
Adjusting Word Embeddings by Deep Neural Networks

Xiaoyang Gao1 and Ryutaro Ichise2,3

1School of Electronics Engineering and Computer Science, Peking University, Beijing, China
2National Institute of Informatics, Tokyo, Japan

3National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Keywords: NLP, Word Embeddings, Deep Learning, Neural Network.

Abstract: Continuous representations language models have gained popularity in many NLP tasks. To measure the

similarity of two words, we have to calculate their cosine distances. However the qualities of word embeddings

depend on the corpus selected. As for word2vec, we observe that the vectors are far apart to each other.

Furthermore, synonym words with low occurrences or with multiple meanings are even further in distance.

In these cases, cosine similarities are no longer appropriate to evaluate how similar the words are. And

considering about the structures of most of the language models, they are not as deep as we supposed. “Deep”

here refers to setting more layers in the neural network. Based on these observations, we implement a mixed

system with two kinds of architectures. We show that adjustment can be done on word embeddings in both

unsupervised and supervised ways. Remarkably, this approach can successfully handle the cases mentioned

above by largely increasing most of synonyms similarities. It is also easy to train and adapt to certain tasks by

changing the training target and dataset.

1 INTRODUCTION

To understand the meanings of words is the core

task of natural language processing models. While

still hard to compete with a human-like brain,

many models successfully reveal certain aspects of

similarity relatedness using distributed representa-

tion. These word embeddings are trained over

large and unlabeled text corpus leveraging different

kinds of neural networks (Bengio et al.(2003)Bengio,

Ducharme, Vincent, and Jauvin; Collobert and

Weston(2008); Mnih and Hinton(2009); Mikolov

et al.(2011)Mikolov, Kombrink, Burget, Černockỳ,

and Khudanpur) and have obtained much attention

in many fields, such as part-of-speech tagging (Col-

lobert et al.(2011)Collobert, Weston, Bottou, Kar-

len, Kavukcuoglu, and Kuksa), dependency parsing

(Chen and Manning(2014)), syntactic parsing (Socher

et al.(2013)Socher, Bauer, Manning, and Ng), etc.

One of the popular neural-network models is

word2vec (Mikolov et al.(2013a)Mikolov, Chen, Cor-

rado, and Dean; Mikolov and Dean(2013b)), in which

words are embedded into a low-dimensional vector

space, which corresponds to words in a way based

on the distributional hypothesis: words that occur in

similar context should have similar meanings. The

hypothesis captures the semantic and syntactic relati-

ons between words, and learned vectors encode these

properties. Both of the semantic and syntactic regula-

rities can be revealed from linear calculation between

word pairs: boys - boy ≈ cars - car, and king - man

≈ queen - woman. The means of measuring the si-

milarity between the source word and the target word

is to calculate the cosine distance. Bigger cosine si-

milarity indicates that the target word is more similar

to the source word than the others. After applying the

model, the embedded vectors are spread in a large Eu-

clidean space in which words are separated far from

others, leading to sparse vectors. Traditional methods

to measure the semantic similarity are often operated

on the taxonomic dictionary WordNet (Miller(1995))

and exploit the hierarchy structure. (Menéndez-Mora

and Ichise(2011)) proposed a new model which modi-

fies the traditional WordNet-based semantic similarity

metrics. But these methods do not consider the con-

text of words, and it is hard to figure out the syntactic

properties and linguistic regularities. A good idea is

to combine WordNet with neural network models for

deep learning.

Words that are synonyms denote that they mean

nearly the same sense in the same language and they

are interchangeable in certain contexts. For exam-

398
Gao X. and Ichise R.
Adjusting Word Embeddings by Deep Neural Networks.
DOI: 10.5220/0006120003980406
In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), pages 398-406
ISBN: 978-989-758-220-2
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1: The framework of our system. We feed word
representations to a deep neural network for pre-training,
and then use learned parameters for a deep neural network
which implements for fine-tuning. x is the input, h1 and h2

are the learned hidden representations from unsupervised
model. Synonym dataset is used for supervised learning in
fine-tuning model.

