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Abstract: Perfusion computed tomography (pCT) is one of the methods that enable non-invasive imaging of the 
hemodynamics of organs and tissues. On the basis of pCT measurements, perfusion parameters such as 
blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface (PS) are calculated 
and then used for quantitative evaluation of the tissue condition. To calculate perfusion parameters it is 
necessary to approximate concentration-time curves using regression function. In this paper we compared 
three regression functions: first commonly used gamma-variate function, second and third Gauss and 
Rayleigh functions, not previously used for this purpose. The Gauss function showed clear advantage over 
the others when considering results of simulated data analysis. Actual measurements analysis confirmed 
conclusions from simulated data analysis. It was showed that contrary to widely accepted belief, the 
differences between rising and falling edge slope angles of concentration-time curves are inconsiderable. 
For that reason, it can be assumed that rising and falling edges are symmetrical. The main conclusion is that 
the Gauss function gives a more robust fit than the widely used gamma-variate function when modelling 
concentration-time curves in lung pCT studies. 

1 INTRODUCTION 

Perfusion computed tomography (pCT) is one of the 
methods that enable non-invasive imaging of the 
hemodynamics of organs and tissues. On the basis of 
pCT measurements, perfusion parameters such as 
blood flow (BF), blood volume (BV), mean transit 
time (MTT) and permeability surface (PS) are 
calculated and then used for quantitative evaluation 
of the tissue condition. Usefulness of perfusion 
parameters has been proved in the diagnosis of brain 
(Wintermark et al., 2008), kidneys (Zhao et al., 
2010), liver (Mírka et al., 2010), pancreas 
(Balthazar, 2011) and spleen (Sauter et al., 2012). In 
the case of lungs, as in other organs, perfusion 
imaging is particularly useful for diagnosing cancer 
(Cao, 2011). The method allows not only for 
establishing the tumour size and location (Nakano et 
al., 2013), but may also provide important predictive 
information concerning tumour vasculature (Ng and 
Goh, 2010). Lung pCT measurements can also help 
in the diagnosis of diabetic pulmonary 
microangiopathy (Browarczyk et al., 2015; Kalicka 
et al., 2015). 

The pCT chest technique uses the intravenous 
injection of a non-iodinated contrast agent (tracer) 
and the sequential scanning of the chest when the 
agent passes through the lungs for the first time 
("first-pass"). The tissue concentration-time curve 
c(t) is obtained for every pixel of the diagnosed 
cross-section. The relationship between the arterial 
input function tracer concentration cAIF(t) on 
entering the region of interest (ROI) and the c(t) 
measured within the ROI has been formulated on the 
basis of the tracer kinetics theory. 

To calculate perfusion parameters it is necessary 
to approximate the data in the form of c(t) and cAIF(t) 
measurements with regression function. The most 
commonly used functions for this purpose are the 
gamma-variate (Blomley and Dawson, 1997; 
Jackson, 2004) and two- or three-exponential 
functions (Kalicka and Pietrenko-Dąbrowska, 2007; 
Srikanchana et al., 2004). However, regression 
functions that have good properties when applied to 
dynamic brain research (Kalicka and Pietrenko-
Dąbrowska, 2007) or carotid artery (Lampaskis et 
al., 2009), demonstrate worse performance, for 
instance, in the case of renal studies (Balvay et al., 
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2008) or liver (Lampaskis et al., 2009). This 
observation inspired us to compare the gamma-
variate function with the Gauss and the Rayleigh 
functions in pCT lung studies. The Gauss and the 
Rayleigh functions were not previously used for this 
purpose. All of the functions were compared using 
both actual and simulated pCT data. 

2 MATERIAL AND METHODS 

The clinical measurements were performed on a 64-
row Light Speed VCT CT scanner produced by GE 
Healthcare USA. Pulmonary perfusion was axially 
evaluated in three cross-sections: the upper, the 
middle and the lower parts of the lungs (2 cm, 3.5 
cm and 5 cm below carina, respectively, see figure 
1), 12 s after the intravenous administration of 40 ml 
a non-iodinated contrast medium at a rate of 4 ml/s. 
Each of the three sequences consists of 89 scans, 
with a resolution of 512 at 512 pixels, collected with 
a sampling interval of 1 s. 

