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Electric vehicle battery swapping stations are suggested as an alternative to vehicle owners recharging their
batteries themselves. To maximize the network’s performance spare batteries must be optimally allocated in
these stations. In this paper, we consider the battery allocation problem where the criterion for optimality is
the window fill rate, i.e., the probability that a customer that enters the swapping station will exit it within a
certain time window. This time is set as the customer’s tolerable wait in the swapping station. In our derivation
of the window fill rate formulae, we differ from previous research in that we assume that the swapping time
itself is not negligible. We numerically analyse the battery allocation problem for a hypothetical countrywide
application in Israel and demonstrate the importance of estimating correctly customers’ tolerable wait, the
value of reducing battery swapping time and the unique features of the optimal battery allocation.

1 INTRODUCTION

Electric vehicles’ batteries need to be recharged fre-
quently with inconveniently long recharging time.
The US-based corporation Better Place suggested to
overcome this problem by separating battery owner-
ship from the vehicle’s ownership so that customers
purchase the vehicle from the auto-maker and lease
battery services from a third party (“the firm”). The
firm will construct a network of battery swapping sta-
tions in which car owners replace their depleted bat-
teries for charged ones from the station’s stock. Sep-
arately, the depleted batteries are recharged and put
back in the stock to be given to future customers. To
improve the network’s performance, the firm may de-
cide to place spare batteries in each station. There-
fore, given a total budget of spare batteries, the firm
must decide how to allocate the spare batteries among
the battery swapping stations with the goal of opti-
mizing a predetermined service measure.

The service measure that we consider in this paper
is a generalization of the fill rate. With the fill rate, the
firm will allocate batteries to maximize the fraction
of customers who are served upon arrival. In reality,
however, the fill rate is rarely an accurate proxy for
the firm’s costs. For example, if the battery provider is
obliged by contractual commitment to provide service
within a certain time then it does not need to have a
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battery ready for the customer immediately when she
arrives. From the customers’ standpoint, too, there is
a certain tolerable or acceptable period of wait, which
may depend on their level of patience or expectation.
If a customer entering the station expects being served
within the ten minutes it would take to fill a tank of a
conventional car, then the firm experiences reputation
and contractual losses only if the customer waits more
than ten minutes. Thus, the firm’s objective should be
to maximize the window fill rate, i.e., the probability
that a customer is served within the tolerable wait.

To address this problem, we use research in the
field of exchangeable-item repair systems. Customers
arrive to these systems with a failed item and ex-
change it for an operable item in a manner similar
to the battery swapping scheme. Furthermore, since
battery charging docks are relatively inexpensive, one
may assume that there are ample servers in each lo-
cation so that each location can be modelled as an
M /G /e queue. (Dreyfuss and Giat, 2016) develop an
algorithm for finding a near-optimal solution in such
multi-location systems assuming that the item’s as-
sembly and disassembly times are negligible. This
assumption is clearly unrealistic for the battery swap-
ping problem since battery removal and installation
times are significant compared to the customer’s tol-
erable wait.

In this paper, we develop the window fill rate for-
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mula for the case of positive item assembly and disas-
sembly times and show that a A increase in the assem-
bly and disassembly time is equivalent to a A decrease
in the tolerable wait. Using this finding we apply the
(Dreyfuss and Giat, 2016) algorithm to find a solution
to the battery swapping problem, i.e., how to allocate
spare batteries in the network, and make the following
contributions.

We estimate the battery allocation problem of the
Better Place corporation if it had succeeded going
widespread in Israel and derive the optimal solution
for different service criteria. This example provides
valuable insight into the critical importance of assess-
ing correctly the tolerable wait time and the signifi-
cant losses that the firm incurs if it neglects to do so.
Second, we estimate the savings attained by reducing
battery swapping time. Third, we show how customer
arrival rate creates two classes of battery exchange
stations and therefore managers should develop two
different policies with respect to their service time to
customers. Although the Better Place adventure has
ended with bankruptcy in 2013, the battery swapping
idea is either applied or considered by other compa-
nies (e.g. XJ Group Corporation in Qingdao, Tesla
in California and Gogoro in Taipei). The model pre-
sented in this paper, therefore, may yet be applied in
real-life large-scale situations.

