
UI-GEAR: User Interface Generation prEview capable to Adapt in 

Real-time 

Jenny Ruiz1, Estefanía Serral2 and Monique Snoeck2 
1University of Holguín, XX Aniversary Avenue, Holguin, Cuba 

2KU Leuven, Naamsesstraat 69, Leuven, Belgium 

 

Keywords: Abstract User Interface Model, Feature Model, Model-driven Engineering, Software Development Method, 

User Interface Development Environment, User Interface Generation Preview. 

Abstract: User Interface (UI) preview enables UI developers to preview and see the current User Interface before being 

generated. Despite the many advantages that UI preview could offer, it is not provided by current UI devel-

opment environments. This paper presents UI-GEAR, a UI generation preview capable to adapt in real-time. 

UI-GEAR is developed within the MERODE method, a model-driven engineering approach capable to gen-

erate a fully functional system prototype from its specification in models. UI-GEAR extends MERODE with 

a UI development environment that enables developers to play with generation options and to straightfor-

wardly and in real-time visualize the consequences of their choices on the UI to be generated, thus providing 

them with immediate guidance and design flexibility. We have carried out an experiment with developers 

with novel experience on designing UIs that demonstrates the advantages of this approach. 

1 INTRODUCTION 

User Interface (UI) generation can be achieved 

through Model-based UI Development (MBUID) and 

Model-Driven Engineering of UIs (MDEUI), two 

similar and very well-known approaches that share 

the same principle (Aquino, Vanderdonckt, Panach, 

& Pastor, 2011): the target UI characteristics are cap-

tured in models, which are then used to generate the 

UI code (Calvary et al., 2003). The main difference is 

that MDEUI involves explicit Model-to-Model 

(M2M) and Model-to-Code (M2C) transformations 

that are themselves compliant with a particular meta-

model (Schaefer, 2007), while in MBUID models can 

be used for different purposes but without explicitly 

defined transformations. 

Both approaches provide many advantages over 

the manual coding of UIs or their coding through 

graphical programming environments. The use of ab-

stract models allows a UI to be designed by using con-

cepts that are closer to the UI domain and not bound 

to the underlying implementation technology. This 

makes UI development simpler, and the resulting UI 

error-free and easier to maintain, among other bene-

fits. However, the UI generation process, whatever 

the method is, suffers from several shortcomings such 

as: lack of predictability, mismatch between selected 

design/generation options and the generated results, 

lack of knowledge on how to decide appropriate de-

sign options, and a high learning curve (Aquino et al., 

2011), (Daniel et al., 2007). Also, UI generation is 

rarely integrated with the development of the under-

lying application. 

This paper presents the MDEUI approach UI-

GEAR, a UI generation preview capable to adapt in 

real-time. UI-GEAR addresses the mentioned short-

comings by being integrated into an application de-

velopment environment and enabling developers to 

preview the results of a UI generation before actually 

generating the UI. Generally speaking, preview ena-

bles users to see the final results of this process before 

actually completing it. For instance, contents preview 

is the preview applied to the process of contents sub-

mission: it enables user to see current data they have 

already entered and see the final results of thid data 

submission before actually submitting the data. An-

other example is Print preview, which enables users 

to see the pages they are about to print in a “What you 

see is what you get” (WYSIWYG) manner before ac-

tually printing them. In Human-Computer Interaction 

(HCI), UI generation preview enables UI developers 

and end users to see the currently designed UI and 

how it will look and feel before actually completing 

Ruiz J., Serral E. and Snoeck M.
UI-GEAR: User Interface Generation prEview capable to Adapt in Real-time.
DOI: 10.5220/0006115402770284
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 277-284
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

277



the UI development. 

The reminder of this paper is structured as fol-

lows: Section 2 examines the related work about pre-

view as a general feature and as a particular applica-

tion in UI generation. Section 3 describes UI-GEAR, 

the MDE process in which it is implemented and its 

supporting tool and provides an example to illustrate 

the potential benefits of UI-GEAR. Section 4 reports 

on a user experiment conducted to assess  UI-GEAR 

and Section 5 concludes the paper. 

2 RELATED WORK 

2.1 Content´s Preview 

Beyond general contents submission and printing, 

contents preview has been subject to some attention, 

always highlighting to what extend previewing the re-

sults may improve the final results. 