ple, blush and flush can be both interpreted as be-

coming red in the face when feeling embarrassed

or shamed, but the cosine similarity between words

is only around 0.2 when we obtain the vector by

word2vec. It is also observed that word2vec doesn’t

recover another kind of relational similarity, for ex-

ample, regularize and regularise are totally the same,

but such word pair only gains around 0.7 cosine si-

milarity which illustrate the sparse and scattered pro-

perties of word2vec representations. In this paper, we

propose two different deep neural networks to com-

press the vectors and reduce the dimensionality in

both supervised and unsupervised ways. Unsupervi-

sed deep neural networks are usually applied for pre-

training and extracting meaningful features, and can

achieve better performance comparing to the results

without unsupervised learning process. Considering

there is only one hidden layer in word2vec, we show

that leveraging deep neural networks on learned vec-

tors can lead to competitive and state-of-the-art re-

sults. By adjusting the elements in the vector, we

found that using autoencoders can improve the simi-

larity between synonyms, exhibiting the nature of this

relation, making the cosine similarity more plausible

to human perception. Without using other datasets

like WordNet and regardless of the corpus used, stac-

ked autoencoders can automatically enable the syno-

nyms to get closer in the space.

A key insight of the work is that vectors from

word2vec can be learned deeply by the neural net-

work. Deep neural networks(DNNs) have achieve re-

markable performances in many critical tasks compa-

ring to traditional machine learning methods. (Kriz-

hevsky et al.(2012)Krizhevsky, Sutskever, and Hin-

ton) proposed a deep convolutional neural network

which achieved record-breaking results on ImageNet

classfication. (Dahl et al.(2012)Dahl, Yu, Deng, and

Acero) also presented a novel DNN model with deep

belief network for pre-training in speech recognition.

The model reduced relative error and outperformed

conventional models. Previous works inspire us to

use DNNs on raw word representations. After adjust-

ment, the model produces markedly different word re-

presentations and we find that the cosine similarities

between most of the synonyms are improved. Toget-

her with a fine-tuning model and a novel loss function,

all compressed word embeddings from hidden lay-

ers achieve state-of-the-art performances at recove-

ring the synonym relation and deceasing distances be-

tween non-synonym word pairs. This result reflects

the potential energy of autoencoders and the space for

deep learning of the vectors from word2vec.

In this paper, we will introduce related work in

Section 2, and present our deep learning model in

Section 3. The experiment setup and results will be

presented in Section 4, as well as the discussion. We

will conclude our system and findings in Section 5.

2 RELATED WORK

Traditional language models reconstruct certain word

co-occurrence matrix and represent words as high

dimensional but sparse vectors, then reduce the di-

mension by matrix-factorization methods, such as

SVD (Bullinaria and Levy(2007)), or LDA (Blei

et al.(2003)Blei, Ng, and Jordan). Recently, dense

vectors from neural network language models refer-

red to as “word embedding” perform well in a variety

of NLP tasks.

Neural network language models (NNLMs) “em-

bed” words from large, unlabeled corpus into a low-

dimensional vector space and outperform traditio-

nal models. Moreover, neural-network based mo-

dels have been successfully applied in many speci-

fied fields, such as analogy answer tasks, named en-

tity recognition, etc. In NNLMs, each word is presen-

ted as a k-dimension vector with real numbers, and

two vectors that have a high cosine similarity result

indicate that the corresponding words are semanti-

cally or syntactically related. Among all these mo-

dels, word2vec which largely reduced the computati-

onal complexity gains the most popularity. The word

Adjusting Word Embeddings by Deep Neural Networks

399

embeddings of the model capture the attributional si-

milarities for words that occur in the similar context.

As for word2vec, the model increases the dot product

of words that co-occur in the corpus, and this leads

to the result that words that are semantic or syntactic

related are closed to each other in the representation

space. There are two structures for the model, each

has its own characteristics and applicability in dif-

ferent cases. The continuous bag-of-words (CBOW)

predict the target word by the window of words to the

left as well as to the right of it. The Skip-gram model

predicts the words in the window from current word.