2 LITERATURE REVIEW

Electric vehicles are considered an environmentally-
friendly alternative to internal combustion engine cars
and are projected to eventually replace these fuel-
burning cars (Dijk et al., 2013). Drivers, however,
are still wary of these vehicles and therefore, many
governments provide substantial tax incentives to en-
courage their widespread adoption. Notable examples
are West European countries, the United States, China
and Japan (Zhou et al., 2015). Despite these efforts,
many drivers are wary of purchasing these cars and
most governments adoption goals have not been met
(Coffman et al., 2016). The major customer concern
is the “range anxiety”, namely, the fact that batteries
have limited range and their recharging time is very
long compared to internal combustion engine cars.
An innovative idea to overcome these issues was in-
troduced by the US-based company Better Place who
proposed to separate the vehicle ownership from the
battery ownership. In lieu of owning the battery, car
owners will purchase battery services from a firm that
will establish a network of battery swapping stations.
Researcher are examining many aspects of this propo-
sition such as the station design, the battery removal

and installation times, the required number of spare
batteries and the network layout and managing the
loads on the power grid (Mak et al., 2013; Yang and
Sun, 2015; Sarker et al., 2015). We contribute to
this research by solving the spare battery allocation
problem and demonstrating a large-scale application
of this problem.

The assumption that customers will tolerate a cer-
tain wait is at the core of this paper, which lies at the
intersection of inventory and customer service mod-
els. While the concept of a tolerable wait is hardly
ever considered in inventory models, it is quite com-
mon in the service industry and is associate with
numerous terms such as “expectation” (Durrande-
Moreau, 1999), “reasonable duration” (Katz et al.,
1991), “maximal tolerable wait” (Smidts and Pruyn,
1999) and “wait acceptability” (Demoulin and Dje-
lassi, 2013). From a service-oriented approach, the
customer’s attitude to wait is mainly subjective and
has cognitive and affective aspects (Demoulin and
Djelassi, 2013). From a logistics point of view this
wait is more objective and usually stated in the service
contract. Indeed, researchers have observed that most
inventory models fail “to capture the time-based as-
pects of service agreements as they are actually writ-
ten” (Caggiano et al., 2009, p.744). Our paper fills
this void by incorporating the tolerable wait into the
optimization criterion.

Our battery swapping network may be modelled
as an exchangeable-item repair system (Avci et al.,
2014). These inventory systems have been investi-
gated by researchers in different contexts (Basten and
van Houtum, 2014). A common performance mea-
sure for such systems is the fill rate, which measures
the fraction of customers who are served upon ar-
rival (Shtub and Simon, 1994; Caggiano et al., 2007).
These papers, however, do not develop explicit for-
mulas for the window fill rate but use numerical tech-
niques. In contrast, (Berg and Posner, 1990) develop
a formula for the window fill rate in a single loca-
tion when item assembly and disassembly is zero, and
(Dreyfuss and Giat, 2016) find that the window fill
rate is generally S-shaped with number spares in the
location and exploit this property to develop an effi-
cient near-optimal algorithm for finding the optimal
spare allocation. We extend these papers by consid-
ering the case of positive assembly and disassembly
times.

3 THE MODEL

Customers arrive with a depleted battery to a battery
swapping network that comprises L stations. Upon ar-
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rival, the battery is removed and placed in a charging
dock and once it is fully recharged it is added to the
station’s stock. To reduce customer waiting time, the
network keeps a number of spare batteries, so that if
there is a spare battery available on stock it is installed
in the client’s vehicle in exchange of the depleted bat-
tery that she had brought. Customers are served ac-
cording to a first-come, first-serve policy and leave
the swapping station once their battery is replaced.

