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The rising wave of attacks on communicating embedded systems has exposed their users to risks of informa-
tion theft, monetary damage, and personal injury. Through improved modeling and analysis of security, we
propose that these flaws could be mitigated. Since HW/SW partitioning, one of the first phases, impacts future
integration of security into the system, this phase would benefit from supporting modeling security abstrac-
tions and security properties, providing designers with useful partitioning feedback obtained from a security
formal analyzer.

In this paper, we present how our toolkit supports security modeling, automated security integration, and for-
mal analysis during the HW/SW partitioning phase for secure communications in embedded systems. We
introduce “Cryptographic Configurations”, an abstract representation of security that allows us to verify se-
curity formally. Our toolkit further assists designers by automatically adding these security representations
based on a mapping and security requirements.

1 INTRODUCTION

Many recent attacks targeted security vulnerabilities
on embedded devices such as the Tesla hack (Con-
stantin, 2016), mobile&smart phones (Maslennikov,
2010), avionics (Costin and Francillon, 2012), drones
(Rodday, 2016), and smart objects such as the Fitbit
(Apvrille, 2015). These security vulnerabilities leave
users susceptible to personal injury, theft of personal
information, or financial damage.

Finding security flaws in these systems is difficult,
as their complexity is further increased by their het-
erogeneous nature; one must analyze both hardware
and software components, and the consequent interac-
tions. Moreover, correcting these security flaws might
be difficult once the system has been released - and
sometimes impossible - if the flaws cannot be cor-
rected by software update only. As commonly stated,
these kinds of issues should be discovered early in the
development process.

The SysML-Sec methodology was introduced to
handle the design of such complex systems, in terms
of safety, performance, and security (Apvrille and
Roudier, 2015). SysML-Sec extends UML for the de-
sign of embedded systems. One of its important early
development phases is the hardware / software parti-
tioning phase, which distributes functions to be real-
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ized by the system among candidate hardware archi-
tectures. This phase decides on the “best” architecture
according to several criteria such as cost of the plat-
form and its performance. To better address embed-
ded system security, the choice of architecture should
also be based on the ability of the architecture to sup-
port security features for secure communication.

Security properties of the components of the ar-
chitecture itself should be modeled based on attacker
capabilities. For example, communication buses and
memories can be internal and secure against an exter-
nal attacker, and functions mapped to the same pro-
cessor using an on-die RAM can consider their mes-
sage exchange secure. On the contrary, external buses
can be spied on. The chosen architecture also affects
where encryption algorithms need to be executed and
where cryptographic materials need to be stored to
fulfill security requirements.

Figure 1 shows the possible approaches to mod-
eling security during partitioning, in terms of secure
data exchange. Using the current HW/SW partition-
ing methodology of the Y-chart approach (Method A)
(Kienhuis et al., 2002), manually modeling security
only in terms of overhead or calculation complexity
is insufficient due to the lack of support for security
assessment. Method B involves manually modeling
security in the application, and then performing map-
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Figure 1: Methods for Security in Partitioning: Method A shows the Y-chart approach. Method B shows security-aware
modeling with security analysis. Method C shows automated security generation.

ping and analysis. Method C improves upon B by au-
tomatically generating mappings with added security
mechanisms based on provided data security require-
ments. Afterwards, a designer may refine or mod-
ify the automatically generated mapping (for exam-
ple, with additional or altered security mechanisms),
and then perform verification and analysis to ensure
the final mapping fulfills safety, performance and se-
curity requirements.

This paper presents abstract security modeling of
data exchange during the HW/SW partitioning pro-
cess, and how our toolkit TTool (Apvrille, 2003) ex-
tends support to Methods B and C. In particular, our
contribution involves creation of Cryptographic Con-
figurations for abstract modeling of security mecha-
nisms and estimating performance costs for added se-
curity based on security requirements and a mapping.
Also, the paper shows how to formally evaluate the
placement and efficiency of security mechanisms with
regards to security properties at stake in the partition-
ing phase. Future works will elaborate on other types
of security.

Section 2 presents hardware/software partitioning
in our toolkit. Section 3 presents our case study on
which we demonstrate our methodology. Section 4
presents our approach to integrating security design
elements into a partitioning environment. Next, we
present the related work in Section 5. Finally, Section
6 proposes future work and concludes the paper.