However, we can find some problems in the mo-

del. Words in English always have multiple mea-

nings. To deal with this issue, WordNet, a lexical

ontology, distinguishes different meanings of one spe-

cific word by attributing it to different synsets. (Bol-

legala et al.(2015)Bollegala, Mohammed, Maehara,

and Kawarabayashi) used a semantic lexicon and a

corpus to learn word representations. Their method

utilizes co-occurrence matrix and the lexical onto-

logy instead of the neural network and outperforms

both CBOW and Skip-gram by calculating the corre-

lation coefficient between cosine similarities and ben-

chmark datasets. Also there will be an intersection for

senses of two words if they refer to the same meaning

in the certain context. But because of different usages

and writing habits, some words with the same mea-

ning may occur in distinct contexts or appear infre-

quently in the text. For example, the cosine similarity

for “let” and “allow” is smaller than human intuition

judgement, and except “letting”, “lets”, the most simi-

lar word to “let” is “want”. This indicates the sparse

property of word embeddings learned by the model.

Considering about two words, each word has a vari-

ety of meanings, but they share a few of them, in this

case, they are widely spread in representation space

by this model and far apart to each other. Moreover,

one word can have different forms, for example, “re-

gularize” can also be written in the form of “regula-

rise”, while in fact they are the same. However, when

we use word representations to calculate the cosine

similarities in these cases we get unreasonable scores

which fail to accurately measure the similarity bet-

ween words. To deal with these kinds of sparsity, and

considering about the “depth” of NNLMs, we propose

a deep neural network and this will be discussed later

in the following section. Currently not so many works

focus on addressing these problems.

3 PROPOSED APPROACH

We propose a novel deep neural network with pre-

train process by using stacked autoencoders. Figure 1

illustrates the data flow of our architecture. First we

process the input for pre-training to get latent para-

meters. After pre-training the raw input, we reduce

the dimensionality to get better representations. The

parameters of fine-tuning model are initialized by le-

arned weights and biases. Both parts of the system

leverage back propagation method for training. In the

fine-tuning part we exhibit an innovative loss function

which enables the model to increase the quality of si-

milarities between synonym words as well as unrela-

ted words.

3.1 Pre-train Model

An autoencoder (Rumelhart et al.(1985)Rumelhart,

Hinton, and Williams; Hinton and Salakhutdi-

nov(2006)) is a neural network for the purpose of re-

ducing dimension, encoding original representations

of the data in an unsupervised way. It is widely used

for pre-training the data before classification tasks due

to their strong dependency on the representation. By

learning better representations,an auto-encoder redu-

ces noise and extracts meaningful features, which im-

prove performance of classifiers. (Kamyshanska and

Memisevic(2015)) presents the potential energy of

autoencoder using different activation functions and

how different autoencoders achieve competitive per-

formances in classification tasks. This inspires us to

implement the network on word embeddings.

For an autoencoder, the network uses a mapping

function fθ to encode the input xxx into hidden represen-

tations yyy, where θ = {WWW ,bbb}, WWW is the weight matrix

and bbb is the bias term. Then the autoencoder decodes

the hidden representations to reconstruct the input x̂̂x̂x

via WWW T and another bias term for the output layer. h

is the activation functions, Sigmoid and ReLU are fre-

quently used.

yyy = h(WWWxxx+bbb) (1)

x̂̂x̂x = h
(
WWW T h(WWWxxx+bbb)+ b̂̂b̂b

)
(2)

The goal of the autoencoder is to compare the recon-

structed output to the original input and minimize the

error so that output can be as close as possible to the

input.

We leverage autoencoders to word embeddings le-

arned by word2vec for the following three reasons:

1. We use the autoencoder to denoise and learn better

representations.

2. Polysemous words spread widely in the represen-

tation space, far from their similar words, while

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

400

Figure 2: Stacked autoencoders with 2 hidden layers. Train
the first autoencoder on the input to learn new features h.
Then feed new features to the second autoencoder to obtain
secondary features h1.

autoencoder can compress the vectors and make

them closer.

3. Representations of deeper hidden layers are rela-

tively robust and steady to the input so we will

reduce the dimensionality at least twice.