Programing In the Model (Maleki, Woodbury, & 

Neustaedter, 2014) is a prototype Computer-Aided 

Design (CAD) system assisting in designing code. It 

promotes Lookahead as preview feature showing pro-

grammers new or modified model elements and lines 

of code highlighted in purple in the full code, conse-

quently to their options. As a design exploration tool, 

Lookahead was not very successful. Instead of seeing 

the purple preview model as an alternate state, partic-

ipants paid more attention to what objects in the 

model or lines of code in the syntax were purple. Pre-

view was preferred to see what was being affected by 

the options they chose. In this study, preview is rec-

ognized more as a debugging and error prevention 

tool than a design exploration tool. 

PreSense (Rekimoto et al., 2003) provides users 

with a preview for command execution, providing a 

significant benefit when it is not possible to undo a 

command. This preview helps users to see what will 

occur next. It is also helpful when the command as-

signment of the keypad dynamically changes. 

SideViews (Terry and Mynatt, 2002) provides us-

ers with a preview for commands with parameters, 

that require direct user input (such as mouse strokes 

for a paint program), and for computationally-inten-

sive commands. An example is executing a “Bold” 

command on a text selection: a preview is generated 

while the cursor is hovering the corresponding icon. 

If another icon is hovered, e.g., the “Underline” icon, 

the “Underline” command will be previewed. (Kris-

tensson and Zhai, 2007) report that previewing com-

mand strokes with pen-based gestures could be effec-

tive to improve the command's predictability and the 

guidance for command-gesture correspondence. 

These approaches show the importance and bene-

fits of a preview functionality, however, none of them 

are created for previewing a UI. The approach closest 

to UI-GEAR is PreSense (Rekimoto et al., 2003), 

which shows a preview of what will happen if a com-

mand is executed. Similarly, UI-GEAR shows devel-

opers the effect of the chosen options on the final UI 

before actually generating it. 

2.2 User Interface Generation Preview 

MBUID emerged in the early 90´s to support UI de-

velopment by basing it on a set of abstractions (mod-

els). The most relevant Model-Driven Engineering UI 

generation approaches are as follows. 

(Raneburger, 2010) introduces a semi-automatic 

approach based on communication models involving 

the designer during the generation process. It pro-

vides suggestions and automatic UI optimization 

based on former design decisions and heuristics. The 

transformation template approach proposed in 

(Aquino et al., 2010) makes the MDEUI process more 

explicit and flexible gathering some generation op-

tions in reusable templates. (Bacha, Oliveira, & Abed, 

2011) present a MDEUI environment that automati-

cally generates various UIs focused on content per-

sonalization. (Gaulke & Ziegler, 2015) present an ap-

proach that incorporates UI relevant metadata to an 

ontological domain model to be reused during the UI 

generation process.  

MANTRA (Botterweck, 2007) automatically 

generates UIs for different computing platforms. 

Graceful degradation (Florins et al., 2006)  emi-auto-

matically generates many UIs for more constrained 

platforms (e.g., tablet, smartphones) starting from a 

UI for a less constrained platform (typically, a desk-

top UI) based on generation options. (Raneburger et 

al., 2012) propose an automated layout approach for 

model-driven window / icon / menu / pointing device 

UI generation. This approach allows specifying lay-

out parameters in device-independent transformation 

rules. (Alonso-Ríos et al., 2014) present an environ-

ment that automatically generates various UIs for dif-

ferent smartphones exhibiting different capabilities.   

FlowiXML (Guerrero et al., 2008) automatically 

generates various UIs for a workflow information 

system based on UI patterns derived from workflow 

patterns. JustUI (Molina et al., 2002) automatically 

generates a UI for HTML, Java, and C++ starting 

from the same conceptual models by applying so-

called conceptual UI patterns.  

Although some of the previous approaches offer 

different design choices, no UI generation preview of 

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

278



any kind is supported, being a common general draw-

back of current MBUID and MDEUI. The only ap-

proach that provides preview options is Genova (Gen-

era AS & Lysaker, 2004) (see Figure 1), a commercial 

tool for the automatic generation of interactive appli-

cations, including their UI, based on a UML class di-

agram and a style guide. While defining the style 

guide, the developer is prompted with various gener-

ation options (e.g. windows contents, block nesting) 

that are reflected in a UI preview. However, this pre-

view remains abstract and indicative: it is not applied 

to the actual UI being generated and it visualizes only 

one option at a time.  