2 CONTEXT

2.1 Partitioning

The HW/SW partitioning phase requires a description
of the application functionalities and their communi-
cations, the selection of a system’s hardware architec-
ture and the mapping of functional tasks - and their
communications - to different hardware and software
components. Partitioning is commonly performed at

a high-level of abstraction (also known as System-
Level Design Space Exploration) where application
functionalities are described mostly in terms of com-
munications and execution times. Design Space Ex-
ploration intends to select an architecture according to
criteria such as silicon area, power consumption, sat-
isfaction of safety properties and performance. The
performance includes the latencies between an input
and an ouput, the schedulability of the tasks on each
processor, the schedulability of bus transfers, and fi-
nally the peak and average load on processors and
buses.

2.2 Modeling Partitioning in
SysML-Sec

A SysML-Sec partitioning consists of three modeling
stages: application modeling, architectural modeling,
and mapping modeling.

The application model comprises of a set of com-
municating tasks built upon block diagrams. The be-
havior of tasks is described abstractly with activity di-
agrams. Functional abstraction allows us to ignore the
exact calculations and data processing of algorithms,
and consider only their relative execution time. Data
abstraction allows us to consider only the size of data
sent or received, and ignore details such as type, val-
ues, or names.

The architectural model displays the underlying
architecture as a network of abstract execution nodes,
communication nodes, and storage nodes. Execu-
tion nodes consist of CPUs and Hardware Accelera-
tors. All execution nodes can be parametrized with
data size, instruction execution time, and clock ra-
tio. CPUs can further be customized with schedul-
ing policy, task switching time, cache-miss percent-
age, etc. Communication nodes include bridges and
buses. Buses connect execution and storage nodes
for task communication and data storage or exchange,
and bridges connect buses. Buses are characterized by
their arbitration policy, data size, clock ratio, etc., and
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Figure 2: Drone Application Design.

bridges are characterized by data size and clock ratio.
Storage nodes are memory units, which are defined
by data size and clock ratio.

Mapping partitions the application into software
and hardware as well as specifying the location of
their implementation on the architectural model. A
task mapped onto a processor will be implemented in
software, and a task mapped onto a hardware accel-
erator will be implemented in hardware. The exact
physical path of a data/event write may also be speci-
fied by mapping channels to buses, bridges and mem-
ories.

2.3 Formal Verification During
Partitioning

Once mapping is complete, formal verification eval-
utates safety properties (reachability, liveness, dead-
lock), the scheduling of tasks and transactions on
buses, and the worst case execution time and CPU/bus
loads. Simulation is used for step by step execution of
the application, and for evaluation of precise timing
for a given execution trace.

Before the present contribution, security could not
be explicitly modeled in the mapping stage. The ad-
ditional computation power induced by the introduc-
tion of security mechanism could be evaluated by in-
dicating the execution complexity of a security mech-
anism, but its impact on security could not be mod-
eled or verified. For example, in (Schweppe et al.,
2011), it was shown how to evaluate the impact of
security computation on an automotive system. The
present contribution intends to perform architecture
exploration that takes into account both the fulfillment
of security requirements and their impact on the per-
formance of the system. This extension should help
in finding an architecture that can enforce the secu-
rity requirements while still respecting its safety and
performance properties.

3 CASE STUDY

Autonomous Drones offer many avenues of support
for future diaster relief efforts. Their manuverabilty
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allows them to access remote locations even with
damaged roads, or access damaged structures for re-
connaisance instead of risking relief workers. Com-
bined with detection systems, these drones may pro-
cess captured images and broadcast conditions of dis-
covered victims to relief headquarters.

However, use of drones during these precarious
situations induces problems of their own. Previous
work (Rodday, 2016) has demonstrated how an in-
secure remote connection to the drone allows an at-
tacker to hijack control. Captured images of victims
are sensitive and, for the sake of privacy, they should
not be allowed to be intercepted and posted online
or published (Tanzi et al., 2015). Also, drones ca-
pable of generating a 3D mapping of a building carry
a detailed architectural plan of an area, which could
be valuable to criminals targeting this location. Even
if an attacker physically steals a drone, the on-board
sensitive information should remain confidential.

