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Abstract: The beam propagation factor, M2, exists as one of very few measures of a laser’s performance, when really a 
more detailed analysis of the application and laser are necessary for judgement in most cases.  In free-space 
optical communications, a crucial figure of merit is the proportion of diffraction-limited power in the far-
field. A calculated structure has been made with a higher proportion of diffraction-limited power in the far-
field than another calculated structure with a much better M2. This calculated structure has an M2 of 19, with 
89% of its power within the diffraction limit in the far-field, compared to another calculated structure with 
M2 of 1.7 that has 86% of its power within the diffraction limit in the far-field. 

1 INTRODUCTION 

The beam propagation factor M2, often erroneously 
called the “beam quality,” is a comparison of the 
near- and far-field second moment widths of a given 
beam to a fundamental Gaussian beam of the same 
wavelength. A fundamental Gaussian beam is ideal, 
meaning it can be focused down to a waist of minimal 
size—subject to a certain numerical aperture—or 
collimated such that its divergence angle is minimal, 
and its M2 is 1 (Saleh and Teich, 2007). Another way 
of stating this is by calling the beam diffraction-
limited. M2 is given as: 
 

ଶܯ ൌ ω଴ߠ଴
ߨ
ߣ

 (1) 

 
Where ω0 is the beam waist radius, θ0 is the 
divergence half-angle, and λ is the operating 
wavelength (Saleh and Teich, 2007).  
 
Since the operating wavelength is usually known or 
easily measured, the beam waist and divergence angle 
are the only two remaining beam metrics needed to 
know M2. They are not as easy to measure and 
calculate though, and as such, ISO has created 
standard 11146 to specify procedures to do so. 

Specifically, ISO mandates usage of the second 
moment width of the near- and far-field intensity 
distributions to determine beam waist and divergence 
angle, respectively (1995). 
 
Given the nature of the second moment, it is possible, 
in theory, to use this definition of beam 
waist/divergence angle in a way that brings light to 
the faults of using M2 as beam quality. For example, 
begin with an intensity distribution of a fundamental 
Gaussian beam. By placing a small amount of energy 
very far from the central lobe of the distribution, the 
second moment width could be made infinitely large, 
even though a great proportion of the energy still lies 
within the diffraction limit. This would, in turn, cause 
M2 to be large, even though the beam behaves very 
similarly to a fundamental Gaussian beam. 
 
This paper demonstrates that a structure with an M2 
much greater than 1 can be engineered such that most 
of the power in the far-field lies within the diffraction 
limit—as desired for free-space optical 
communications. The significance of such a finding 
is that larger semiconductor laser structures capable 
of greater efficiency and higher power could be used 
for free-space optical communications without 
concerns about multimode activity. Additionally, M2 
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is an insufficient measure of beam quality for free-
space optical communications, and a different metric, 
such as power in the bucket, would serve better.  

2 CALCULATING A MODE 
PROFILE AND A REFERENCE 
GAUSSIAN PROFILE 

The process of engineering a structure to meet the 
design intents begins with a basic refractive index 
profile: a centered region of higher refractive index, 
as illustrated in figure 1.  

 

Figure 1: A basic refractive index structure and its first 
order mode profile. Note that many higher order modes are 
also supported by this structure. 

This profile results in a simple, somewhat Gaussian, 
first order mode profile. The desired mode profile 
contains some of its energy far from the center, 
however, so this basic design is not sufficient on its 
own. For high power applications, it is desirable to 
have heat spread over a large physical area. Scaling 
the first order mode size is not useful because the 
index contrast required to do so is far too small for 
real-world use—both due to manufacturing 
limitations and sensitivity to thermal effects. 
 
 From the basic structure, one can observe that the 
mode profile has a peak centered about the region of 
higher refractive index. The desired profile features 
additional peaks in the mode before and after the 
central lobe, therefore the next evolution in the index 
profile should be adding high index material before 
and after the central lobe. Some additional factors to 
consider are the thickness of each high-index material 
layer and the magnitude of the index contrast between 
the base material and the lobes of higher index. As a 

demonstration of these effects, the structure observed 
in figure 2 is first used as a reference. 

 

Figure 2: A structure useful for demonstrating the effects of 
changes to the index profile. 

The central lobe of high-index material is then made 
twice as wide, and the effects are observed in figure 
3.  

 

Figure 3: The same structure from Fig. 2, but with a wider 
central region. 