 

Figure 1: UI Preview in Genova software. 

3 UI-GEAR 

UI-GEAR has been developed within the context of 

MERODE, a method for enterprise information sys-

tem engineering (Snoeck, 2014). MERODE allows an 

enterprise system to be specified using an object-ori-

ented conceptual domain model that is platform inde-

pendent and sufficiently complete to automatically 

generate the system's code from it. The model is com-

posed of a Class Diagram to capture the domain clas-

ses, an Object-Event Table (OET) to capture interac-

tion aspects, and Finite State Machines (FSMs) to 

capture enterprise object behaviour. The domain 

model is linked to a business process model capturing 

the user´s tasks and workflows. The supporting JMer-

maid tool (Sedrakyan and Snoeck, 2013) allows mod-

elling the different views of a software system, man-

aging consistency between them automatically and is 

able to automatically generate a full functional proto-

type including feedback features that help developers 

obtaining the prototype. The generated prototype pro-

vides a default and non-designable UI. In order to 

provide UI design flexibility and UI modelling guid-

ance, MERODE has been extended with the UI-

GEAR component.  

3.1 UI-GEAR Component 

UI-GEAR augments the MERODE models with a 

presentation model consisting of three different 

views: 1) the General aspects, which collects the 

name of the application and other information to be 

shown in the title, 2) the Window aspects, which cap-

tures preferences about how widgets will be shown, 

and 3) the Input aspects to capture the preferences re-

lated to how the user will input information into the 

application, like how the components for attribute in-

put will be generated or the way the to-be-selected as-

sociated objects will be shown. The feature model 

(Benavides et al., 2010) in Figure 2 clarifies the dif-

ferent design options that constitute the Window and 

Input aspects of the presentation model. In the UI-

GEAR tool, each view of the presentation model is 

presented in a different tab, as advised in the usability 

design pattern presented in (Van Welie & Trætteberg, 

2000) (see Figure 2). 

 

Figure 2: UI-GEAR Feature model. 

At the bottom of the Window and Input aspects, 

UI-GEAR offers a preview of the to-be-generated UI. 

This preview automatically and instantaneously 

adapts to changes in the selected options, hence ex-

plicitly visualizing how the generated UI will look 

like. This allows a developer to trace changes from a 

model to their effects by testing several “what-if” sce-

narios. In addition, developers do not need to explic-

itly specify the values for all the design options of the 

presentation model as UI-GEAR also offers default 

options that can be directly used. An important differ-

ence and added value compared to Genova, is that UI-

GEAR´s preview has the same layout as the to-be-

generated UI, therefore also allows combining several 

generation options at once, enabling developers to as-

sess the result of not just one option at a time, but of 

the overall generation process. Figure 3 shows the 

UI-GEAR: User Interface Generation prEview capable to Adapt in Real-time

279



presentation model dialog with the three tabs, the 

Windows aspects tab and its preview being visible. 
 

 

Figure 3: Presentation Model and UI Preview. 

To clarify the working of UI-GEAR, we illustrate 

how the different design option of the Window as-

pects determine the design of the UI. The prototype's 

user interface consists of one tab per application class. 

The user has to define the tab orientation for the gen-

erated prototype: at the top, bottom, left, or right of 

the main window. Each application class' tab always 

shows the id of the object, its state and whether it is 

final or not. The quantity of attributes determines how 

many of the regular attributes should be shown. If the 

class has less attributes than this quantity, then all its 

attributes will be shown. The method presentation 

style for an application class's window can be a pane 

with buttons or a menu. The methods are classified as 

Creating, Modifying and ·Ending methods. If the 

method presentation style is pane, a pane is generated 

for each kind of method, and inside the pane a button 

is generated for each method. Otherwise, the methods 

are in three menus following the same classification 

(See Figure 3). Show empty method pane or menu de-

termines what to do if some type of method is not pre-

sent (e.g., there are no Ending methods). The buttons 

for the methods can have standard size or not. Finally, 

the UI designer should indicate whether or not an 

empty table should be shown or not for classes with-

out instances. 