In this case study, we will consider a drone which
communicates with a Remote Control Center for mis-
sion directives using Wifi to navigate to a target area
and search for victims. The drone itself consists of
a Main Controller, Image Processing Unit, Camera,
Infrared Sensor, and Motor Controller. Activity di-
agrams of the Main Controller and Remote Control
Center are shown in Figure 2. The Main Controller
calculates a trajectory based on mission commands
and image data, and uses IR data to check for vic-
tims. The drone constantly updates its status to Re-
mote Control Center. Channels through which sen-
sitive data are sent and that we wish to secure are
marked with a grey lock and question mark. Re-
mote Control Center is mapped to an external com-
puter, and the drone itself must contain the physical

Mapping 1 Mapping 2
<<BUS-RR>> <<BUS-RR>>
Wifi Wwifi
<<CPURR>> <<CPURR>> <<CPURR>> <<CPURR>>
CPUDrone CPURemote CPUDrone CPURemote
;a;neéa [ﬁ RemoteControl ImageProc
otorContro
DroneControl [MotorControl | gDroneControl
<<BUS-RR>> || <<BUS-RR>> <<BUS-RR>> ||| <<BUS-RR>>
tj BusDrone tj BusRemote BusDrone | |If BusRemote
<<MEMORY>> | <<MEMORY>> <<MEMORY>> | <<MEMORY>>
MemoryDrone | MemoryRemote MemoryDrone | MemoryRemote

Figure 3: Drone Sample Architecture and mapping.
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Figure 4: Overview of Modeling and Analysis.

sensors and drivers: Camera, IR, and Motor Con-
troller. Also, the drone and remote computer must be
modeled as communicating over an insecure bus, but
the remainder of the architecture and mapping is yet
to be determined. For example, moving task Image
Processing Unit to the remote computer decreases on-
board processing and saves battery power, but broad-
cast of unencrypted image data is undesired. While
our toolkit can perform rapid exploration of multi-
ple architectures, in the interest of space we present
two mappings: one with all processing on-board the
drone, and another leaving only the minimal tasks on
the drone. Figure 3 shows the two proposed map-
pings. We model that the remote CPU offers more
processing power, so it executes tasks faster. In the
following section, we present how our toolkit auto-
matically generates a secure model for each mapping
and subsequent analysis.

4 SECURE PARTITIONING

In this section, we present our contribution: exten-
sions to the HW/SW partitioning phase with secure
data exchange concepts to support Methods B and C
of Figure 1. Adding security semantics — and even
more, proving security properties — during the par-
titioning phase is a difficult challenge. On the one
hand, the ideal security analysis would take into ac-
count every single detail of the system. On the other
hand, the designer needs to quickly describe his/her
system for efficient design space exploration, which
requires providing an abstract description of the sys-
tem. We provide a security semantic that does not

require the designer to deal with implementation de-
tails that are irrelevant to partitioning. For example,
we are not interested during partitioning in the im-
plementation of encryption algorithms; we only need
to consider parameters that will affect the partition-
ing choice (satisfaction of security properties, execu-
tion time, data size). Our solution uses Cryptographic
Configurations, a tag indicating various security func-
tions and their overhead.

While the implementation details ultimately deter-
mine the security of a system, taking security into ac-
count in early development phases, without construct-
ing the entire software/system design, would prevent
costly late-stage reworking of designs that present
vulnerabilities due to early partitioning choices. Even
if actual security algorithms will be more complex,
basic security primitives and relative computation
complexities should be accurate and provide useful
feedback to designers when selecting a mapping.

An overview of the aspects of security modeling
and analysis is shown in Figure 4. Starting with a base
partitioning model, our toolkit automatically gener-
ates the secured models (which the designer can mod-
ify), and then finally translates a final model into a
specification handled by a formal verifier — ProVerif
(Blanchet, 2001).

4.1 Modeling of Security Mechanisms

We introduce Cryptographic Configurations to allow
the security verifier to track data encryption elements,
used in Methods B and C of Figure 1. Within activ-
ity diagrams, they appear as an upside-down pentagon
marked with their type, as shown in Figure 4. Crypto-
graphic Configurations can be typed as follows. Sym-
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Figure 5: Window for specification of Cryptographic Con-
figuration.

metric Encryption, Asymmetric Encryption, and MAC
patterns encrypt data along with a key/keys specific
to the pattern. Hash calculates a hash of the data.
Nonces can be concatenated to messages before en-
cryption to verify authenticity. Advanced allows the
user to indicate their own encryption scheme, such as
combinations of Cryptographic operations.