An advanced form of applying the reduction is

stacked autoencoders. This neural network consists

of multiple layers of sparse autoencoders in which

the output of each layer is the input of the succes-

sive layer. The best way to train the stacked autoen-

coders is to use greedy layer-wise training. To do

this, we first train one autoencoder for dimensiona-

lity reduction to obtain the weight matrix and bias.

Then use the latent representation as the input for the

next autoencoder. Follow this method in the subse-

quent layers, and finally a fine-tuning model is used to

confirm and optimize the convergence of whole neu-

ral networks by the backpropagation method. In our

system, we first use stacked autoencoders to obtain

more robust representations than the corrupted input

from word2vec as the pre-train step. Figure 2 shows

the architecture of this step. Additionally, the activa-

tion function f (x) = tanh(x) = 1−e−2x

1+e−2x is used in the

intermediate layers, and the output layer is also tanh

because word representations should include positive

as well as negative values.

In order to have the output as close as possible to

the input, we use mean squared loss function

LLL =
1

N

N

∑
i=1

||xixixi − x̂îxîxi||2 (3)

where xi denotes the representation of a word in the

corpus, and N is the total number of words. Using

this function, the output will be as close as possible to

the input.

3.2 Fine-tuning Model

The second part of our system is a novel fine-tuning

model, constituted by a deep neural network. Unlike

the fine-tuning model for autoencoders talked about in

the previous section, we remove the symmetric struc-

ture of the network because we raise a new kind of

loss function for learning deeper level representati-

ons. But the parameters are still initialized by learned

weights and biases from stacked autoencoders for the

purpose of fine-tuning. Figure 3 shows the architec-

ture of the model.

We use the synonym dataset from WordNet to

train the model. The dataset consists of words and

their corresponding synsets IDs. If two words have

the same synset ID, they denote the same concept. We

iterate the whole dataset, each time we choose a word

and find all the synonym words to it. At the same

time, we randomly select 5 negative samples. Word

negative means they are non-synonym instances to the

present word. We utilize a innovative loss function

for processing with word representations following

the inspiration from (Huang et al.(2015)Huang, Heck,

and Ji; Shen et al.(2014)Shen, He, Gao, Deng, and

Mesnil)

LLL =− log ∏
(w+,w)

P
(
w+|w

)
(4)

P(w j |wi) =
exp(sim(w j,wi))

∑
w′∈Ei

exp(sim(w′,wi))
(5)

where w+ denotes one related synonym word accor-

ding to the current input instance in the dataset, and

Ei is the set of instances which are not related or re-

lated to the input in any sense. We use one back-

propagation method to minimize the loss to get op-

timal results, and in order to avoid overfitting, 10-fold

cross-validation is implemented for determining mo-

del parameters after randomly sorting the vocabulary

list. We set the first hidden layer to 150 neural units,

and 100 for the next. On the top of the network, we

output representations of positive and negative instan-

ces, and calculate the cosine similarity for word pairs

so that we can measure the loss and update the para-

meters. By calculating the posterior probability and

the loss, the model will increase the cosine similari-

ties between synonym word pairs, and decrease those

for non-synonym word pairs simultaneously. Also

in this supervised way, we can save artificial efforts

and obtain competitive or even state-of-the-art results

comparing to word embeddings without learning by

deep neural network.

Adjusting Word Embeddings by Deep Neural Networks

401

Figure 3: The structure of the fine-tuning model. Each time
the input is the current word we come across in the dataset
and we find a synonym of the word, we calculate the cosine
similarity between them. We also choose a certain number
of negative words which are not related to the current word.

