this research is to detect face spoofing attempts and 
invariance properties such as size and position are 
important. Therefore on this particular pursuit, any 
additional invariance properties that would 
otherwise have been more meaningful for face 
recognition (Yokono and Poggio 2004; Pisharady 
and Martin 2012; Rolls 2012), add complexity or 
processing delay and are not explored.  

2.2 Centre-surround Channels  

Cone receptive fields in human retinae are tuned to 
different  wavelengths  of light.  Bipolar  retinal cells  

 

Figure 1: The proposed model structure. Several layers L1 to L5 progressively process spatial and spectral facial features. 
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bear the task of unifying incoming visual 
information from cones and rods (Engel et al. 1997). 
Furthermore, on-centre and off-centre bipolar cells 
operate in a centre-surround process between red-
green and blue-yellow wavelengths. For example, 
on-centre Red-Green (RG) bipolar cells maximally 
respond when red hits the centre of their receptive 
field only and are inhibited when green is at their 
surrounding region. Vice versa, this operation is 
reversed for an off-centre RG bipolar cell where 
excitation only occurs when the detectable green 
wavelength is incident in the surrounding region. As 
shown in Figure 2, this is can be further applied for 
the blue-yellow and lightness channels. 

The colour opponent space is defined by the 
following equations (Van De Sande et al. 2010): 

O1 = (R-G)/√2 (1)

O2 = (R+G-2B)/√6 (2)

O3 = (R+G+B)/√3 (3)

 

Figure 2: Examples of on-centre and off-centre receptive 
fields in bipolar cells for colour opponency channels. The 
plus sign refers to when the particular colour is on and the 
minus off. 

2.3 Area V1 – Edge Detection 

As visual signals travel to the primary visual cortex  
through the lateral geniculate nucleus, area V1 
orientation selective simple cells process incoming 
information (Hubel and Wiesel 1967) from the 
retinae and perform basic edge detection operations 
for all subsequent visual tasks. They serve as the 
building block units of biological vision. It is already 
well established from literature that orientation 
selectivity in V1 simple cells can be precisely 
matched by Gabor filters (Marcelja 1980; Daugman 
1985; Webster and De Valois 1985).  

A Gabor filter is a linear filter which is defined 
as the product of a complex sinusoid with a 2D 

Gaussian envelope and for values in pixel 
coordinates (x,y), it is expressed as: 

Gሺx,yሻ=expቆ-
X2+γ2Y2

2σ2 ቇ cos ൬2π

λ
Χ൰ (4)

X = xcosθ–ysinθ (5)

Y = -xsinθ+ycosθ (6)

In equation (1), γ is the aspect ratio and in this 
work is set to 0.3. Parameter λ is known as the 
wavelength of the cosine factor and together with 
parameter σ the effective width, specify the spatial 
tuning accuracy of the Gabor filter. Ideally, to 
optimise the extraction of contour features from V1 
units for a particular set of objects, some form of 
learning is necessary to isolate an optimum range of 
filters. However, this process adds complexity and it 
is time-consuming since it requires a huge number 
of samples, as experiments on convolutional neural 
networks have shown in literature. In order to avoid 
this step, Gabor filter parameters are hardcoded 
directly into our model following parameterisation 
sets that have been identified from past studies. Two 
different parameterisation settings have been 
considered (Serre and Riesenhuber 2004; Lei et al. 
2007; Serrano et al. 2011). Our preliminary 
experiments have shown that the two particular 
Gabor filter parameterisation ranges, have no 
noticeable effect on PAD results. Thus, we chose the 
parameterisation values given (Serrano et al. 2011). 

Additionally, it is known that V1 cell receptive 
field sizes vary considerably (McAdams and Reid 
2005; Rust et al. 2005; Serre et al. 2007) to provide a 
range of thin to coarse spatial frequencies. Similarly, 
four different receptive field sizes were used here 
with pixel dimensions 3x3, 5x5, 7x7 and 9x9. 
Coarser features are handled by area V2, explained 
in the next section.  