Figure 5 shows the specification of a Crypto-
graphic Configuration. The designer can choose the
type, and then the corresponding performance proper-
ties. For example, encryption operations may be char-
acterized by an Encryption and Decryption Computa-
tional Complexity (a measure of the relative execution
cycles depending on the processor), and Overhead
(additional bits added to the message due to encryp-
tion). Within the encryption configurations, a speci-
fied nonce may also be concatenated onto messages to
prevent replay attacks. Cryptographic material such
as nonces are characterized by a size in number of
bits. These parameters allow us to model the impact
of security mechanisms on performance when evalu-
ating candidate mapping.

Cryptographic Configurations can also secure
other cryptographic material such as keys. For ex-
ample, we can model key distribution, where one task
forges a key for Symmetric Encryption, and sends it
encrypted with another task’s public key. The receiv-
ing task can then decrypt the message with its own
private key to recover the shared key.

The security of the hardware architecture itself is
modeled by specifying if a bus is insecure or secure
(marked with a green shield) depending on the as-
sumed attacker capabilities. For example, on Figure
3, the Wifi connection is modeled insecure and all
data broadcast is available to an attacker, where both
internal buses on the Remote Computer and Drone are
modeled as secure. In our case study, we first limit our
protection to data broadcast wirelessly and to external
attackers.

To send encrypted data along a channel, the de-
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signer must create a Cryptographic Configuration, tag
all channels along which encrypted data is sent, and
finally recover the original data with the Decryption
operator. All the keys must be mapped to memories
before security verification, and the toolkit warns a
designer if access to a key implies transmission across
a non-private channel.

4.2 Modeling of Security Properties

output task

input task
chin(m0)]
(m, mac) = mo0
[else] [ mac == MAC(m,k) ]
A

([ ERR__ )
i R —

Figure 6: Translation result of a MAC cryptographic config-
uration.

The purpose of our work is to provide feedback to the
designer about various security-related properties of
the partitioning model. These properties are defined
to match their counterparts in the prover (ProVerif)
specification. A more formal definition of these prop-
erties can thus be found in the ProVerif user manual
or other publications (Blanchet, 2001) for instance.

4.2.1 Reachability

An element of a state machine of a task is said to
be reachable if there exists an execution trace of the
model in which this element is reached.

4.2.2 Confidentiality

We say that an exchange on a channel, identified by
its cryptographic configuration, is not confidential if
the attacker is able to get the content of a message
exchanged using the cryptographic configuration by
listening and sending messages, and performing com-
putations.

4.2.3 Integrity

Integrity — also called weak authenticity — is a prop-
erty of an exchange, characterized by an input opera-
tion and its associated output operation. This property
implies that each message received at the input oper-
ation was necessarily sent in the exact same form by
the associated output operation.



For instance, an exchange tagged with a MAC
cryptographic configuration would be used to model
the fact that the message is concatenated with its
MAC. An implicit verification is also considered be-
fore fully admitting the message on the other end of
the channel. If the key used for computing this MAC
is only used at the output and input operations, in-
tegrity will be proved true since each time a message
m is accepted at the input operation (state B in Fig-
ure 6), this means that the message was received with
MAC(m), which can only be computed if m was sent
at the corresponding output operation (state A in Fig-
ure 6).

Note that encryption and decryption are modeled
with ProVerif by using a linked constructor and de-
structor function. This means that the decryption of a
received message only completes if this message was
previously forged by calling the encryption function
with the same key that is used to decrypt it. Thus, if
a symmetric key is shared only by the sender and the
receiver, integrity will be maintained for any message
encrypted by the sender using this key.

4.2.4 Strong Authenticity

Like integrity, strong authenticity is a property at-
tached to an exchange. Strong authenticity implies
weak authenticity, but also requires that, given mul-
tiple executions of the system that would happen in
parallel (we call each of these executions a session), a
message received at this input operation is sent by the
associated output operation of the same session.

If a MAC cryptographic configuration is used as
earlier and a message m is received at the input op-
eration, then the message was necessarily sent by the
associated output operation. However, this output op-
eration could generate the message m in one session,
and m could be received in two different sessions.
MAC is indeed not sufficient to guarantee strong au-
thenticity. This failure to provide strong authenticity
makes the system vulnerable to replay attacks. Thus,
strong authenticity can be ensured combining MAC
and nonces cryptographic configurations.