 

Figure 1: Three cross-sections obtained from healthy 
subject. 

Two data sets were collected. The first data set 
consists of actual measurements and the second data 
set was simulated. Simulated data were used for 
extended analysis of error propagation for all 
considered regression functions. Each data set, both 
measured and simulated, consists of three 
concentration-time curves, one per lung region: 
arterial input function (AIF), blood vessels and 
parenchyma. The first data set was created from the 

actual measurements obtained from 5 healthy 
subjects, 2 females and 3 males, aged 33-67. The 
second data set was simulated using the actual 
measurements obtained from another healthy subject 
(female, 67 y/o, non-smoking with no diagnosed 
acute or chronic diseases affecting pulmonary 
functions). All patients received written information 
about the study, then gave written consent to 
participate. The study was approved by the 
Independent Commission on Bioethics Committee 
for Scientific Research at the Medical University of 
Gdańsk. 

The simulations were conducted in the following 
way: 100 pixels were manually chosen from the 
upper, the central and the lower cross-sections. The 
selected pixels provide j=1,...,100 concentration-
time curves cj(ti). Each curve consists i=1,...,89 
measurements. The most typical concentration-time 
curve ctyp(ti) was calculated as a mean vector, 
defined as sum of vectors cj(ti) divided by number of 
vectors. The typical curves were used to perform 
100 simulation runs csim(ti): 

    R,typsim ii tcGtc   (1)

G(ctyp(ti),R) is the random numbers generator of the 
normal distribution with mean parameter ctyp(ti) and 
standard deviation R equal to the residual variance 
of actual measurements: 
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Figure 2 shows the ctyp(ti) and an example of a 
csim(ti) for AIF, vessels and parenchyma. 

The peaks and valleys (figure 2) are 
characteristic for pCT lung results. They are caused 
by the patient's breathing during the examination. In 
further analysis we consider the peaks which 
correspond to the phase of inspiration. The peaks 
were detected using the function findpeaks 
(Mathworks Matlab R2010a). Only the first passage 
of tracer was modelled. 

The following functions were chosen to be 
compared: 
 gamma-variate function; 
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 Gauss function; 
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 Rayleigh; 
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where v1, v2, v3, g1, g2, g3, r1, r2 are regression 
function parameters; t0 is arrival time of contrast 
agent, determined empirically. 

The values of model parameters v = [v1, v2, v3], g 
= [g1, g2, g3] and r = [r1, r2] were calculated 
according to the objective function: 
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where N is number of time points, p is the parameter 
vector equal to v, g and r for the gamma-variate, the 
Gauss and the Rayleigh model functions cmod(ti,p), 
respectively. 

The BV parameter is the relative blood volume in 
the considered ROI. It is defined as follows 
(Calamante et al., 1999): 
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where kH is the correction factor accounting for the 
differences in the hematocrit of capillaries and large 
vessels, ρ is the tissue density [g/cm3], and c(t) and 
cAIF(t) are the concentration of contrast agent in ROI 
and in AIF, respectively. In literature the values of 
kH and ρ differ significantly (Chan and Siochi, 2011; 
Cohen, 1966; Hopkins et al., 2007; Lilienfeld et al., 
1956; Pevsner et al., 2005; Praveenkumar et al., 
2011). In our research the precise values of kH and ρ 
are not relevant. We assume kH/ρ = 1 for all the 
considered types of tissue: AIF, vessels, 
parenchyma. 

Next, the models will be used to calculate the 
blood volume BV defined by the equation 7, which 
is the diagnostically important descriptor of lung 
perfusion. Errors associated with measurements 
propagate to the errors associated with model 
parameters and in turn they propagate to errors of 
perfusion parameter BV. The way of propagation 
depends on the particular form of the regression 
function. We will test different regression functions 
to compare their built-in, inner potential to provide 
accurate identification results. To get the aim we 
will apply methodology and criteria of the error 
propagation and of the sensitivity analysis. 