4 EXPERIMENTS

We evaluate the learned representations of stacked au-

toencoders and the fine-tuning model, comparing to a

variety of dimensions from word2vec without hand-

ling to show the performance of our system. For the

experiment we use English Wikipedia dump collected

in June of 2016. As processing, the corpus was lower-

cased and all punctuations are eliminated, phrases are

separated so that words in them are treated indepen-

dently. We set word2vec to apply CBOW instead of

Skip-gram because there’s little difference, negative

sampling instead of hierarchy softmax. For parame-

ters in the model, the size of dimension is 200 and

the minimum count is 50. As a result we get 473926

words in total. Initially we reduced 200-dimension

vectors learned by word2vec to 150 dimension. We

use Adam algorithm which proposed by (Kingma and

Ba(2014)) to minimize the loss function because of

its computational efficiency. For the first autoenco-

der, the input is the original word representations from

word2vec. After training to reach convergence, the

first autoencoder produces dimensionality reduced re-

presentations and is used for the next autoencoder. By

stacking the neural networks, we obtain embeddings

of different dimensions. In this way we fed the en-

semble of real value vectors which are of 150 dimen-

sion all the way to the secondary autoencoder to get

100 dimension results. We preserved weights and bias

terms of each level for the initialization of the fine tu-

Table 1: The empirical results for stacked autoencoders and
the input is vectors of 200 dimension.

Dimensionality 150-ae 100-ae

200 73.54% 83.77%

150 49.00% 75.07%

100 27.50% 58.17%

Table 2: Results of the stacked autoencoders with 300 di-
mension vectors as input. In this experiment we compressed
the vectors more times comparing to the previous one. The
comparison between Table 1 shows that the deeper neural
networks perform better.

Dimensionality 150-ae 100-ae

200 85.31% 88.11%

150 75.06% 83.87%

100 55.76% 73.46%

ning model. We did not implement Mini-Batch Gra-

dient Descent considering about the unique property

of each word. The whole training process usually

takes more than 10000 iterations and 12 hours on a

single CPU. Meanwhile we dealt with 300-dimension

embeddings for comparison since we found that the

obtained results hold interesting trends and we want

to see if the same case will happen for the same size

of dimensionality, and to find out whether the depth

influences the performance. Accordingly, vectors di-

mensionality of 200, 150 and 100 from word2vec are

for comparison to our system’s output latent repre-

sentations. As for fine-tuning part, after filtering the

instances in the dataset that do not occur in the corpus

or are phrases, the total words for training the fine-

tuning model is 55823 with 77538 different senses.

Because we don’t have test datasets for the work and

in case of overfitting, we use 10-fold cross-validation

to evaluate the average results about proportions be-

tween the number of synonym word pairs of which

cosine similarities have been improved and the total

number of pairs in the set.

4.1 Experiment 1

We first evaluate the results of the pre-train model.

The idea to use autoencoders is that we can get bet-

ter vector representations which own less noise, more

robust features and it can make related words closer.

The input is vectors of 200 dimension from word2vec,

and reduced the dimensionality to 150 by the first le-

vel autoencoder. Then we use learned representations

as input for the second level to get dimensionality of

100. The evaluation is to calculate the average per-

formances for test sets. We want to see how many

synonym word pairs in the set whose cosine similari-

ties have been improved. In this way we will calculate

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

402

the proportion of improved word pairs and present the

percentage in the following tables. To ensure the con-

vergence, the iterating stops when we obtain the loss

value as small as possible and it remains invariant for

a period of time.