4.3 Automated Security Generation

While Cryptographic Configurations can be manually
handled by the designer, it is also possible to auto-
matically generate these security elements, as shown
in Method C of Figure 1. Based on security re-
quirements provided by the designer, our toolkit au-
tomatically generates Cryptographic Configurations
for each channel whose data must be secure. Cur-
rently, we support automatic preservation of confiden-
tiality (protecting against leakage of sensitive data)

Security-aware Modeling and Analysis for HW/SW Partitioning

and strong authenticity (protecting against tampering
and replay). When both need to be guaranteed, Cryp-
tographic Configurations are generated so that sensi-
tive data will be concatenated with a nonce and then
encrypted before being transmitted across an insecure
channel. This automated encryption adds a basic esti-
mation of security, which the designer can later mod-
ify. This transformation is shown in Figure 4 and de-
scribed in Algorithm 1.

In our illustrated example, we present two tasks,
where outTask sends data along a channel ch to in-
Task. We assume that they have pre-shared keys. To
ensure strong authenticity of the exchange, first in-
Task forges a nonce n and sends it to outTask. A new
channel nonceChannel is generated for this purpose.
Upon receiving the nonce, outTask concatenates it to
the data to be sent, and then in this case uses symmet-
ric encryption to encrypt the combined message. The
encrypted message is sent to inTask, which then de-
crypts it. The decrypted message is split to separate
out the nonce, and if the received nonce matches the
sent one, then inTask accepts the sent data.

foreach channel ch do
foreach bus in path do
if bus = public then

| ch.security < insecure;
end
end
if ch.security = insecure then
inTask.addChannel(nonceChannel);
outTask.addChannel(nonceChannel);
New: n [CryptoConf]
ch.inTask.forgeNonce(n);
ch.inTask.send(n);
New: autoEncrypt [CryptoConf]
autoEncrypt <— ch.outTask.encrypt(ch.data |
n);
ch.outTask.send(autoEncrypt);
recData <— ch.inTask.receive(autoEncrypt);
decData | n2 < ch.inTask.decrypt(recData);
if n = n2 then

| symData < decData;
end

end

end

Algorithm 1: Pseudocode of secure model generation. Note
that “|” means concatenate.

4.4 Formal Verification of Security
Properties

Security analysis is performed with ProVerif, a ver-
ification tool operating on pi-calculus specifications
(Blanchet, 2001). A ProVerif specification con-
sists of a set of processes communicating on pub-
lic and private channels. Processes can split to cre-
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Figure 7: Security Verification results for Mapping 2 and auto-generated secured Mapping 2.

ate concurrently executing processes, and replicate
to model multiple executions (sessions) of a given
protocol. Cryptographic primitives such as symmet-
ric and asymmetric encryption or hash can be mod-
eled through constructor and destructor functions.
ProVerif assumes a Dolev-Yao attacker, which is a
threat model in which anyone can read or write on
any public channel, create new messages or apply
known primitives. Other works used ProVerif to an-
alyze security in real-world systems such as EVITA
(Pedroza et al., 2011) and Direct Anonymouse Attes-
tation (Smyth et al., 2015).

Once a complete application modeling has been
mapped to an architecture, a ProVerif specification
can be generated from the partitioning model as
shown in Figure 4. Infinite parallel processes are gen-
erated for each task, and each task sends and receives
data or performs cryptographic operations as shown.
In (Lugou et al., 2016), we presented a translation
from a software model consisting of states, actions,
and cryptographic operations. We leverage this trans-
lation by first converting our partitioning model into
an equivalent software model representation, and use
the existing translation process to generate a ProVerif
model.

The main ideas of the translation are to convert
each functional task into a software-model block, and
to transform cryptographic configurations into their
corresponding cryptographic primitives. Since our
software model will be used only for security veri-
fication, we only concern ourselves with aspects of
the architecture if they impact the security of the sys-
tem. We therefore preserve the existance of each
task, its behavior including security operations, and
all inter-task communications. Furthermore, to pre-
serve a task’s accessible keys, we add the key as an
attribute to each software block if its corresponding
task could access a memory storing that key through
a secure path. On the other hand, we disregard simu-
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lation parameters such as cache miss or pipeline size.
We also do not distinguish between tasks mapped to
CPUs and Hardware Accelerators since, while the
tasks mapped to Hardware Accelerators would ulti-
mately not be present in a software model, we must
nonetheless maintain their existance to examine inter-
task communications at this stage.