For each station [, [ =1, ..., L, we assume that cus-
tomer arrival rate follows an independent Poisson pro-
cess with parameter A; (see (Avci et al., 2014) for
a justification of this assumption). We assume that
there are ample charging docks in each station and
that charging time at each dock is i.i.d. The combina-
tion of these two assumptions is that once the battery
is removed from the vehicle, charging commences
immediately and that recharging times are indepen-
dent. Let R;(¢) denote the cumulative probability of a
battery to be recharged by time ¢ and let r; denote the
mean recharging time. Battery removal and battery
installation times are #; and f,, respectively. The bat-
tery swapping time, f| 41, is assumed to be no more
than the tolerable wait.

3.1 Single Station

Consider a random customer, Jane, that arrives at time
s to station [ that was allocated b spares. The non-
stationary window fill rate, F;¥5(s,,b) is the proba-
bility that Jane will exit the station by time s +¢. This
happens if and only if by date s+7—1#, Jane is at the
head of the queue and there is at least one charged bat-
tery available at the station’s stock. By “head of the
queue” we mean that all the customers who arrived
before Jane (‘“Pre-Jane customers”) have either exited
the station or are in the process of installing batteries
in their vehicles. We can ensure this by verifying a
supply and demand equation for recharged batteries.
On the supply side, we consider the initial number of
spare batteries in the station, b, plus all the batteries
whose recharging was completed during the time seg-
ment [0, s+7—1;]. On the demand side we consider the
number of Pre-Jane customer plus Jane herself. Let:

e N| denote the number of batteries brought by Pre-
Jane customers who were recharged before s+t —
1.

e N, denote the number of batteries brought by Pre-
Jane customers who were recharged after s+¢—t».

e N3 denote the number of batteries brought by cus-
tomers who arrived after Jane (‘“Post-Jane cus-
tomers”) and were recharged before s+¢—1t;.

e Z denote a Binary variable that is equal to one if
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Jane’s battery is recharged by s+¢—# and zero
otherwise.

The probability that Jane will exit the station by
s+t is the probability that the supply is greater than
the demand as follows

ENS(s,t,b) = Pr[Supply > Demand)
Prlb+N{+Z+N3 > Ni+N,+1]
= Prlb+Z+N; >Ny +1] (D

Since the battery brought by Jane begins recharg-
ing at s+11, the probability for Z = 1 is the probability
that a battery completes recharging during the inter-
val [s+t1,5+1 — 2], which is equal to R;(t—t; —12).
Therefore, we can condition on the value of Z and
rewrite (1) as

ENS(s,1,b) = Ry (t—t1 —t2) Pr[b-+14+N3 > Na+1]
+ (1 —Rl(t—ll—tz))Pr[b+N3 > Nz—l—l}
= Pr[N;—N3 <b—1]+R;(f)PriN,—N3=0], (2)

where 7 :=t—1—1,.

Our assumption that batteries arrive according to
a Poisson process and the ample server assumption
guarantee that NV, and V3 are independent Poisson ran-
dom variables that are also independent of Z. Recall,
N> is the number of batteries who arrived between
[0,s5] and were not repaired by s+t —#,. Of these
customers, consider a customer that arrives during
the time interval [u,u + du] in [0,s]. Due to the con-
ditional uniform distribution property of the Poisson
process, the probability for this is du/s (Ross, 1981,
Chapter 3.5). This customer’s battery is removed
and begins to be recharged at u +¢#. The probabil-
ity that recharging is completed only after s +¢ —#; is
1 —R[(S—l—t—l‘z — (u+t1)). Thus,

N

N> ~ Poisson (7\,1S/(1—R1(S—|—t—t2—u—tl)) %)
u=0
s+
~ Poisson (kl/(lle(u))du), (3)
u=rt

To derive the distribution of N3 we consider the
customers who arrived between [s,s + 7 —1%] and
whose batteries were recharged by s+ ¢—#,. Of these
customers, consider a customer that arrives during the
time interval [u,u + du]. The probability for this is
du/(t—1t). This customer’s battery is removed and
begins to be recharged at u +¢. The probability
that recharging is completed by s+t — ; is, therefore
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Ri(s+t—t— (u+1)). Thus,

s+t—tp
. du
N3 ~ Poisson <7\.1(t —tz)/Rl (s+t—tr—u—n )ﬁ
—h
u=s

t 1
~ Poisson (%l/Rl(u)du =N Rl(u)du>. 4)
u=-1 u=0

The stationary window fill rate is obtained by tak-
ing the limit of s in (3) to infinity, which results with
the following proposition:

Proposition 1. The stationary window fill rate for
station | with b spares is given by

Fi(t,b) =Pr[N <b—1]+R;(f)Pr[N =b] (5)
where N :=N,—N3 and where Nj is defined in (4) and

oo

N, ~ Poisson (M [(1 —R(u))du).