There  are  two   basic  questions  relating  to  the 

 

 

 

Figure 2: Typical concentration-time curves ctyp(ti) and an 
example of the simulated curve csim(ti) for AIF (upper), 
vessels (middle) and parenchyma (lower). 

identification of model parameters. Is the model 
identifiable, i.e. whether there is a unique solution in 
form of model parameters? Whether the parameters 
can be designated on the basis of the measurements 
with a satisfactory accuracy? 

It is important to obtain unique estimates of all 
model parameters. This problem is considered as 
theoretical or a priori identifiability. Sometime a 
model is theoretically identifiable, but process of 
parameters estimation may produce such large errors 
that occurs a loss of practical or a posteriori 
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identifiability. 
Process of parameters estimation requires finding 

minimum of objective function OF in the parameter 
space. Dimension of the parameter space is equal to 
the number of model parameters np≤N, N is number 
of measurements: 
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where ymeas(ti) is a set of measurements collected in 
N time points ti and ymod(p,ti) is a model function 
that depend on parameter vector p. 

Let us analyse sensitivity Sp of OF(p) with 
respect to estimated parameters – for large and for 
small sensitivity value. Assume that the resolution of 
the OF measurement is OF, see Figure 3. 

 

Figure 3: Dependence between the shape of OF and the 
attainable accuracy for ∆p1 and ∆p2 > ∆p1 for two model 
parameters p1 and p2 and for the same measurement 
resolution OF. 

The larger sensitivity Sp the smaller error p. 
Therefore, for the same measurement resolution OF, 
the attainable accuracy p differs depending on the 
particular sensitivity function. The sensitivities are 
dependent on the properties of the regression 
function. Choice of the regression function of 
desired properties is the aim of our investigation. 

The relationship between sensitivity and error 
one can present in an analytical form: 
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where i = 1,...,N and p = [p1, p2,...,pnp]. 
Differentiating OF with respect to the parameter 
vector we obtain: 
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S is the sensitivity matrix. Searching for error of 

parameter estimates involves the searching for 
variance-covariance matrix of the estimates. Under 
simplifying assumptions (ymod(p,ti) is approximated 
to a linear factor of Taylor series, the disturbances 
are uncorrelated, the expected value of the 
disturbances is zero, and covariance is constant and 
equal to σ2) the variance-covariance matrix P in the 
vicinity of the minimum of OF, takes the form of 
(Cobelli et al., 2002; Enderle et al., 2000; 
Semmelow, 2005): 
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The matrix P is symmetric, as the variances are pair 
wise symmetric. The sensitivity matrix S elements 
are the sensitivities of the model output to changes 
in particular parameters. The entries of the matrix P 
are: 
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When the matrix becomes singular: det(STS)→0, 
their entries are large and, therefore, associated error 
estimates are large. 

Even if structural identifiability of the model has 
been previously confirmed, it may happen that the 
matrix STS is close to singular. Inversing such 
matrix STS cause very large entries of the matrix P, 
which means a very large errors of parameter 
estimates. Thus, the matrix STS must be non-singular 
and the sensitivity S large. Both, the sensitivity S 
and the matrix STS depend on the form of regression 
function ymod. Choice of the regression function of 
desired properties (large S and not singular, or not 
close to singular, the matrix STS) is the aim of our 
investigation. 

We assumed that model function is better than 
the others if it gives lower objective function OF and 
lower uncertainty ∆BV values. The smaller value of 
OF, the better the function fit. According to the error 
propagation rule, the smaller error pi of regression 
function parameters the smaller ∆BV uncertainty of 
BV. For example, when regression function depends 
on two parameters p1 and p2, then the uncertainty 
∆BV is defined as follows (Ku, 1966): 
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where Δp1, Δp2 are parameters p1 and p2 estimation 
errors, Δp1p2 is estimated covariance of p1 and p2. 