Table 1 shows some interesting findings. The row

in Table 1 represents word embeddings of 200, 150

and 100 from word2vec respectively. The column

stands for 150 and 100 dimension hidden represen-

tations after we used stacked autoencoders. We set

the baseline as original cosine similarities, and calcu-

late after we reduced the dimension, how many syno-

nym word pairs’ similarities have been improved. For

150 dimension vectors obtained from the autoenco-

der, 73.54% of synonym word pairs have been impro-

ved considering their cosine similarities, comparing

to the raw input of 200 dimension. This demonstra-

tes that after encoding, synonyms become closer in an

unsupervised way. But for 150 dimension original re-

presentations, only 49% of word pairs have been im-

proved which can be regarded as competitive results,

and 27.50% for 100 dimension. The decreasing trend

by virtue of the mechanism in word2vec, the smal-

ler the dimensionality is, the higher cosine similarity

results we get, however the representations still hold

the deficiencies of the model. Then the secondary en-

coded vectors of 100 dimension give better results,

83.97% of word pairs have been improved, outperfor-

ming the previous one. Even we reduce the dimension

twice, the encoded representations still hold the de-

creasing trend. As for 200 and 150 dimensions, hid-

den representations significantly promote the quality

of similarity between synonym words without speci-

fic corpus in which the characteristics of synonyms

in specific contexts are well preserved. Comparing to

the same size, we still get competitive results, nonet-

heless, the 100 dimension latent representations per-

form better than 150 in the same case. To consolidate

our idea and to exploit more of the strength of stac-

ked autoencoders, we reduced 300 dimension to 150

dimension as well as 100 dimension by a 50 dimen-

sion drop for each reduction. This time we encoded

the vectors 3 times and 4 times to get latent repre-

sentations. In Table 2, the 150 and 100 dimension

in column come from one different stacked autoenco-

ders model and possess more reduction times compa-

ring to hidden representations in the Table 1 column.

After raising the reduction times, we can see the re-

sults become even better, and the reduction amount

between adjacent layers is decreasing. The cosine si-

milarities of the 150 and 100 dimension representati-

ons are greatly improved, and as for the same size of

word2vec vectors, the results are beyond competitive.

We can conclude that “the deeper, the better”, deeper

Table 3: Overall performances of fine-tuning model. The
representations from two hidden layers are evaluated for
computing the proportion between improved instances and
the total number.

Dimensionality 150-bp 100-bp

200 94.37% 80.76%

150 92.36% 79.65%

100 88.91% 78.60%

layer representations are more compact. In this way,

we denoise so that related words get closer and the

similarities of synonym words become higher, which

seems more reasonable to human perception.

This pre-training method is an automatic learning

process for the input, and the model develops bet-

ter representations for synonym word pairs. We can

argue that the stacked autoencoders is powerful to

address the problem of ambiguity between synonym

words and scattering vectors by reducing the dimen-

sion. This novel approach on dealing with word2vec

vectors demonstrates that these vectors can still be le-

arned by deep neural networks. It can be utilized to

extract meaningful features in embeddings so that we

can explore the properties held in them.

4.2 Experiment 2

In order to fine-tune the parameters, we propose a

deep synonym relatedness model to learn latent re-

presentations after pre-training. Following the ar-

chitecture shown in Figure 3, we use 10-fold cross-

validation and evaluate the average performances for

learned representations from two hidden layer. The

whole training process takes rougly 7 hours on a sin-

gle machine. In Table 3, 150-bp and 100-bp repre-

sent learned hidden representations after using back-

propagation method from fine-tuning model. The row

in the table means the same as previous tables. In

Table 3 we can see that, in 94.37% of the instances,

the similarities of words have been improved, in com-

parison to dimensionalities of 200 and 150, and the

results are also significantly better than deep stacked

autoencoders. As for 100 dimension in fine-tuning

model, it is only competitive to the same dimension

from pre-train model. From the table we can see

that after fine-tuning, the representations still hold the

decreasing trend when comparing with the original

vectors, the same behaviour with pre-training results.

But the model improves the performance of latent re-

presentations on the same dimension and the smal-

ler dimension. Considering about the 27.50% and

49.00% improvement in Table 1, we acquire 88.91%

and 92.36% which are notable results. We can argue

that even if we don’t use autoencoders to encode and

Adjusting Word Embeddings by Deep Neural Networks

403

Table 4: Examples of synonym words and the comparison between different dimensions of vectors.

Synonyms 200 150 100 150-bp 100-bp

regularize & regularise 0.661886 0.710118 0.702691 0.801452 0.999723

changeless & unalterable 0.500718 0.578448 0.640918 0.694430 0.918739

respectful & reverential 0.654054 0.683833 0.719712 0.742635 0.884301

repair & fix 0.452142 0.467059 0.474660 0.628190 0.997788

fortunately & fortuitously 0.395465 0.432642 0.428508 0.442118 0.963096

promoter & booster 0.043374 0.028916 -0.038873 0.240978 0.216803

curb & kerb 0.317527 0.346058 0.325593 0.618310 0.684300

dusk & nightfall 0.694591 0.723055 0.746611 0.804976 0.936354

awake & arouse 0.127879 0.134865 0.146026 0.397994 0.772240

run & consort -0.189202 -0.221867 -0.267452 0.183840 0.269530

Table 5: Comparison between representations of two layer
stacked autoencoders and fine-tuning model.

