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Abstract: Laser Doppler flowmetry (LDF) for measurements of tissue blood flow is well-known today. The basic 
theory of forming the registered optical signal in LDF is the model developed by R.Bonner and R. Nossal. 
However, claiming to be a detailed and comprehensive analysis of the interaction of light with tissues, it 
does not describe many phenomena. Multiple simplifications and assumptions in the model diminish the 
efforts on the analysis of peculiarities of light scattering inside the tissue, resulting in a very approximate 
output. In this our study, a qualitatively similar result was obtained with the use of more simple and general 
approach. It was shown, that the power spectra of analyzed signals in the form of the exponential decay, 
similar to a fractal noise (1/f noise), is a consequence mainly of the Maxwell’s distribution of moving 
particles’ velocities. Moreover, in contrast to the classic model, our model shows that the first moment of 
the frequency is linearly proportional not only to the velocity of red blood cells, but also is inversely 
proportional to the wavelength of illuminating radiation, that is more physically grounded. 

1 INTRODUCTION 

Optical noninvasive diagnostic technique – the laser 
Doppler flowmetry (LDF) – to measure a tissue 
blood flow is well-known today. Physically based 
on the light-beating spectroscopy (Cummins et al., 
1970) and the Doppler effect at light scattering on 
moving red blood cells (RBCs) (Nilsson et al., 
1980), the method has already proved its usefulness 
in a number of medical disciplines (Rajan et al., 
2009), (Roustit et al., 2012). However, in spite of 
more than 40-year history, LDF is not used daily in 
a clinical practice. It has a variety of 
implementations in different research, but its 
practical applications, without which a practicing 
clinician cannot work, are not known. Large low-
frequency fluctuations (LFF) in the output signal 
and a high dispersion of the result often lead to an 
inability of the personal diagnostic conclusion. Only 
at scientific studies in groups of patients, when data 
are averaged, there are steadily observed significant 
differences in groups. As a result, in most clinical 
studies pulsations are usually smoothed by data 
processing, and only the mean blood flow is 

analyzed (Mizeva et al., 2016). 
For this empirical simplification, perhaps, 

partial soundness exists in the theory. For example, 
recently it was shown, that variable hyperemia in 
tissues can be a noise source for the laser Doppler 
flowmeter (Lapitan et al., 2016). So, a theoretical 
description of the input signal formation in LDF is 
very important. The basic theory in LDF is the well-
known model developed by R.Bonner and R.Nossal 
(Bonner and Nossal, 1981) (B&N model). Since its 
introduction, the model became the most used and, 
practically, the almost single-used theory of LDF. 
Although, there are a number of numerical methods, 
authors only talking here about the rigorous 
analytical description of the input optical signal. 
Apart from the B&N model, there are not any other 
widespread analytical approach to derive the power 
spectrum density of the measured optical signal and 
its relationship to the RBCs’ velocity or to the blood 
flow (velocity multiplied by amount of moving 
RBCs). 

However, the B&N model doesn’t describe the 
LFF of the incoming optical signal. The model was 
formulated at the assumption, that amplitudes of all 
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scattered fields are stationary. Therefore, assuming 
all LFF to be artefacts, a standard flowmeter usually 
cuts them off by means of a conventional filtration. 
Thus, LFF must not pass directly to the output of 
the flowmeter (Koelink et al., 1994). Nevertheless, 
a different LFF are often observed in experiments. 
Moreover, the existence of optical field fluctuations 
in a tissue microvasculature at external illumination 
is now well confirmed in experiments with the use 
not only the LDF technique, but also a thermometry 
(Padtaev et al., 2015), a photoplethysmography 
(Mizeva et al., 2015), and other methods. So, today 
there is a necessity to revise the classic B&N 
model. 

In this study, we tried to make the first step in 
the direction. We tried to obtain the similar result, 
but by different way. Our hypothesis was: since the 
B&N model was developed at a very large number 
of simplification, the similar result can be obtained 
from the most general assumptions (from the first 
principles) without profound analysis of the light 
scattering in tissues. 