In literature it is presented opinion that the first 
passage of tracer is asymmetrical, i.e. the rising and 
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falling edges are not equally sloped (Lampaskis et 
al., 2009; Thompson et al., 1964). In order to 
examine symmetry between rising and falling edge 
of concentration-time measurements in pCT lung 
study, the edges were approximated by linear 
function in the range of linear edge course. The 
slope angles R and F were calculated. The 
asymmetry coefficient  was defined as follows: 

%100
R
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





  (14) 

3 RESULTS 

To compare the different regression functions 100 
simulation runs were performed. For each simulation 
run the value of objective function OF was 
calculated for all compared regression functions. 
Then, for each regression function the mean value of 
the objective function was calculated. The results 
obtained for AIF, vessels and parenchyma are 
presented in table 1 - different regression functions 
show different ability to fit measurements. Table 2 
presents the mean BV and BV calculated according 
to the error propagation rule, with respect to all 
model parameters, for simulated data. 

The value of BV, for AIF region and for all 
regression functions, is known a priori and equal to 
100, see table 2 and 4. It results from the equation 7: 
the integrals in numerator and denominator of are 
equal, so their quotient is equal to 1 and kH/ρ = 1. In 
literature the BV is given in [ml/100g] therefore 
equation 7 is multiplied by 100. 

Table 1: Mean values of objective function for gamma-
variate, Gauss and Rayleigh functions in all regions 
calculated for simulated data. 

 gamma-variate Gauss Rayleigh 
AIF 9258 9198 9201 

vessels 808 680 1218 
parenchyma 193 186 230 

Table 3 shows mean OF calculated for the actual 
measurements taken from 5 subjects. Table 4 shows 
example results of BV and ∆BV for a certain patient 
calculated based on actual data. 

Tables 5 shows rising and falling edge slope 
angles R and F, their differences and asymmetry 
coefficients , separately for each of 5 subjects. 
Table 6 shows mean values of rising and falling 
edge slope angles R and F, their standard 
deviations ∆R and ∆F, differences between mean 

values of R and F and asymmetry coefficients . 

Table 2: Mean BV parameters; their uncertainties ±∆BV 
and CV calculated for simulated data, taking into account 
errors pi of regression functions parameters pi. 

 

BV [ml/100g] 
±ΔBV [ml/100g] 

CV [%] 
gamma-variate Gauss Rayleigh 

AIF 
100 

±0,2626 
0,2626 

100 
±0,0760 
0,0760 

100 
±0,2447 
0,2447 

vessels 
19,1400 

±61,5489 
321,5700 

19,9783 
±0,0058 
0,0290 

21,0502 
±0,0333 
0,1582 

parenchyma 
6,1652 

±0,0680 
1,1030 

6,2627 
±0,0004 
0,0064 

5,6497 
±0,0051 
0,0903 

Table 3: Mean values of objective function for gamma-
variate, Gauss and Rayleigh functions in all regions 
calculated for 5 subjects, based on actual data. 

 gamma-variate Gauss Rayleigh 
AIF 9411 7791 9129 

vessels 853 706 1401 
paren. 136 130 139 

Table 4: Example results of BV parameter; its uncertainty 
±∆BV and CV calculated for single subject (female, 63 
years old), taking into account errors pi of regression 
functions parameters pi, based on actual data. 

 BV [ml/100g] 
±ΔBV [ml/100g] 

CV [%] 
gamma-variate Gauss Rayleigh 

AIF 100 
±0,1170 
0,1170 

100 
±0,0311  
0,0311 

100 
±0,2505 
0,2505 

vessels 10,3512 
±20,2722 
195,8440 

8,5467 
±0,0037 
0,0433 

11,0668 
±0,0158 
0,1428 

parenchyma 8,4072 
±0,0084 
0,0999 

8,1724 
±0,0004 
0,0049 

8,3620 
±0,0075 
0,0897 

Table 5: Rising and falling edge slope angles R and F, 
their differences and asymmetry coefficients  calculated 
for 5 subjects, based on actual data. 

 R [] F [] |R|-|F| []  [%]

1
AIF 88,24 -88,70 -0,46 -0,52 

vessels 87,26 -86,04 1,22 1,40 
parenchyma 77,64 -75,41 2,23 2,87 

2
AIF 86,71 -87,94 -1,23 -1,42 

vessels 85,53 -84,56 0,97 1,13 
parenchyma 74,86 -69,65 5,21 6,96 
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Table 5: Rising and falling edge slope angles R and F, 
their differences and asymmetry coefficients  calculated 
for 5 subjects, based on actual data (cont.). 