Dimensionality 150-bp 100-bp

150-ae 91.94% 79.45%

100-ae 86.95% 77.55%

compress the vectors, by using the fine-tuning mo-

del and the novel loss function, we can still promote

the similarities between synonym words and decrease

the similarities between non-synonym pairs. We use

the similarities from word2vec as baselines and ma-

nually inspect similarities after fine-tuning(Table 4).

Run and consort can mean the same when referring

to hanging out with someone. The cosine similarity

of two words are negative which makes no sense. Af-

ter fine-tuning, the similarity is improved to more than

0.183840. Arouse and awake are interchangeable but

they get poor 0.127879 cosine similarity results, ho-

wever for 100 dimension representations it can get

0.772240 instead. Regularize and regularise are the

same, the similarity is around 0.710118 because of the

scattering and sparsity problem in word2vec, the fine-

tuning result for 100 dimension is notably 0.999732,

nearly 1. Repair and fix have only poor 0.474660 si-

milarity, and the model improve it to 0.997788. These

examples demonstrate that 100 dimension vectors af-

ter fine-tuning gain the largest improvement, better

than 150 dimension. It seems reasonable because of

the gradient vanishing. But we still found that for just

a few instances, 100 dimension results are even lower

than original vectors. This may because we should

add some regularizers or smooth parameters.

The supervised learning method verifies the idea

that deep neural networks can be applied on word2vec

vectors for specific tasks by artificially adjusting. Be-

cause the model is for fine-tuning, so we will com-

pare the results between autoencoders’ vectors and

fine-tuned vectors. We can see from Table 5 that by

using the architecture without reducing dimensiona-

lity, the similarities between synonym words get furt-

her improvement. 150-bp and 100-bp stand for the

hidden representations from the fine-tuning model,

while 150-ae and 100-ae still represent the reduced

vectors from hidden layers of stacked autoencoders.

As for 150 dimension latent representations in stac-

ked autoencoders, around 91.94% of synonym word

pairs’ similarities have been increased, indicating that

the deep neural network is more effective because of

supervised learning. But it is still uncertain why the

performance of 100 dimension after back-propagation

method is worse than 150 dimension. Maybe we can

assume that the space of 100 dimension representati-

ons to be improved is not as much as 150 dimension,

this also demonstrates that deeper unsupervised mo-

dels have already denoise more and decrease the spar-

sity. Even without the initialization from pre-training

process, if we incorporate more training data, the mo-

del can reform word embeddings with better quality.

It is possible to utilize the neural network with ap-

propriate data and more types of knowledge to learn

representations that are suitable for certain tasks.

5 CONCLUSIONS AND FUTURE

WORK

We have introduced a combined system with two

kinds of neural networks to handle the word embed-

dings of word2vec. From the results we can say, stac-

ked autoencoders are strong enough to encode and

compact the vectors in the space. Due to different

conditions for the used corpora and its restriction,

word2vec will not produce word embeddings with

good quality. Some synonyms are rarely seen in the

text, so the similarities could be even negative values

in word2vec. And some synonyms have not only a

few same meanings but also other different senses.

In this case, words are spread far apart in the space

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

404

with extremely low cosine similarities. By using au-

toencoders in an unsupervised approach, we get more

compact representations with less noise which auto-

matically disambiguate the similarities between syn-

onyms. The fine-tuning model also indicates the po-

tential of representations to be learned by deep neu-

ral networks with carefully designed loss functions

and knowledge graphs or lexical datasets. In this pa-

per, we set the loss function in a softmax form with

a dataset of WordNet synsets to calculate the poste-

rior probability, this method improves cosine simila-

rities between synonym words and decreases similari-

ties of non-synonym ones. Unlike the idea in stacked

autoencoders, by encoding word embeddings in a su-

pervised way, the model only extracts useful semantic

features for synonyms, and makes them closer.