2.4 Area V2 - Texture Features 

The significance of textural information is often 
neglected or downplayed in past presentation attack 
detection and biologically-inspired vision studies. 
However, the role of cortical area V2 in shape and 
texture feature extraction is crucial and V2 cells 
share many of the edge properties found in V1. 
Nevertheless, V2 cell selectivity has broader 
receptive fields and is attuned to more complex 
features compared with V1 cells (Hegdé and Van 
Essen 2000; Schmid et al. 2014). In addition to 
broader spatial features, this layer processes textural 
information and is therefore capable of expressing 
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the different nature of surfaces. This is a crucial 
advantage in face presentation attack detection 
where there is a wealth of information hidden within 
the texture of faces, facial features or face attacks. 
For example, texture of beards, skin, and glasses can 
prove a valuable feature against spoofing attacks 
mimicking their nature. Therefore, accurate 
representation of texture facial features or the lack of 
such features where these would be otherwise 
expected is an important indication of falsification. 

V2 cells are effectively expressed by a sinusoidal 
grating cell operator though other shape 
characteristics also correspond well (Hegdé and Van 
Essen 2000). The grating cell operator has not only 
shown great biological plausibility with respect to 
actual V2 texture processes but has also proven 
superior to Gabor filters in texture tasks (Grigorescu 
et al. 2002). Its response is relatively weak to single 
bars but in contrast, it responds heavily to periodic 
patterns. The approach used here (Petkov and 
Kruizinga 1997) consists of two stages. In the first 
stage grating subunits generate the responses of on-
centre and off-centre cells. In the following stage, 
grating cell responses from at a particular orientation 
and periodicity are added together. 

A certain response Gr of a grating subunit at 
position (x, y), with orientation θ and periodicity λ is 
given by (Petkov and Kruizinga 1997): 

Grሺx, yሻθ,λ= ቊ1, if ∀ n, Mሺݔ, ,ݔn≥ ρMሺ	ሻθ,λ,ݕ ሻθ,λݕ

0, if ∃ n, Mሺݔ, ,ݔn< ρMሺ	ሻθ,λ,ݕ ሻθ,λݕ
      (7)	

where n ∈ {-3…2}, ρ is the threshold parameter 
between 0 and 1 (typically 0.9). For the current 
position (x´, y΄) along x and y directions from 
starting point (x ,y), the maximum activities of M are 
calculated as followed (Petkov and Kruizinga 
1997).:  

Mሺݔ, n	ሻθ,λ,ݕ ൌ
ݔܽ݉											 ۔ە

ۓ ,ᇱݔሺݏ ݊	|	ᇱሻఏ,ఒ,ఝݕ ఒଶ ߠݏܿ  ᇱݔ െ ݔ ൏ ሺ݊  1ሻ ఒଶ cos ݊		ߠ ఒଶ ߠ݊݅ݏ  ᇱݕ െ ݕ ൏ ሺ݊  1ሻ ఒଶ sin ߠ   (8) 

φn= ቊ0, n= -3,-1, 1

π, n = -2, 0, 2
                    (9) 

and 
Mሺݔ, 	,ሻθ,λݕ ൌ max	൫Mሺݔ,  n൯          (10)	ሻθ,λ,ݕ

The responses at M(x, y)θ,λ,n in equation 8, are  
simple cell responses with symmetric receptive 
fields along a line segment 3λ. Essentially this 
means that there are three peak responses for each 
grating subunit at point (x, y) at a given orientation 

θ. This line segment is split in λ/2 intervals. The 
particular position of each interval defines the 
response of on-centre and off-centre cells. In other 
words, a grating cell subunit is maximally activated 
when on-centre and off-centre cells of the same 
orientation and spatial frequency are activated at 
point (x, y). In equation 9 φn is the phase offset and 
for values between 0 and π, it corresponds to 
symmetric centre-on and centre-off operations 
respectively. 

In the second part of V2 grating cell design, a 
response w of grating cell centred on (x, y) along 
orientation θ and periodicity λ, is the weighted 
summation of grating subunits with orientations θ 
and θ+π, as given below: ݓሺݔ, ሻఒ,ఏൌݕ 	න ݔ݁ ቆെ ሺݔ െ ᇱሻଶݔ  ሺݕ െ ሻଶߪߚᇱሻଶ2ሺݕ ቇ ൫Grሺx', y'ሻθ,λ Grሺx, yሻθπ,λ൯݀ݕ݀´ݔ´, ߠ ∈ ሾ0,  ሻߨ

(11)

Parameter β is the summation area size with a 
typical value of 5. For our experiments, the number 
of simple cells were empirically chosen at 3 and all 
other parameter values were set at default values 
according to (Petkov and Kruizinga 1997).  