In the Input aspects tab the UI developer chooses 

whether or not to show attribute data type infor-

mation for each attribute and whether or not to gener-

ate the component for the attributes input according 

to the data type or not. Finally, if the class has asso-

ciations with other classes, the master presentation 

style must be chosen to define if this association is 

shown as a table or a combo.  

The concrete selection of values for the Window 

aspects shown in Figure 3 is: tab orientation: Top, 

method presentation style: Menu, quantity of attrib-

utes to show: 1, empty method pane or menu: show, 

button size: not standard, empty table: show.  

To realize the preview feature, UI-GEAR is im-

plemented according to the Java reflection principle: 

an internal representation of the feature model is 

maintained that is parsed in real-time and interpreted 

so as to dynamically generate the corresponding pre-

view based on the chosen options: each time a new 

option is decided, the internal representation is instan-

taneously updated and so is the UI example. This 

gives the possibility to validate and verify user re-

quirements, and reduces the time and effort required 

to implement the UI. 

3.2 Generation Process Overview 

Once the preview shows an interface design that sat-

isfies the developer, the code generation of JMermaid 

can be executed to automatically generate the final UI 

according to the selected features in the presentation 

model. JMermaid´s process generates the full appli-

cation form the models, shown in Figure 4. Based on 

the conceptual domain model and the presentation 

model, a Model to Model (M2M) transformation gen-

erates an abstract user interface model, which is the 

expression of a UI in terms of interaction units with-

out making any reference to the implementation.  
 

 

Figure 4: Prototype generation process in JMermaid. 

Then, Model to Code (M2C) transformations gen-

erate the system prototype from the domain model 

and the abstract UI model. The final UI is generated 

from the abstract UI model, but also from the three 

domain model views, which are necessary to generate 

the persistence and event handler layers.  

The Model to Code (M2C) transformations are 

built using Java and Apache's Velocity Templates En-

gine (http://velocity.apache.org). The transformations 

can work with a minimal model containing at least 

one class from which additional default elements are 

automatically generated by JMermaid (Sedrakyan et 

al., 2013). 

System 
Prototype

Abstract 
UI Model

Conceptual 
Domain Model

Object 
Event Table

Finite State 
Machines

Class 
Diagram

Input 
aspects

Window 
aspects

General
aspects

UI-GEAR

Preview

Preview

Presentation 
Model

Model Specification

M2M 
trans-

formation

M2C 
transformation

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

280



In order to create the UI java code, six templates 

to display the system information as indicated in the 

presentation model are defined. These templates are 

dynamically populated based on the domain model 

and on the options selected in the presentation model 

and then used to generate the code for the graphical 

components of the application. A fragment of the 

template used to generate the java code of the inter-

face shown in the preview of Figure 3 is shown be-

low. Note that this template is already populated with 

the values indicated in the presentation model. Lines 

1-6 ensure that methods can be generated as a menu 

or as a pane with buttons (default) and lines 7-15 en-

sure that for each associated class, objects can be gen-

erated as tables or combos. After the modelling activ-

ity and the code generation step, developers can still 

change the models to improve the quality of the gen-

erated prototype. 
 

1  #if ($methodType == “Menu”) 

2  import ui.tabs.lists.ObjectList 

3  MenuWindow; 

4  #else 

5  import ui.tabs.lists.ObjectListWindow; 

6  #end 

7  #foreach ($abstractDataIUM in  

8  $abstractCompound.abstractDataIUMs) 

9  #if ($masterType == “Table”) 

10 import ui.tabs.tables.${abstract 

11 DataIUM.abstractDataIULabel}_Table; 

12 #else 

13 import ui.tabs.tables.${abstract 

14 DataIUM.abstractDataIULabel}_Combo; 

15 #end 

3.3 Example 

Figure 5 shows the class diagram of an appointment 

system at the university. Teaching assistants can pub-

lish appointment offers for a specific course. Students 

can create a registration to one of the offers. 

 

Figure 5: Student’s appointment class diagram. 

Next to the class diagram, the OET and FSMs cap-

ture non-default behaviour such as the states in the 

lifecycle of an appointment (available, closed, …). 

The presentation model collects information about 

the user’s preferences. The developer can play with 

different options and preview the result. 