P
3.2 The Network

Let b = (by,...,b.) be a network battery allocation
and let A := YA, denote the (total) arrival rate to the
network. The network’s window fill rate, F(¢,b), is
the weighted average of the local window fill rates.
Therefore, given a budget of B spare batteries, the bat-
tery allocation problem is:

. L A L
max F(t,b) := Z IlFl(t,bl) s.t. Zbl =B. (6)
b>0 =1 =1

Since the window fill rate depends only on f =
t —t; —t, we can instead assume that the battery re-
moval and installment times are zero and use the ad-
justed tolerable wait, 7, in lieu of the true tolerable
wait t. The implication of this observation is that
we can use the results of (Dreyfuss and Giat, 2016)
who assume zero swapping time. In the remainder
of this section, we apply the results of (Dreyfuss and
Giat, 2016) to our model with positive swapping time.
We state only the results that are necessary for under-
standing the battery allocation application.

A FI (t7 b)
1
Fi(¢,b
075 + : l( ) ) )
— — — tangent line
05 T
0as 4 tangent point

Y

m

Number of Spare Batteries

Figure 1: The window fill rate for an S-shaped station.

Result 1: The Shape of the Window Fill Rate

Fi(t,b) is strictly increasing in b. If 1 > r;+1; +1, then
Fi(t,b) is concave in b. Otherwise, Fj(z,b) is either
concave in b or initially convex and then concave (S-
shaped) in b. The tangent point decreases with # and
increases with t; + 1.

Result 2: The Optimization Algorithm

By (6), the window fill rate is a separable sum of
either concave or S-shaped functions. For each S-
shaped station we define the tangent point, m;, as
the first integer such that (F;(¢,m;) — F(,0)) /m; >
AFy(t,m;), where AFj(z,D) is the first difference of
Fi(t,b) and is given by

AF(t,b):=F(t,b+1)—F(t,b)
= (1-R;(t))PrIN=b]+ R, (t)Pr[N=b+1]. (7)
For concave stations we set the tangent point to zero.
For each station, let H;(¢,b) denote the concave cov-
ering function of F;(z,b) in the following manner:

Hi(r.p) = Fi(b0)+ S 0 <<y -1
B ) if b>m.

That is, for any b smaller than the tangent point, we
replace Fj(¢,b) with the straight line connecting the
point (0,F;(,0)) and the point (m;, F;(t,m;)). By
construction, for all b > 0,H(t,b) is concave and
Hy(t,b) > Fi(t,b). Finally, we define H(z,b) as the
weighted sums of all the stations’ functions H(t,b;)
similarly to (6).

Since H (I,Z) is a separable sum of concave func-
tions we can use a greedy algorithm to maximize it.
This algorithm will choose the “best for the buck” sta-
tion and since H is initially linear, it will stay with
stay with this station until it has reached the station’s
tangent point. It then continues with the next best sta-
tion and so forth. Before switching to the next linear
slope it is possible that stations that have reached their
tangent will get additional spares (as long as their cur-
rent slope is steeper than the next best linear slope).
However, once a region begins receiving slopes in its
linear region, it will be the only one to receive spares
until it has reached its tangent point. Consequently,
the algorithms produces an allocation with properties
stated in the following result.

Result 3: The Optimal Allocation

BH satisfies one of the following two cases:

1. Forevery/=1...L, eitherb{" >my orb{"l =0and

the optimal solution to (6), bf =bH.
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2. There exists a single station, denoted by [ such
that 0 < bf < mj. For every other station [ # [,

either b > my or b = 0. In this case:

(a) The optimal value of F is bounded above by
H(t,b™).