2.5 From Input Data to Presentation 
Attack Detection 

Input Layer: The purpose of the input layer is to 
prepare image information by scaling down all input 
RGB images to a minimum of 300 pixels for the 
shortest edge. This particular image size was chosen 
as a good compromise between speed/time and 
computational cost. 

Layer L1: This layer plays the role of the lateral 
geniculate nucleus and separates visual stimuli in the 
appropriate double-opponency channels (Figure) as 
given from section 2.2 while scaling all pixel values 
to the same range between 0 and 1. 

Layer L2a: Gabor filter operations perform edge 
detection according to parameterisation values given 
in section 2.3. It is important to note that after 
obtaining filtered outputs from all Gabor filters (in 
total 192) for each double-opponency channel, a 
maximum operator is applied so that a particular 
maximum response of L2a vectors (x1... xm) in a 
neighbourhood j is given by: 

r=argmaxj(xj)                              (12) 

The maximum operator is a well-known non-linear 
biological property exhibited by certain visual cells 
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at low levels of visual cognition, pooling 
visualinputs from previous layers (Lampl et al. 
2004; Riesenhuber and Poggio 1999) to greater 
receptive fields. This hierarchical process gradually 
projects meaningful visuospatial information to 
higher cortical layers in the mammalian brain 
(Figure).  

Layer L2b: In this layer grating cell operations 
are performed according to the settings given in 
section 2.4. Subsequently, grating outputs are 
spatially summed with outputs from L2a, in order to 
form a single L2 output for each of the three double-
opponency channels. Spatial summation is another 
cognition property of the visual cortex and like the 
maximum operator it is intended to combine several 
inputs into outputs for higher layers. Spatial 
summation is used in this layer in order to preserve 
the spatial integrity and sensitive texture information 
in faces (Figure 3).  
Layer L3: The three double-opponency channels 
after spatial summation, contain both edge and 
texture features and along with the RG-BY spectral 
channels from L1 that contain the spectral 
differences of each image, are fed through 
histograms with a window size of 20 units and bin 
size of 10. These values were empirically selected 
from experimentation as ideal for the particular layer 
dimensions. These spatial histograms have been 

used before in the context of face recognition but 
with lower level features at L1(Zhang et al. 2005) . 

Here they are employed at an intermediate level 
of feature processing and with various types 
biological-like features. It is further important to 
note here that since all these spatiospectral channels 
carry different types of visual information, they are 
never mixed together. 

Layer L4: In this layer all image data from the 
previous layer are simply concatenated and sorted in 
a multidimensional vector for either the training or 
testing phase, without any further processing. Vector 
dimensions vary according to the size of the dataset 
and choice of parameters within the model. For 
example, if in the previous layer L3 different 
settings for the spatial histograms were to be used on 
different datasets (i.e. different number of images), 
the vector size would be different for each case. 

Layer L5: Supervised classification takes place 
in this layer and any classifiers used can be trained 
with the extracted feature vector from L4. Training 
data are selected by following the 10-fold cross-
validation technique. The supervised classifiers 
chosen for this work were a SVM with a linear 
kernel and KNN with Euclidean distance. 

 
 

 

 

(a)                                          (b)                                              (c)                                            (d) 

Figure 3: A genuine access attempt versus a photo-print attack. Top row shows the progressive process of a genuine photo 
attempt. Bottom row shows the printed photo attack. Column (a) shows the input layer images. Column (b) the L2a layer as 
processed from edge detection Gabor filters, column (c) the L2b layer processed from texture grating cells and column (d) 
the combined layers L2a and L2b after spatial summation. The richness and depth of edge-texture information in the 
original image (top row) is apparent.                    . 
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3 EXPERIMENTS 

All presentation attack detection experiments were 
conducted with MATLAB using standard computer 
hardware. The databases employed for this work as 
well as the different spoofing attacks that were 
explored, are explained further in section 3.1 below. 
It is important to note that in all experiments for 
both genuine and impostor attacks, only one photo 
per person was used from the entire video 
sequences. Since our model currently does not 
perform any liveness detection method, successive 
video frames are not being considered. For the 
purpose of homogeneity and statistical accuracy 
between datasets, train and test data were divided 
with the cross-validation technique, bypassing the 
original train/test data split found in the CASIA 
database. 