Also, each communication path between tasks —
mapped to a set of buses, bridges, memories — is trans-
lated into an abstract software-model channel. Any of
the communication nodes to which a path is mapped
can be tagged by the user as secure — which corre-
sponds in our context to the impossibility for an at-
tacker to access it. If a path is mapped to a set of
communication nodes that are all tagged as secure,
the resulting software-model channel will be private.
Otherwise, a public channel is used.

4.5 Verification Results

ProVerif verification is performed on the translated
specification, and results are displayed on the graph-
ical diagrams for user convenience so they are visi-
ble as the user continues to refine the design. Figure
7 shows the security verification results for the un-
secured mapping 2 with remote processing, and then
the verification results for the automatically generated
secured model.

Data exchanged across channel vulnerable to an
attacker is indicated by a crossed-out red lock. How-
ever, data proved confidential is indicated by a green
lock. The name of the mapping is displayed next
to verification results. If a channel sends data en-
crypted with a Cryptographic Configuration, then we
display the security verification result for both unen-
crypted and encrypted data. For example, imgData is
sent across a channel that is mapped to an insecure
path in architecture for mapping Mapping2_enc, but
data sent across that channel encrypted with Crypto-
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Table 1: Performance Results over Mappings.

Mappin Drone CPU Usage Drone Bus Usage Execution Time
pping (%) (%) (cycles)

Mapping 1 (On-board 95.8 1.7 2933
processing)

Mapping 1 Secured 99.8 0.4 5748

Mapping 2 (Remote 55.8 0.1 1855
processing)

Mapping 2 Secured 77.3 0.1 3419

graphic Configuration autoEncrypt_imgData is con-
firmed secure. Weak Authenticity and Strong Authen-
ticity are indicated by the split lock with the half-locks
colored green for verified true and half-locks colored
red and crossed out for verified false. For example, on
the unsecured model, missionCmnd is verified regard-
ing strong and weak authenticity while motorCmnd is
not. When the authenticity results refer to data se-
cured by a Cryptographic Configuration, the lock is
annotated with the name of that configuration.

As shown, initially image data and motor com-
mands can be guaranteed neither confidential nor
authentic, but our automatically generated secured
model ensures that data encrypted with Cryptographic
Configurations are secure.

4.6 Impact of Security on Safety and
Performance

Security mechanisms add overhead, affecting safety
properties, schedulability, and performance. Forging
a nonce or performing encryption occupy computa-
tion cycles, and encrypted data may include extra bits
compared with original data. In addition, sending an
encrypted message sometimes means sending more
bits, therefore message transfer time is increased, and
more memory is used to store the extra data. A cho-
sen ‘best’” mapping may later be demonstrated non-
optimal with the addition of necessary security mech-
anisms.

We evaluated the performance of the mappings for
our disaster relief drone. Table 1 shows simulation
results over 10,000 runs for Mapping 1 with all tasks
mapped to the drone (On-board processing), and for
Mapping 2 with minimal tasks mapped to the drone
(Remote processing), and both their automatically
generated secured models. As expected, Mapping
I’s onboard CPU has much higher usage than Map-
ping 2’s, and since computationally intensive tasks are
performed on a slower drone CPU, execution time is
increased as well. Upon securing all data broadcast
wirelessly, there is a significant increase in on-board
CPU usage and execution time. We could explore
other architectures, such as addition of extra CPUS or

Cryptographic Accelerators dedicated to performing
encryption, assuming the drone could support addi-
tional components.

To minimize the monetary and performance costs,
security mechanisms and dedicated cryptographic ac-
celerators should be added only where necessary. As
shown, our toolkit determines the location of insecure
data exchange and suggests a basic placement of secu-
rity mechanisms for an architecture. A designer can
then adapt and customize the model or architecture
accordingly with provided performance results. For
any provided architecture and mapping, our toolkit
formally verifies the confidentiality and weak/strong
authenticity of sensitive data.

S RELATED WORK

Many design environments focus on the design pro-
cess of embedded systems (Balarin et al., 2003; Ros-
ales et al., 2014; Kangas et al., 2006), and many on
the verification of security, but few study both in one
framework. (Hansson et al., 2010) relies on Archi-
tecture Analysis and Design Language (AADL) mod-
els to consider architectural mapping during security
verification. The authors note that a system must be
secure on multiple levels: software applications must
exchange data in a secure manner, and also execute
on a secure memory space and communicate over a
secure channel. Our approach, however, considers se-
curity regarding protection against external attackers
instead of access control.