Figure 6 shows an example of the chosen options 

for the Input aspects of the presentation model and 

the corresponding preview. The attribute's data types 

are shown, the components are generated according 

to this data type, and the associated objects are pre-

sented in a combo box.  
 

 

Figure 6: Input aspects of the Presentation model. 

After this step, the developer can generate the pro-

totype simply by choosing the location to save the 

generated code. First, the abstract UI model is gener-

ated, then, the code of the functional prototype. These 

two steps are transparent to the developer, who only 

sees the final result: the prototype. After testing the 

prototype, the developer can still come back to the UI 

options and regenerate another prototype: if the se-

lected options of the feature model change, the UI 

changes accordingly. As for any MDE approach, the 

final result is subject to the problem of round-trip en-

gineering: if any manual change is brought the gener-

ated UI, it therefore falls outside the scope of the 

transformation process from the abstract UI to the fi-

nal UI, thus introducing some inconsistency between 

the initial model and the generated prototype that has 

been modified. 

4 USER EXPERIMENT 

We performed an experiment to evaluate UI-GEAR 

from the perspective of perceived usability by unex-

perienced developers. Several questionnaires have 

been used and reported in the literature for assessing 

the perceived usability of interactive systems, such as 

QUIS (Elkoutbi et al., 1999), SUS (Brooke, 1996) , 

and CSUQ (Lewis, 1993). We used the CSUQ (Com-

puter System Usability Questionnaire), which was de-

veloped at IBM (Lewis, 1993). The questionnaire 

has   been   considered  a  reliable  measure  of   overall 

UI-GEAR: User Interface Generation prEview capable to Adapt in Real-time

281



satisfaction with an interface (McArdle and Ber-

tolotto, 2012): it has been empirically proved that the 

IBM CSUQ questionnaire benefits from a 0.94 corre-

lation with usability of the assessed system. Complet-

ing the CSUQ allows participants to provide an over-

all evaluation of the system they used. This 

questionnaire is composed of 19 items. The items are 

7-point graphic scales, anchored at the end points 

with the terms "Strongly disagree" for 1 and 

"Strongly agree" for 7. 

4.1 Method 

Participants. We conducted a user experiment in-

volving 12 participants who were recruited from the 

University of Holguin, Cuba. The participants have a 

background in informatics engineer / computer sci-

ence. The average age of the sample was 29.42 years 

and the standard deviation was 3.68. The participants 

were software developers and university professors 

with novel experience on designing UIs. No partici-

pant has prior knowledge or exposure to UI-GEAR.  

Task and procedure. In the first phase of the test, 

JMermaid, and in particular UI-GEAR were pre-

sented to the participants with an explanation of its 

use. Each participant was asked to carry out a set of 

tasks in JMermaid. Using an already developed con-

ceptual domain model (shown in Figure 5) as starting 

point, they played with the different options of the 

presentation model to performed the following tasks: 

1) create a presentation model using UI-GEAR and 2) 

generate the prototype using UI-GEAR. For the first 

task the participants needed to fill the prototype´s 

name and the information about the person who cre-

ated it; create a prototype with tabs to the left, pane 

with buttons, three attributes in each table, compo-

nents according to the type of the attribute, and check 

in the preview if the UI will be generated as expected 

(if not, make the necessary modifications to the pre-

vious values). Once the desired characteristics were 

obtained, (task 1) they generated a working prototype 

according to the values they gave for each part of the 

presentation model (task 2). After completing the 

tasks, the users were asked to fill the questionnaire for 

user-interaction satisfaction. During the sessions us-

ers were not allowed to ask questions to the evaluator. 

4.2 Results and Discussion 

The results from the CSUQ evaluations are presented 

in Table 1 in terms of mean with the standard devia-

tion and the mode for each question of the CSUQ.  

Table 1: CSUQ items and scores; range 1 (lowest) - 7 (high-

est). 

CSUQ items Mean 
(std. dev.) 