3.1 Databases 

The CASIA Face Anti-Spoofing (Zhang et al. 2012) 
database is a database from the Chinese Academy of 
Sciences (CASIA) Centre for Biometrics and 
Security Research (CASIA-CBSR). This database 
contains videos at 10 seconds of real-access and 
spoofing attacks of 50 different subjects, divided 
into train and test sets with no overlap. All samples 
were captured with three devices at different 
resolutions: a) low resolution with an old 640x480 
webcam, b) normal resolution with a more up-to-
date 640x480 webcam and c) high resolution with a 
1920x 1080 Sony NEX-5 camera. Three different 
attacks were considered, a) warped, spoofing attacks 
are performed with curved copper paper hardcopies 
of high-resolution digital photographs from genuine 
users, b) cut, attacks are performed using hardcopies 
of high-resolution digital photographs from genuine 
users, with the eye areas cut out to simulate eye 
blinking, c) video, genuine user videos are replayed 
in front of the capturing device using a tablet. 

The MSU Mobile Face Spoofing Database or 
MFSD (Wen et al. 2015) for face spoof attacks, 
consists of 280 video clips of photo and video attack 
attempts of 35 different users. This database was 
produced at the Michigan State University Pattern 
Recognition and Image Processing (PRIP) Lab, in 
East Lansing, US. The MSU database has the 
following properties, a) mobile phones were used to 
acquire both genuine faces and spoofing attacks, b) 
printed photos were generated as high-definition 
prints and their authors claim that these have much 
better quality than printed photos in other databases 
of this kind. Two types of cameras were used in this 

database, a) built-in camera in MacBook Air at a 
resolution of 640x480, and b) front-facing camera in 
the Google Nexus 5 Android phone at a resolution of 
720x480. Spoofing attacks were generated using a 
Canon SLR camera, recording at 18.0Mpixel 
photographs and 1080p high-definition video clips 
and iPhone 5S back-facing camera, recording 1080p 
video clips. 

3.2 Results 

The PAD biologically-inspired model explained in 
section 2.5 was evaluated against two databases, 
CASIA and MFSD. The main concern of our 
experiments was the detection success rate of 
spoofing attacks made by potential impostors. 
Keeping this in mind, consideration was primarily 
given to whether a fake access could be successfully 
detected or if the subject’s image was a genuine 
access attempt. This was treated as a two-class 
classification problem. The applied biometric 
evaluation procedures are defined for the spoofing 
False Acceptance Rate (sFAR) and False Rejection 
Rate (FRR) as: 

sFAR = 
Impostor attacks seen as genuine

Total number of attacks 
        (13) 

FRR = 
Rejected genuine access attempts

Total number of genuine access attempts
         (14) 

Moreover, overall performance of the 
presentation attack detection is further presented 
according to (SC37 ISO/IEC JTC1 and Biometrics 
2014) with an additional measure, Average 
Classification Error Rate (ACER). The average of 
impostor attacks incorrectly classified as genuine 
attempts and normal presentation incorrectly 
classified as impostor attacks is given by: 

ACER	= 	 sFAR+FRR

2
              (15) 

 

All scores were obtained using 10 folds in the 
cross-validation technique and in order to further 
testify performance scores, the L4 feature vectors 
were applied under two different classification 
schema. A Support Vector Machine (SVM) with a 
linear kernel and k-nearest neighbour classifier of 
n=2 nearest neighbours with Euclidean distance as a 
distance measure. In reality, the number of 
neighbours varies according to the dataset but for the 
two class problem here out of all n values, 2 
produced the best average on both datasets as found 
through cross-validation. 

Figure 4 and Figure 5, show the overall 
classification or detection accuracy rates for the two 
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classifiers SVM and KNN. These accuracy rates are 
defined as the number of images for each database 
correctly classified as genuine or fake, i.e true 
positives and true negatives. It is quite evident in 
both figures that SVM portrays a desirable and 
consistent detection rate which persists at rates over 
85%. Depending on the choice of training and 
testing data, it is also apparent that significant 
deviations in results can occur. This is largely due to 
the small sample sizes from both databases, leading 
to significant statistical variance. The average 
classification accuracy scores from all trials in table 
1, also highlight the large differences between the 
two classifiers.  

 

Figure 4: Overall classification/detection accuracy rate of 
10 trials with two different classifiers, SVM (blue) and 
KNN (red) for the CASIA database. – 

 

Figure 5: Overall classification/detection accuracy rate of 
10 trials with two different classifiers, SVM (blue) and 
KNN (red) for the MFSD database. 