(b) The distance from optimum is bounded by

M (Hi, b)) — (1, b))

4 NUMERICAL APPLICATION

The US-based corporation Better Place was founded
in 2007 with the ambitious goal of a large-scale adop-
tion of fully electric cars. Since battery-related issues
are the greatest obstacle to achieving this goal, Better
Place developed a unique business model in which it
retained battery ownership. Customers were to pur-
chase the car absent the battery and Better Place was
to provide battery swapping and recharging services
and to assume all the battery-related risks (Dijk et al.,
2013).

Although Better Place has filed for bankruptcy in
2013, its business model is still considered a promis-
ing solution to solving the battery problem in the elec-
tric car industry (Avci et al., 2014). Most of the cars
produced for Better Place’s customers were sold in
Israel, in which Better Place even completed the con-
struction of fifty battery swapping stations before it
filed for bankruptcy. The following section is a hy-
pothetical full scale application of the Better Place
model in a country with geographical and demograph-
ical characteristics similar to Israel.

Each of the three largest gas companies in Israel
operate approximately two hundred fifty gas stations
and accordingly we assume that the battery service
firm (“the firm”) operates a network of two hundred
fifty battery swapping stations distributed through-
out the country, with a total arrival of approximately
14,000 customers per hour. The population density
in Israel is such that the center region is the densest,
followed by the northern region. The south of Israel,
which constitutes more than half of Israel’s land area,
is sparsely populated. Therefore, the number of sta-
tions per customer in the south is higher than the num-
ber of stations in the center, reflecting the large geo-
graphical size that must be serviced. To model the
differences between the different stations in Israel, as
well as differences between small neighborhood sta-
tions and busy major stations we assume that the ar-
rival rates to the stations are equally spaced between
6.4 and 106 customers per hour.

An empty battery can be recharged to 50% of ca-
pacity within twenty minutes (Bullis, 2013). Since
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there are many factors that affect recharging time we
assume that the recharging time is distributed nor-
mally with mean forty minutes and standard devia-
tion ten minutes. Battery swapping time, i.e., the bat-
tery removal and battery installation, is considerably
shorter than recharging time and with state-of-the-art
design, battery swapping can be done in less than
two minutes (Mak et al., 2013). Each station is as-
sumed to have ample battery rechargers since recharg-
ing docks are relatively inexpensive. Since the elec-
tric vehicle cars are poised as an alternative to the
traditional gasoline-fueled cars, we assume that the
tolerable wait for refueling is similar for both cars.
Anecdotal evidence suggests that a ten minute wait
for battery swapping is tolerated by customers. Fi-
nally, we use a baseline budget of nine thousand spare
batteries.

To summarize, the baseline parameters of the ex-
ample are: L = 250 stations; N = 9000 spare batteries;
A = 6+40.4-1 customers per hour, 7] +#; = 2 minutes,
R; ~ Normal(40,10%) minutes and the optimization
criterion is the window fill rate for a tolerable wait
t = 10 minutes(F'10).

4.1 The Baseline Scenario

Figure 2 describes the near-optimal spare allocation
for the baseline case, b, and Figure 3 displays the
window fill rate for the optimal allocation as a func-
tion of ¢, F (BH ,1). Recall, that the optimization algo-
rithm supplies spares to the station with the steepest
slope until it reaches its tangent point and only then
proceeds to the next station. The tangent line’s slope
and the tangent point are increasing with the arrival
rate and therefore the bigger the station index, the
greater the tangent point. The near-optimal alloca-
tion dictates that the 50 slowest-moving stations will
have no spares, whereas each of the busier stations
will receive at least its tangent point. Station 51 is the
exception; it has only two spares although its tangent
point is 19 (see case 1 of Result 3). This implies that
the solution F (b 10) = 88.5% is a lower bound that
it not necessarily optimal. However, the distance be-
tween the bounds is a mere 0.02% (see notes to Table
D).

The low arrival rate stations are not given any
spares and consequently, their window fill rate is al-
most zero. To compensate customers for the longer
wait, the system’s managers could offer customers,
for example, discounted meals or drinks. Behavioral
research about customer waiting experience may be
used to incentivize customers to agree to longer than
usual waiting times (Maister, 1985).
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Figure 2: The spare battery allocation for the baseline case.
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Figure 3: The window fill rate as a function of ¢ for the
baseline optimal allocation.