Mode 

1. Overall, I am satisfied with how easy it is 
to use this system 

5.83 (0.72) 6 

2. It was simple to use this system 5.92 (0.90) 5 
3. I can effectively complete my work using 
this system 

6.17 (0.83) 7 

4. I am able to complete my work quickly 
using this system 

6.33 (0.65) 6 

5. I am able to efficiently complete my 
work using this system 

5.92 (0.79) 6 

6. I feel comfortable using this system 6.00 (0.85) 7 
7. It was easy to learn to use this system 6.17 (0.72) 6 
8. I believe I became productive quickly us-
ing this system 

6.08 (0.51) 6 

9. The system gives error messages that 
clearly tell me how to fix problems 

6.33(0.89) 7 

10. Whenever I make a mistake using the 
system, I recover easily and quickly 

5.92 (0.79) 6 

11. The information (such as online help, 
on-screen messages, and other documenta-
tion) provided with this system is clear 

5.83 (1.03) 7 

12. It is easy to find the information I 
needed 

5.58 (0.79) 6 

13. The information provided for the system 
is easy to understand 

5.75 (0.62) 6 

14. The information is effective in helping 
me complete the tasks and scenarios 

6.00 (0.85) 5 

15. The organization of information on the 
system screens is clear 

6.08 (0.79) 6 

16. The interface of this system is pleasant 5.75 (0.97) 6 
17. I like using the interface of this system 5.75 (0.97) 5 
18. This system has all the functions and ca-
pabilities I expect it to have 

6.25 (0.62) 6 

19. Overall, I am satisfied with this system 6.00 (0.85) 6 
 

A first global observation is that the scores per 

item rank well above 5 on 7, indicating a very positive 

evaluation. We also observe that the highest mean 

values were obtained for the items 4, 9, and 18, while 

the lowest mean value was obtained for item 12. The 

mode represents what the majority of the participants 

score in the test. The mode of only three items was 5, 

while for all the other items the mode was 6 or 7.  

We observed that item 12 about finding the infor-

mation needed has the lowest score, even though the 

participants score this item well overall. The score is 

explained by the fact that some participants (with less 

experience) had doubts about which tab of the presen-

tation model they should use to perform a subtask. 

The cumulated histogram in Figure 7 summarizes the 

responses to the 19 CSUQ questions. The distribution 

of all the questions revealed that nobody disagrees 

with any question, and that for Q4, Q8 and Q18, the 

responses even were only agree and strongly agree. 

Apart from the global item 19, the 18 items form 

three sub-scales, each of which measures a different 

component of (perceived) usability: System Useful-

ness (SYSUSE, items 1-8), Information Quality (IN-

FOQUAL, items 9-15), and Interface Quality (IN-

TERQUAL, items 16-18).  

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

282



 

Figure 7: Distribution of participants’ responses. 

Table 2 shows the highest, lowest, mean and mode 

values for the mentioned sub-scales. (Perceived) Sys-

tem Usefulness and Interface Quality had the highest 

(6.05) and lowest (5.92) mean scores respectively. 

One can immediately note that these values are very 

close to each other. The values indicate a high level 

of satisfaction among the subjects regarding their per-

ception of the usefulness of the tool.  

Table 2: Values of CSUQ for the prototype. 

 SYSUSE INFOQUAL INTER-

QUAL 

OVERALL 

Highest 6.80 6.76 6.79 6.85 
Lowest 5.31 5.10 5.04 5.15 
Mean 6.05 5.93 5.92 6.00 
Mode 6.00 6.00 6.00 6.00 

 

The perceived usefulness is high: the users believe 

the system will enhance their performance and that 

the approach facilitates a presentation model to be 

created by showing its preview, which is also sup-

ported by the positive scores for the first 8 questions. 

The information and interface quality have been 

also well appreciated, but sometimes there was a lack 

of details on where the information could be found. 

Question 19 about satisfaction suggests that UI-

GEAR is positively perceived overall and provides 

the functionalities the developers expected. 

5 CONCLUSIONS 

This paper has presented UI-GEAR, a User Interface 

generation preview capable to adapt in real-time. UI-

GEAR is an MDE environment that enables UI-de-

velopers playing with UI generation options and 

straightforwardly visualizing the consequences, thus 

providing them with guidance and flexibility in the 

design of the UI. For this purpose, a feature model 

structuring the generation options is parsed to show a 

UI preview at real-time.  