From SVM scores in table 1 it can be deduced 
that our PAD model performs well under both 
databases. Better performance is achieved for the 
MFSD database which is not entirely surprising 
since it consists of higher resolution images and high 
resolution print attacks. In addition, there is greater 

variability of features from the subjects in the MFSD 
database  

Table 1: The average classification percentages (%) and 
standard deviation values of 10 trials with cross-
validation. 

Dataset μ 
SVM 

μ 
KNN 

σ2 
SVM 

σ2 
KNN 

CASIA 92.75 57.37 5.06 10.18 

MFSD 97.08 82.08 3.82 9.97 

The detection accuracy rates in table 1 provide 
an insight into the overall ability of the PAD model 
to detect spoofing attacks. From these results it is 
seen that the model can achieve a high detection rate 
at 97% with relatively acceptable standard deviation 
value of 3.82 for the SVM case in the MFSD 
database. The KNN classifier with the CASIA 
database has shown the worst performance overall. 
This result indicates how important feature selection 
and classifier choice can be for presentation attack 
detection. If there is a significant overlap in feature 
attributes then KNN portrays sensitivity which 
requires fine-tuning. KNN sensitivity is also 
illustrated in the large differences between trials in 
Figure 5. The relatively low number of features in 
higher dimensional space in our case is a problem 
better suited for a SVM. While conclusions from 
table 1 can be useful, biometric evaluation becomes 
more meaningful when measured in terms of sFAR 
and FRR and table 2 more effectively capture the 
nature of error. 

Table 2: Average sFAR and FRR percentage scores with 
SVM classifier after 10 trials. 

Dataset sFAR FRR ACER 
CASIA  2.77 14.58 8.67 
MFSD 3.44 5 4.22 

Table 2 shows that error percentages are 
relatively small and comparable with other state-of-
the-art algorithms that have used these databases in 
the past. The sFAR percentages for both databases 
are comparable but there is a significant difference 
between the two databases in their FRR percentages. 
Naturally, this is also reflected onto the ACER 
percentages.  

A significant difference of 9.58% between FRR 
percentages indicates the difficulty of distinguishing 
attacks from genuine access attempts in the CASIA 
database. In effect, this proves the importance of 
image quality in terms of both verification and 
presentation attack cases since the CASIA database 
consists of photos with lower quality than MFSD. 
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We further wanted to investigate the impact V1 
and V2 operations of edge and texture have on the 
overall performance of presentation attack detection. 
These tests were only performed for the SVM linear 
kernel case. In table 3 below, we provide V1 PAD 
values alongside values of V1 and V2 of the 
complete model (table 1) for comparison. As seen 
from this table, not only overall PAD scores drop for 
V1 only operations but standard deviation values 
across all trials indicate a worsening performance. 
While these values are indicative in these early 
stages of experimentation, another study on 
optimum parameterisation for each layer may yet 
reveal a more important relationship between edge 
and texture features for accurate presentation attack 
detection. 

Table 3: The average classification percentages (%) and 
standard deviation values of 10 trials with cross-validation 
for V1 and V2 operations. 

Dataset μ 
V1 only 

μ 
V1&V2 

σ2 
V1 

σ2 

V1&V2 
CASIA 90 92.75 8.6 5.06 

MFSD 95.63 97.08 6.25 3.82 

Furthermore, the performance between the two 
datasets can be viewed from the Detection Error 
Tradeoff (DET) curve as shown in Figure 6. The 
DET curve for the CASIA dataset contains more 
samples and therefore is slightly larger, yet superior 
performance of the model is noticeable for the 
MFSD database.  

 

Figure 6: DET curve of SVM scores for the CASIA (red) 
and MFSD (blue) databases. 

4 CONCLUSIONS 

In this work we have presented a novel presentation 
attack detection hierarchical algorithm that relies on 
the extraction of edge and texture biologically-
inspired features, by mimicking processes of the 
visual cortex and particularly of areas V1 and V2.  

By using two different datasets for the most 
common and basic attacks, we have achieved results 
that average at 94% detection rates. ACER scores 
for both databases indicate a tolerable error 
performance that will in the future be compared with 
other existing state-of-the-art algorithms. It was 
further obvious from our experiments that the nature 
of data is well separated in classification by a SVM 
classifier. 

Overall, the results have been promising and the 
proposed model can serve as the foundation for 
further enhancements. Future work will include 
refinement of the biological-like operations to 
increase performance and speed, optimisation for 
video and real time processes, experimentation with 
more datasets, different types of attacks such as 2D 
and 3D masks, and experimentation in dynamic – 
real world scenarios. 
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