3
AIF 89,59 -89,02 0,57 0,64 

vessels 85,37 -87,16 -1,79 -2,10 
parenchyma 71,83 -73,00 -1,17 -2,57 

4
AIF 88,41 -88,15 0,26 0,29 

vessels 84,42 -75,40 9,02 10,69
parenchyma 79,22 -66,50 12,72 16,06

5
AIF 88,91 -88,96 -0,05 -0,06 

vessels 86,40 -86,30 0,10 0,12 
parenchyma 64,73 -66,50 -1,77 -2,73 

Table 6: Mean values of rising and falling edge slope 
angles R and F, their standard deviations R and F, 
differences and asymmetry coefficients  calculated for 5 
subjects, based on actual data. 

 R [] 
±ΔR [] 

F [] 
±ΔF[] 

|R|-
|F| [] 

 
[%] 

AIF 88,37 
±1,07 

-88,55 
±0,49 

-0,18 
-

0,21 
vessels 85,80 

±1,08 
-83,89 
±4,84 

1,90 2,22 

parenchyma 73,66 
±5,73 

-70,21 
±3,96 

3,44 4,68 

4 DISCUSSION 

Our aim is to determine which function best 
approximates the first passage of tracer in pCT lung 
studies. Fitting results, presented in table 1, show 
different quality of fit for different regression 
functions. Taking into account OF values, the Gauss 
function proved to be the best in all considered 
regions - AIF, vessels and parenchyma. Similar 
conclusions can be drawn on the basis of uncertainty 
analysis, see table 2. It is worth mentioning, that the 
most frequently used gamma-variate function 
produced noticeably higher BV than the Gauss and 
the Rayleigh functions. 

Simulated data analysis demonstrated the 
advantage of the Gauss function over the other ones. 
In order to confirm the simulation results, actual 
measurements analysis was performed. The results, 
presented in table 3, show that OF in all regions are 
the lowest for the Gauss function. The Gauss 
function best approximates the first passage of tracer 
in AIF, blood vessels and parenchyma. Also, the 
Gauss function produces the lowest uncertainty BV, 
which means that the impact of model parameters 
error on BV is the smallest. 

It is widely accepted that the first passage of 
tracer is asymmetrical, i.e. the rising and falling 

edges are not equally sloped (Lampaskis et al., 2009; 
Thompson et al., 1964). Considering this, regression 
function that best approximates the first passage of 
tracer should also be asymmetrical. However, it was 
proved (table 1 and table 3) that the Gauss function, 
which is symmetrical, best approximates the first 
passage of tracer. The rising and falling edges of 
concentration-time curves were approximated by the 
linear function and slope angles were calculated. 
Rising and falling edge slope angles, their 
differences and asymmetry coefficients calculated 
for 5 subjects are presented in table 5. Furthermore, 
the mean values of slope angles, their standard 
deviations, differences and asymmetry coefficients 
were calculated and presented in table 6. Differences 
between slope angles are insignificant and the 
differences between mean values of rising and 
falling edge slope angles, presented in table 6, are 
negligible. Therefore, it can be assumed that rising 
and falling edges of actual measurements are 
symmetrical (very close to symmetrical). For that 
reason, the Gauss function proved to be best 
approximation of the first passage of tracer in pCT 
lung studies. 

5 CONCLUSIONS 

This paper presents a comparative analysis of three 
regression functions in three regions (AIF, blood 
vessels and parenchyma) in pCT lung tests. 
Considering results of simulated data analysis, the 
Gauss function showed a clear advantage over the 
others. Results of actual measurements analysis 
confirmed that the Gauss function produce the most 
accurate approximations of the first passage of 
tracer. It was showed that contrary to the widely 
accepted practice, the differences between rising and 
falling edge slope angles of concentration-time 
curves are inconsiderable. Therefore, one can 
assume that rising and falling edges are symmetrical. 
Negligible asymmetry of measurements justifies 
why the Gauss function best approximates the first 
passage of tracer in pCT lung studies. 
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