4.2 The Effect of the Tolerable Wait

Table 1 details performance statistics for the baseline
criterion, F'10, and three other optimization criteria;
the window fill rate for tolerable waits of two (F2),
five (F5) and fifteen (F15) minutes. For the perfor-
mance statistics, we use the same measures that we
use for the optimality criteria, i.e., the window fill
rates for two, five, ten and fifteen minutes. We see that
different criteria lead to significantly different optimal
values of the objective function. As is discussed be-
low, the near-optimal spare allocations also differ dra-
matically. These observations stress the importance
of defining the criterion for optimality correctly. For
example, if the firm optimizes F2 instead of the “cor-
rect” criterion F'10, then the percentage of satisfied
customers (i.e., customers who were serviced within
ten minutes) decreases from 88.5% to 77.5%. Simi-
larly, if the firm errs to the other side and optimizes
F'15 then the percent of satisfied customers decreases
from 88.5% to 84.9%.

Figure 4 compares the near-optimal allocations
for three different criteria, 2, F10 and F'15. When
t = 15, the tangent points are appreciably less than
the baseline case and therefore the 9000 batteries are
enough to supply all the stations with their tangent
points. At this point, all the stations are in their con-

Table 1: The network’s performance for different optimiza-
tion criteria.

Performance Statistic
2 F5 F10 F15
s| F2 | 735%" [ 765% | 77.5% | 77.6%
S| F5 | 70.6% | 78.6%> | 82.8% | 83.2%
8 F10 | 49.8% | 68.5% | 88.5%° | 93.5%
F15 | 35.0% | 542% | 84.9% | 97.9%*
Notes:

! Lower bound displayed. The distance between bounds is 0.12%.
2 Lower bound displayed. The distance between bounds is 0.05%.
3 Lower bound displayed. The distance between bounds is 0.02%.
4 Optimal value displayed.

cave region and the residual batteries are distributed
among all the stations. Conversely, when ¢t = 2 the
tangent points are higher than in the baseline case.
Now, the busy stations will demand more batteries to
reach their tangent point and so the budget is depleted
after allocating spares to fewer stations compared to
the baseline case.

Wb
9 T -

D
(=]

Number of Batteries
(9%)
(=]

50 100 150 200 250
Station Index

Figure 4: The spare battery allocation for different opti-
mization criteria.

4.3 The Budget Effect

Figure 5 describes the near-optimal spare allocation
for the baseline case and for spare budgets of 7000
and 11000 batteries. In the baseline scenario, the
number of spare batteries in the network is 9000. If
we increase the budget then the lower-rate stations
will receive batteries one by one according to their
tangent point. Eventually, all the stations will reach
their tangent point. Now, any additional batteries will
be distributed among all the stations instead of given
to only particular stations. In contrast, if the budget
is decreased then some slowest-moving stations will
forfeit all their batteries. The busiest stations, how-
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ever, will lose at most the few (if any) batteries they
received beyond their tangent point.

b

A

(=)

(=}
4
t

Number of Batteries
(%)
(=}
7000
69.9%

B
F10

50 100 150 200 250
Station Index

Figure 5: The window fill rate and spare battery allocation
for different values of B.

4.4 The Swapping Time Effect

A corollary of Proposition 1 is that a +A change to the
swapping time, t; +1; is equivalent to a —A change to
the tolerable wait, t. Figure 6 shows how the near-
optimal allocation changes with the swapping time.
As the swapping time increases, the tangent points in-
crease too and therefore the busiest stations require
more spares. As a consequence, more and more slow-
moving stations will remain with zero spares.

, b
90 T

h+n=4
Hh+n=2
Hh+6=0

5 60 T

=

8

=

M

'45 F10=92.9%

— 11+t =0

230 T\ CFl0=885%

g Hh+tn=2

Z

F10=284.3%
_— h+n=4 I

50 100 150 200 250
Station Index

Figure 6: The spare battery allocation for different battery
swapping times.