As demonstrated in figure 3, a thicker high-index 
material pulls the first order mode into the lobe. 
 
Again using the structure in figure 2 as a reference, 
the refractive index contrast between the central lobe 
and the base material is increased, and the effects are 
observed in figure 4. 
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Figure 4: The same structure from Fig. 2, but with a greater 
index contrast between the central region and the base 
material. 

A greater index contrast also pulls the first order 
mode into the lobe. These two relations are a 
consequence of solving the Helmholtz wave 
equation: 
 

 
Where U is the complex field and k is the wave 
number (Goodman, 2005). The wave number k 
depends on the refractive index. As such, the 
normalized first order solution to the wave equation 
is guided to the region of highest average refractive 
index. The two methods demonstrated both direct that 
region towards the center of the structure. 
 
The first order mode is generally a good indication of 
the behavior of the structure, however, one must still 
take into account higher order modes, if any are 
present in the laser, which adds additional levels of 

complexity. As such, the process of engineering the 
desired structure is an iterative one, requiring analysis 
after each iteration.  
 
Once an index profile is created, analysis can begin. 
The modes—and therefore the near-field intensity 
distribution—are calculated using a Ritz iterative 
eigenmode solve of the Helmholtz wave equation 
given in equation 2. The near-field intensity is given 
by the absolute square of the complex field. 
 
The far-field intensity distribution as a function of 
angle is found via the absolute square of the Fourier 
transform of the field near the aperture (Goodman, 
2005). From this point forward, the profiles referred 
to in the near- and far-field are the intensity 
distributions.  
 
It is worth note that even structures with exotic near-
field distributions have far-field distributions that 
look mostly Gaussian in nature. For example, the 
near- and far-field profiles for the structure from 
figure 2 are displayed in figure 5. This is promising 
evidence in support of the hypothesis that a structure 
with poor M2 can still have a large proportion of its 
power within the diffraction limit in the far-field. 
 
After engineering a structure to test, it is necessary to 
create a reference Gaussian beam for that structure. 
This is done using software to find the optimal 
Gaussian for the near-field profile, based on the 
overlap. Begin with the basic form of a Gaussian 
function. Match the peak and mean to the peak and 
centroid of the near-field profile, then iteratively vary 
the width to find the best profile using the overlap 
with the near-field profile as a figure of merit. The 
result with the most overlap is the reference Gaussian 
profile. 

 

Figure 5: The near-field (left) and far-field (right) intensity profiles for the structure in Fig. 2. 
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In order to obtain a reference for the diffraction limit 
in the far-field, the Fourier Transform is used to 
propagate the reference Gaussian profile to the far-
field. Important to note is the inverse nature of the 
Fourier Transform, which means that a broad near-
field intensity profile will result in a narrow far-field 
intensity profile, and vice-versa. Figure 5 is an 
excellent example of this. The near-field profile is 
relatively wide, and the far-field profile is in turn 
quite narrow. 
 
Provided a structure and its corresponding reference 
Gaussian profile, calculations can be performed to 
solve for M2 and the proportion of diffraction-limited 
power in the far-field. Firstly, the beam parameter 
product (BPP) must be found for the reference 
Gaussian profiles, and the engineered structure. The 
BPP is simply defined as: 
 

ܲܲܤ ൌ ߱଴ߠ଴ (3) 
 
Where ω0 is the beam waist in the near-field, and θ0 
is the divergence angle in the far-field. Beam waist 
and divergence angle are found from the second 
moment width of the near- and far-field profiles, 
respectively, as per ISO standard 11146 (1995). 
 
Since the M2 of a fundamental Gaussian beam is 
known to be 1, the M2 of the engineered structure can 
be found by dividing the BPP of the structure by the 
BPP of the reference Gaussian profile, as their 
operating wavelengths are assumed to be equal. The 
diffraction-limited power in the far-field (or near-
field, if needed) may be calculated now using the 
engineered profiles and the reference profiles. A 
range for the diffraction-limited region must be 

specified. One way of doing so is using the far-field 
divergence angle (which was obtained earlier using 
the second moment method) as follows: 
 

ܲ ൌ
׬ ߠ݀	ሻߠሺܨ
ఏబ
ିఏబ

׬ ߠ݀	ሻߠሺܨ
ஶ
ିஶ

 
(4) 

 
Where θ0 is the far-field divergence angle of the 
reference Gaussian, and F(θ) is the far-field intensity 
profile of the engineered structure, as a function of 
angle.  