Another approach performs Design Space Explo-
ration on a vehicular network protecting against re-
play and masquerade attacks (Lin et al., 2015). The
project evaluates possible security mechanisms, their
effects on message sizes, and candidate architectures
during the mapping phase. While their work tar-
gets automotive systems and network communica-
tions, our analysis may be applied more broadly for
any embedded system. Also, we focus on the integrity
and confidentiality of data itself instead of on specific
attacks.
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5.1 Security Modeling

Many works address the modeling of security during
software design only. SecureUML enabled the design
and analysis of secure systems by adding mechanisms
to model role-based access control (Lodderstedt et al.,
2002). Authorization constraints are expressed in Ob-
ject Constraint Language (OCL) for formal verifica-
tion. Our security model focuses on protecting against
an external attacker instead of access control. In con-
trast to formula-based constraints or queries, our ap-
proach to security analysis relies on graphically an-
notating the security properties to query within the
model.

Another work (Vasilevskaya and Nadjm-Tehrani,
2015) proposed modeling security in embedded sys-
tems with attack graphs to determine the probability
that data assets could be compromised. While their
approach is also UML-based, they focus on estimat-
ing probabilities of success for attacks, while ours fo-
cuses on verifying adequate placement of encryption.

UMLSec (Jiirjens, 2002) is a UML profile for ex-
pressing security concepts, such as encryption mech-
anisms and attack scenarios. It provides a modeling
framework to define security properties of software
components and of their composition within a UML
framework. It also features a rather complete frame-
work addressing various stages of model-driven se-
cure software engineering from the specification of
security requirements to tests, including logic-based
formal verification regarding the composition of soft-
ware components. However, UMLSec does not take
into account the HW/SW Partitioning phase neces-
sary for the design of IoTs.

5.2 Formal Verification of Security

Assessing security properties when designing soft-
ware components relies on formal approaches. Heit-
meyer et al. verified data separation between parti-
tions with possibly different security levels for em-
bedded devices. (Drouineaud et al., 2004) introduces
a first order Linear Temporal Logic (LTL) into the Is-
abelle/HOL theorem prover, allowing the modeling of
both a system and its security properties, but unfortu-
nately leading to non-easily reusable specific models.
Many other projects formally verify security pro-
tocols using a variety of modeling and programming
languages. (Avalle et al., 2014) provides a recent sur-
vey of various works. From F#, C, and Java-coded
protocols, the surveyed works generate models for
evaluation in a variety of abstract modeling languages
such as Horn clauses, ASPIER, and First-order logic.
Our toolkit however, translates graphical models.
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The Software Architecture Modeling (SAM)
framework (Ali et al., 2009) aims to bridge the gap
between informal security requirements and their for-
mal representation and verification. SAM uses for-
mal and informal security techniques to accomplish
defined goals and mitigate flaws. SAM relies on a
well established toolkit - SMV - and considers a threat
model, but the ”security properties to proof” process
is not yet automated. In contrast, our work focuses on
automatic formal verification from an abstract parti-
tioning model.

6 FUTURE WORK AND
CONCLUSION

Designing safe and secure embedded systems re-
quires us to explicitly take into account these two con-
straints early during the development process. Since
safety and security can strongly impact the HW/SW
partitioning of these systems, the paper proposes a
new approach to capture both security mechanisms
and security properties, and evaluate them with re-
gards to security and performance properties.

Our contribution enhances partitioning models
with annotations for secure data exchange (including
cryptographic configurations), offers a utility to au-
tomatically generate secured models, and proposes a
model-to-ProVerif transformation, all implemented in
our toolkit. We have tested our toolkit on partitioning
and securing larger systems, leading us to conclude
that our method can be used to model, secure, and
analyze real world industrial embedded systems in a
variety of disciplines (such as telecom and automotive
systems, up-to-date cryptographic protocols, etc.).

Our future work will extend our security modeling
to access control, timestamps, self-updating nonces
(sequence numbers), and other considerations. Proof
of accuracy and soundness of the transformation is an-
other important future work. We also plan to facilitate
the capture of security constraints and mechanisms.

We envision that our contribution to modeling of
security during partitioning offers designers increased
support in the design of secure embedded systems.
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