Thus far, we assume that the budget of spares is
fixed. Consider, now the dual problem of (6).

L
min Z by s.t.

n F(t,b) > o. ®)
b>0 j=
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where o is the network’s required performance.

\ B
o
130007 - - A
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= 110007 - -
=
m
2
2
-
= ;
M 9000 T -
)
s
o
»n
7000 T
H+n
(minutes)
2 4 6 8 10

Swapping Time

Figure 7: The spares budget for different performance target
levels.

We may easily solve (8) using the optimization al-
gorithm. The allocation of spares is done in an identi-
cal manner, but now the stopping condition is that we
have reached the required level of service. Figure 7
displays the budget required to reach a 90%, 95% and
99% window fill rates for different swapping times.
The slope of the graph reveals the savings obtained
by reducing swapping time. For the performance lev-
els of 90%, 95% and 99% the graph is almost linear
and a minute reduction in the swapping time saves
the network approximately 252, 266 and 280 batter-
ies, respectively.

4.5 Optimizing Total Inventory Costs

The problems (6) and (8) assume that either the bud-
get or the service level is predetermined. We now
consider the problem of minimizing the total inven-
tory costs. Let cp denote the cost of a battery and let
¢p denote the penalty cost each time a customer is not
served within the tolerable wait. Since batteries have
a limited lifetime, 7', the planning horizon is 7" and
the total number of customers arriving into the net-
work during the planning horizon is AT where, recall,
A =Y A;. The problem is given by

L
minTC(b) :=cy Y by + c)AT(1—F(t,b)). (9)
5>0 =1

We can easily adjust the optimization algorithm to
find the optimal solution to (9). Each time we con-
sider adding a battery we measure its contribution to
the window fill rate, 8. As long as 8c,AT > ¢, we
increase the number of batteries in the network.
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Batteries for family sized electric vehicles range
between 20kWH and 80kWH with current prices
reaching as low as US$200 per-kWh (Sarker et al.,
2015). We therefore examine battery prices of up to
US$25,000. We conservatively estimate battery life
to be four years, and since we assume 12 daily hours
of operation T = 17520 hours (Arcus, 2016). Finally,
the arrival rate to the network is the sum of the arrivals
to all the stations, A = 14,050 per hour.
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Figure 8: Spares Budget for different penalty costs and bat-
tery price.

In Figure 8 we depict the near-optimal spares bud-
get depending on battery prices for different penalty
costs. Interestingly, the budget may be very sensi-
tive or very insensitive to battery prices. For exam-
ple, when the penalty is $1, then in the battery price
range of $3261 and $21378 then budget size will only
change between 11000 and 9000 batteries. In stark
contrast, if the price increases from $21378 to only
$25321, then the optimal budget will decrease from
9000 to O batteries.

S CONCLUSIONS

In this paper, we suggest a model to solve the spare
battery allocation problem. Since customers will tol-
erate a certain wait when they enter the station we
claim that to minimize its penalty costs the network
should maximize the fraction of customers who are
served within the tolerable wait, the window fill rate.

We show that the relationship between the win-
dow fill rate when item removal and installment times
are positive to the window fill rate with zero removal
and installment times. Using this relationship, we
build on (Dreyfuss and Giat, 2016) to solve our prob-

lem. To illustrate the application of the model we es-
timate a hypothetical application of a full-scale bat-
tery swapping network in Israel, similar to the net-
work envisioned by the Better Place corporation. Our
numerical analysis of the problem reveals interesting
findings such as the value of better battery swapping
design, the creation of different classes of stations and
the critical importance of estimating the tolerable wait
correctly.

The model assumes that battery swapping time is
deterministic and that the customer arrival rate is con-
stant over time. While the first assumption is reason-
able, the second assumption is clearly unrealistic. We
leave addressing these issues to future research.

REFERENCES

Arcus, C. (2016). Plug-in electric vehicle mar-
ket penetration and incentives: a global re-
view. CleanTechnica. [online] Available at:
https://cleantechnica.com/2016/05/31/battery-
lifetime-long-can-electric-vehicle-batteries-last/
[Accessed 22 Sep. 2016].