Both of the models achieved significantly better

performance than word2vec on measuring synonym

relatedness, shed light on exploiting word embed-

dings in a supervised or unsupervised way. But these

two models come up from different ideas and there is

still something confuses us, the deeper stack autoen-

coders we use, the loss when converging will be big-

ger for each autoencoder in the network, we will keep

studying on this phenomenon in the future to probe

the features of autoencoders and word representati-

ons. For unsupervised learning, we plan to compre-

hensively evaluate the energy of autoencoders. We

will explore the changes in linguistic regularities of

latent representations, and discover the patterns of se-

mantic and syntactic properties in embeddings. Au-

toencoder may be a good toolkit to clarify the mea-

ning of opaque vectors. Our future work will also fo-

cus on disambiguating entities types by setting a clas-

sifier on the top layer of the network.

ACKNOWLEDGMENT

This work was partially supported by NEDO (New

Energy and Industrial Technology Development Or-

ganization).

REFERENCES

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. A neural probabilistic language mo-
del. Journal of machine learning research, 3(Feb):
1137–1155, 2003.

David M Blei, Andrew Y Ng, and Michael I Jordan. La-
tent dirichlet allocation. Journal of machine Learning
research, 3(Jan):993–1022, 2003.

Danushka Bollegala, Alsuhaibani Mohammed, Takanori
Maehara, and Ken-ichi Kawarabayashi. Joint word

representation learning using a corpus and a semantic
lexicon. arXiv preprint arXiv:1511.06438, 2015.

John A Bullinaria and Joseph P Levy. Extracting semantic
representations from word co-occurrence statistics: A
computational study. Behavior research methods, 39
(3):510–526, 2007.

Danqi Chen and Christopher D Manning. A fast and accu-
rate dependency parser using neural networks. In Pro-
ceedings of the 2014 Conference on Empirical Met-
hods in Natural Language Processing (EMNLP), pa-
ges 740–750, 2014.

Ronan Collobert and Jason Weston. A unified architec-
ture for natural language processing: Deep neural net-
works with multitask learning. In Proceedings of the
25th International Conference on Machine learning,
pages 160–167. ACM, 2008.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Kar-
len, Koray Kavukcuoglu, and Pavel Kuksa. Natural
language processing (almost) from scratch. Journal
of Machine Learning Research, 12(Aug):2493–2537,
2011.

George E Dahl, Dong Yu, Li Deng, and Alex Acero.
Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition. IEEE Tran-
sactions on Audio, Speech, and Language Processing,
20(1):30–42, 2012.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Redu-
cing the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

Hongzhao Huang, Larry Heck, and Heng Ji. Leveraging
deep neural networks and knowledge graphs for entity
disambiguation. arXiv preprint arXiv:1504.07678,
2015.

Hanna Kamyshanska and Roland Memisevic. The potential
energy of an autoencoder. IEEE transactions on pat-
tern analysis and machine intelligence, 37(6):1261–
1273, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for sto-
chastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neu-
ral networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

Raúl Ernesto Menéndez-Mora and Ryutaro Ichise. Toward
simulating the human way of comparing concepts.
IEICE TRANSACTIONS on Information and Systems,
94(7):1419–1429, 2011.

Tomas Mikolov and J Dean. Distributed representations of
words and phrases and their compositionality. 2013b.

Tomas Mikolov, Stefan Kombrink, Lukáš Burget, Jan

Černockỳ, and Sanjeev Khudanpur. Extensions of re-
current neural network language model. In 2011 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5528–5531. IEEE,
2011.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013a.

George A Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995.

Adjusting Word Embeddings by Deep Neural Networks

405

Andriy Mnih and Geoffrey E Hinton. A scalable hierarchi-
cal distributed language model. In Advances in neu-
ral information processing systems, pages 1081–1088,
2009.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Wil-
liams. Learning internal representations by error pro-
pagation. Technical report, DTIC Document, 1985.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and
Grégoire Mesnil. Learning semantic representations
using convolutional neural networks for web search.
In Proceedings of the 23rd International Conference
on World Wide Web, pages 373–374. ACM, 2014.

Richard Socher, John Bauer, Christopher D Manning, and
Andrew Y Ng. Parsing with compositional vector
grammars. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics, pages
455–465, 2013.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

406