UI-GEAR provides several important benefits for 

UI development. By showing the developer the re-

sults of the UI generation before actually obtaining it, 

errors, such as usability problems, can be detected 

and fixed early instead of waiting for the results of the 

generation. UI-GEAR also allows developers to cus-

tomize the user interface generation on-the-fly, 

hereby eliminating the uncertainty regarding the final 

UI result. This enables the developer to focus on ma-

jor UI aspects that need review.  

UI-GEAR’s preview facilitates alignment with 

developers’ expectations and helps to improve devel-

opers' understanding of UI development. By present-

ing a preview of the UI before actually generating it, 

developers can discover differences between the ac-

tual user interface and what they hoped to obtain ac-

cording to the chosen generation options, thus im-

proving their understanding of the effects of 

generation options and reducing the learning curve.  

The performed user experiment has demonstrated 

that developers find UI-GEAR very satisfactory in all 

areas for which the CSUQ accounts: usefulness, in-

formation quality, and interface quality. However, to 

assure generalization validity and assessment of the 

impact of the preview UI development, we plan to do 

further controlled experiments in the future. 

In addition, another shortcoming of our approach 

is that only functional aspects of the UI are modelled: 

UI-GEAR is not focused on aesthetic appeal. For the 

moment, our approach only addresses the develop-

ment of enterprise information systems in one lan-

guage and one platform of use. However, since this 

approach relies on MDE, the generation of the system 

to other languages and platforms can be easily ex-

tended in future versions of the tool. 

Finally, all features of a feature model are as-

sumed to remain independent of each other: choosing 

a value for a feature does not affect the choice of other 

features. This assumption is not always valid in the 

real world: certain design options may impact one or 

many other features, thus making the interpretation of 

the feature model, and therefore the UI generation 

preview, more difficult. The feature model could be 

expanded for this purpose with constraints between 

feature values, but this would make the rendering en-

gine more complex. This can be alleviated with JMer-

maid’s current consistency checking mechanism to 

ensure that the options selected by the UI developer 

do not create inconsistencies. 

ACKNOWLEDGEMENTS 

The authors would like to thank Jean Vanderdonckt 

for his excellent feedback and the opportunity of vis-

iting UCL. This research has been sponsored by the 

VLIR-UOS network program. 

UI-GEAR: User Interface Generation prEview capable to Adapt in Real-time

283



REFERENCES 

Alonso-Ríos, D., Raneburger, D., Popp, R., Kaindl, H., & 

Falb, J. (2014). A User Study on Tailoring GUIs for 

Smartphones. In SAC´2014 (pp. 186–192). Conference 

Proceedings, Gyeongju: ACM Press, New York. 

Aquino, N., Vanderdonckt, J., Panach, J. I., & Pastor, O. 

(2011). Conceptual modelling of interaction. In Hand-

book of Conceptual Modeling: Theory, Practice and 

Research Challenges (pp. 335–358). Book Section, 

Springer, Berlin. 

Aquino, N., Vanderdonckt, J., & Pastor, O. (2010). Trans-

formation templates: adding flexibility to model-driven 

engineering of user interfaces. In SAC´2010 (pp. 1195–

1202). Conference Proceedings, Sierre: ACM Press, 

New York. 

Bacha, F., Oliveira, K., & Abed, M. (2011). A model driven 

architecture approach for user interface generation fo-

cused on content personalization. In RCIS´2011 (pp. 1–

6). Conference Proceedings, IEEE. 

Benavides, B., Segura, S., & Cortés, A. R. (2010). Auto-

mated Analysis of Feature Models 20 Years Later: A 

Literature Review. Information Systems 35, 6, 615–

636. Journal Article. 

Botterweck, G. (2007). A model-driven approach to the en-

gineering of multiple user interfaces. In Models in Soft-

ware Engineering (pp. 106–115). Book Section, 

Springer. 

Brooke, J. (1996). SUS: A Quick and Dirty Usability Scale. 

In Usability Evaluation in Industry. Book Section, Lon-

don: Taylor & Francis. 

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-

lon, L., & Vanderdonckt, J. (2003). A unifying refer-

ence framework for multi-target user interfaces. Inter-

acting with Computers, 15(3), 289–308. Journal 

Article. 

Daniel, F., Matera, M., Yu, J., Benatallah, B., Saint-Paul, 

R., & Casati, F. (2007). Understanding ui integration: 

A survey of problems, technologies, and opportunities. 