Avci, B., Girotra, K., and Netessine, S. (2014). Elec-
tric vehicles with a battery switching station: Adop-
tion and environmental impact. Management Science,
61(4):772-794.

Basten, R. and van Houtum, G. (2014). System-oriented in-
ventory models for spare parts. Surveys in Operations
Research and Management Science, 19(1):34-55.

Berg, M. and Posner, M. (1990). Customer delay in M/G/eo
repair systems with spares. Operations Research,
38(2):344-348.

Bullis, K. (2013). Forget battery swapping: Tesla
aims to charge electric cars in five minutes.
MIT Technology Review. [online] Available at:
http://www.technologyreview.com/news/516876/forget-
battery-swapping-tesla-aims-to-charge-electric-cars-
in-five-minutes/ [Accessed 22 Sep. 2016].

Caggiano, K., Jackson, L., Muckstadt, A., and Rappold, A.
(2007). Optimizing service parts inventory in a multi-
echelon, multi-item supply chain with time-based cus-
tomer service-level agreements. Operations Research,
55(2):303-318.

Caggiano, K., Jackson, L., Muckstadt, A., and Rappold,
A. (2009). Efficient computation of time-based cus-
tomer service levels in a multi-item, multi-echelon
supply chain: A practical approach for inventory opti-
mization. European Journal of Operational Research,
199(3):744-749.

Coffman, M., Bernstein, P., and Wee, S. (2016). Electric
vehicles revisited: a review of factors that affect adop-
tion. Transport Review, forthcoming.

Demoulin, N. and Djelassi, S. (2013). Customer responses
to waits for online banking service delivery. Interna-

tional Journal of Retail & Distribution Management,
41(6):442-460.

45



ICORES 2017 - 6th International Conference on Operations Research and Enterprise Systems

Dijk, M., Orsato, R., and Kemp, R. (2013). The emer-
gence of an electric mobility trajectory. Energy Policy,
52:135-145.

Dreyfuss, M. and Giat, Y. (2016). Optimal spares allocation
in an exchangeable-item repair system with tolerable
wait. Working Paper, Jerusalem College of Technol-
ogy.

Durrande-Moreau, A. (1999). Waiting for service: ten years
of empirical research. International Journal of Service
Industry Management, 10(2):171-189.

Katz, K., Larson, B., and Larson, R. (1991). Prescriptions
for the waiting in line blues: entertain, enlighten and
engage. Sloan Management Review, (Winter):44-53.

Maister, D. (1985). The psychology of waiting lines. In
Czepiel, J., Solomon, M., and Heath, C. S. D., edi-
tors, The Service Encounter, pages 113—123. Lexing-
ton Books, Lanham, 2nd edition.

Mak, H., Rong, Y., and Shen, Z. (2013). Infrastructure plan-
ning for electric vehicles with battery swapping. Man-
agement Science, 59(7):1557-1575.

Ross, S. (1981). Introduction to probability models. Aca-
demic Press, NY, 2nd edition.

Sarker, M., Hrvoje, P., and Ortega-Vazquez, M. (2015). Op-
timal operation and services scheduling for an electric
vehicle battery swapping station. IEEE Transactions
on Power Systems, 30(2):901-910.

Shtub, A. and Simon, M. (1994). Determination of reorder
points for spare parts in a two-echelon inventory sys-
tem: The case of non-identical maintenance facilities.
European journal of operational research, 73(3):458—
464.

Smidts, A. and Pruyn, A. (1999). How waiting affects cus-
tomer satisfaction with service: the role of subjective
variables. In Proceedings of the 3rd International Re-
search Seminar in Service Management, pages 678—
696. Universite d’ Aix-Marseille.

Yang, J. and Sun, H. (2015). Battery swap station location-
routing problem with capacitated electric vehicles.
Computers & Operations Research, 55:217-232.

Zhou, Y., Wang, M., Hao, H., Johnson, L., and Wang, H.
(2015). Plug-in electric vehicle market penetration
and incentives: a global review. Mitigation and Adap-
tation Strategies for Global Change, 20(5):777-795.

46