3 RESULTS 

There are four possible outcomes for a given 
structure: M2 can be relatively high or relatively low 
(close to 1), and each of those cases can have a high 
or low proportion of diffraction-limited power in the 
far-field. The expected outcomes are those in line 
with the current assumptions about M2. A small M2 
will have most of its power within the diffraction limit 
because it is similar to a fundamental Gaussian beam, 
and a large M2 will have most of its power outside the 
diffraction limit because it is dissimilar to a 
fundamental Gaussian beam. 
 
The significant outcome, the focus of this paper, is 
that a structure with large M2 can be engineered to 
contain most of its power within the diffraction limit. 
The other possible outcome—in which a structure 
with small M2 would have most of its power outside 
the diffraction limit—falls outside the scope of this 
paper.  

 

Figure 6: Near-field (left) and far-field (right) intensity distributions for an engineered structure with M2 of 1.7 and 86 percent 
of its power in the far-field within the diffraction limit. 
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Figure 7: Near-field (left) and far-field (right) intensity distributions of an engineered structure operating with M2 of 10 and 
only 20% of its power in the far-field within the diffraction limit. 

Figure 6 illustrates the first expected outcome; a small 
M2 resulting in most of its power within the 
diffraction limit in the far-field—in this case 86 
percent of the power within the diffraction limit for 
an M2 of 1.7. The reference Gaussian is also included 
for visual comparison. As expected, the shape of the 
near- and far-field profiles are quite similar to the 
reference Gaussian hence the small M2. M2 can be 
visualized in these plots as the product of the 
deviation of the black curve from the red curve in the 
near- and far-field, as this is the visual manifestation 
of the beam parameter product.  
 
Figure 7 illustrates the second expected outcome; a 
large M2 resulting in most of the power outside the 
diffraction limit—in this case only 20 percent of the 
power in the far-field is within the diffraction limit, 
and M2 is 10. Although the shape of the near-field 
profile looks very similar to the reference Gaussian, 
the inverse nature of the Fourier transform exhibits 
itself very strongly as the far-field profile for the 
engineered structure is extremely broad compared to 
the rather narrow reference Gaussian profile. Using 
the beam parameter product definition from equation 
(3), fixing wavelength to be the same, and assuming 
that the beam waist are roughly the same, one can 
conclude that the far-field divergence angle is about 
10 times that of the reference Gaussian, hence the vast 
difference in the size of the curves in the far-field 
(Siegman, 1998). 

 

Figure 8: The index profile and first order mode of the 
engineered structure that supports the original hypothesis. 

Figure 8 is the engineered structure that validates the 
original hypothesis. Its near- and far-field intensity 
distributions are shown in figure 9. It has an M2 of 19 
and contains 89 percent of its power in the far-field 
within the diffraction limit—more than even the M2-
1.7 structure in figure 6. The structure was created by 
cleverly manipulating the two lobes visible in the 
near-field such that they are very far from the central 
lobe relative to the width of the lobes. This makes the 
beam waist, as defined by the ISO standard second 
moment method, very large. This accomplishes two 
things. Firstly, the far-field profile is narrow—much 
narrower than that of an M2-19 beam would normally 
be—thanks to the inverse nature of the Fourier 
transform. Secondly, M2 is large as a result of the 
beam parameter product comparison with the 
reference Gaussian.  
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Figure 9: Near-field (left) and far-field (right) intensity distributions of an engineered structure operating with M2 of 19 and 
89% of its power in the far-field within the diffraction limit. 

4 CONCLUSIONS 

In conclusion, this paper demonstrates that a structure 
with large M2 can be engineered such that most of its 
power lie within the diffraction limit is true. As a 
result, M2 is not an appropriate measure of beam 
quality within the scope of free-space optical 
communications. The significance of such a structure 
is that a larger stripe width could be used in 
semiconductor lasers without fear of multimode 
activity, since diffraction-limited power is still large 
relative to the total power available. This could allow 
greater efficiency at higher power, as the trend 
observed by Crump et al verifies (2009). The 
engineered structure exhibited a greater proportion of 
diffraction-limited power than another structure with 
an M2 ten times smaller. Perhaps the metric of beam 
quality for semiconductor lasers needs rethinking, 
especially in applications such as free-space optical 
communications. 
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