Internet Computing, IEEE, 11(3), 59–66. Journal Ar-

ticle. 

Elkoutbi, M., Khriss, I., & Keller, R. K. (1999). Generating 

user interface prototypes from scenarios. In Require-

ments Engineering, 1999. Proceedings. IEEE Interna-

tional Symposium on (pp. 150–158). Conference Pro-

ceedings, IEEE. 

Florins, M., Montero, F., Vanderdonckt, J., & Michotte, B. 

(2006). Splitting Rules for Graceful Degradation of 

User Interfaces. In AVI´2006 (pp. 59–66). Conference 

Proceedings, ACM Press. 

Gaulke, W., & Ziegler, J. (2015). Using profiled ontologies 

to leverage model driven user interface generation. In 

SIGCHI´2015 (pp. 254–259). Conference Proceedings, 

ACM. 

Genera AS, & Lysaker. (2004). GENOVA V8.0 User Guide 

(Report). 

Guerrero, J., Vanderdonckt, J., & Gonzalez, J. (2008). 

FlowiXML: a Step towards Designing Workflow Man-

agement Systems. Journal of Web Engineering, 4(2), 

163–182. Journal Article. 

Kristensson, P. O., & Zhai, S. (2007). Command strokes 

with and without preview: using pen gestures on key-

board for command selection. In CHI’2007 (pp. 1137–

1146). Conference Proceedings, San Jose: ACM Press, 

New York. 

Lewis, J. R. (1993). IBM Computer Usability Satisfaction 

Questionnaires: Psychometric Evaluation and Instruc-

tions for Use (Report) (Vol. 12). Boca Raton, Florida. 

Llavador, M., & Canós, J. H. (2007). A Framework for the 

Generation of Transformation Templates. In 

ECDL’2007. Lecture Notes in Computer Science (Vol. 

4675, pp. 501–504). Conference Proceedings, Springer. 

Maleki, M. M., Woodbury, R. F., & Neustaedter, C. (2014). 

Liveness, Localization and Lookahead: Interaction El-

ements for Parametric Design. In DIS’2014 (pp. 805–

814). Conference Proceedings, Vancouver: ACM 

Press, New York. 

McArdle, G., & Bertolotto, M. (2012). Assessing the appli-

cation of three-dimensional collaborative technologies 

within an e-learning environment. Interactive Learning 

Environments, 20(1), 57–75. Journal Article. 

Molina, P. J., Meliá, S., & Pastor, O. (2002). Just-UI : A 

User Interface Specification Model. In CADUI’2002 

(pp. 63–74). Conference Proceedings, Dordrecht: 

Kluwer Acad. Pub. 

Raneburger, D. (2010). Interactive Model Driven Graphical 

User Interface Generation. In EICS ’10. Conference 

Proceedings, 321-324. 

Raneburger, D., Popp, R., & Vanderdonckt, J. (2012). An 

Automated Layout Approach for Model-Driven 

WIMP-UI Generation. In EICS ’12. Conference Pro-

ceedings. 

Rekimoto, J., Ishizawa, T., Schwesig, C., & Oba, H. (2003). 

PreSense: Interaction Techniques for Finger Sensing 

Input Devices. In UIST’2003 (pp. 203–212). Confer-

ence Proceedings, Vancouver: ACM Press. 

Schaefer, R. (2007). A Survey on Transformation Tools for 

Model Based User Interface Development. In Proceed-

ings of the HCI´International (Vol. 4550, pp. 1178–

1187). Conference Proceedings, Beijing: Springer. 

Sedrakyan, G., & Snoeck, M. (2013). A PIM-to-Code re-

quirements engineering framework. In Models-

ward´2013 (pp. 163–169). Conference Proceedings. 

Snoeck, M. (2014). Enterprise Information Systems Engi-

neering: The MERODE Approach. Book, Springer. 

Terry, M., & Mynatt, E. D. (2002). Side Views: Persistent, 

On-demand Previews for Open-Ended Tasks. In 

UIST’2002 (pp. 71–80). Conference Proceedings, 

ACM Press, New York. 

Van Welie, M., & Trætteberg, H. (2000). Interaction pat-

terns in user interfaces. In 7th. Pattern Languages of 

Programs Conference (pp. 13–16). CONF. 

 

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

284