2 MAIN APPROACH AND THE 
OUTPUT OF THE B&N MODEL 

Bonner and Nossal assumed, first of all, that the 
tissue matrix surrounding RBCs is a strong diffuser 
of light and, therefore, all RBCs are irradiated with 
equal intensity from all directions, i.e. there is a 
pure 4π illumination. Then, they supposed that the 
Doppler shift principally arises at scattering of light 
on moving RBCs only, not on fluctuating vessel’s 
walls, for example. Among other simplifications, 
we can also mark a number of the most important 
ones: intensity of the scattered radiation is 
independent on blood volume; multiple scattering is 
insignificant and is dominated by a single 
scattering. Although, the multiple scattering is 
analyzed in their article, the main result - the 
exponential power spectrum, similar to the fractal 
noise (Fig.1), was obtained by taking into account 
of a single scattering only.  

At all these assumptions, it was shown, that the 
first moment of the light beating frequency 
spectrum is linear proportional to the root mean 
square (r.m.s.) velocity of moving RBCs: 
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where: ω is the angular frequency, P(ω) is a power 
spectrum of the photocurrent, V - velocity of 
moving RBCs, β is a factor which primary depends 

on the optical coherence of optical signals at the 
detector surface (0<β<1), ψ is the empirical 
coefficient determining the shape of RBCs, a is the 
radius of an average spherical scatterer 
(erythrocytes) inside the tissue, m is the average 
number of photon scattering events on moving 
RBCs, function )(mf  linearly depends on the blood 

volume for m <<1, and varies as the square root of 
the blood volume for m  >>1.   

 

Figure 1: The typical power spectrum P(ω) of the laser 
Doppler signal described by the B&N model. 

Surprisingly, in (1) there is not any dependence 
on the wavelength λ0 of probing radiation, i.e. the 
waveband of the phenomenon doesn't matter...  

3 BACKGROUND OF THE FIRST 
PRINCIPLES 

Since almost all modern diagnostic optics and 
electronic devices are constructed nowadays as 
analog-to-digital measuring systems, in most cases 
an analyzed signal is a voltage u(t) as a function of 
time. Often u(t) is formed at the input of measuring 
converter, for example, at the input of the analog-
to-digital converter, as a voltage drop on the 
measuring resistance Rm due to a photocurrent flow 
through the Rm. This photocurrent i(t), in its turn, is 
proportional to the squared modulus of the optical 
field |E(t)|2 incident on a photodetector due to a 
quadraticity nature of the photodetection: 
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where η is a conversion factor of the photodetector 
(A/W); A is a surface area of the photodetector 
(m2); E(t) is the electric field of radiation (V/m); Ze 
is the wave impedance of the medium (Ohm).  

The spectrum (spectral density) of the measured 
signal u(t)=Rm·i(t) is determined from (2) by the 
spectral density of the intensity |E(t)|2, which can be 
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calculated using the direct Fourier transform: 
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where G(ω) is a spectral density and ω is the 
angular frequency of the |E(t)|2 fluctuations.  

If heterodyne mixing of two harmonic waves on 
a photodetector is considered, then: 

tjtj eEeEtE 10
10)(   ,    (4) 

where ω0 and ω1 are frequencies of the waves, E0 
and E1 are amplitudes of their fields. In this case, 
the photocurrent classically can be computed as: 
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Besides of the constant component with the 
amplitude A0=E0

2+E1
2, this mixed signal has the 

LFF with the amplitude of fluctuations A1=2E0E1 at 
the difference frequency ωd=(ω1–ω0), which are 
formed due to the beating effect of two fields. Thus, 
the spectral density of |E(t)|2 will have the form: 
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where δ(x) is the delta function. In the case of light 
scattering on a stationary tissue matrix and on the 
moving RBCs, ωd represents the Doppler frequency 
shift. This GE(ω) is a discrete (a line) spectrum of 
two lines: 
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with amplitudes of lines A0 and A1, which are 
determined by integration of (7) over ω. This well-
known result was obtained at the assumption of a 
coherence (inphase) of the registered fields. The 
less the coherence degree of fields the less the 
beating amplitudes are observed. As to LDF, the 
light scattering in tissues is a random process over 
its volume. So, the phase shift of all mixed waves 
will be partially random, and (6) should be rewritten 
taking into account the coherence coefficient ξ0,1 of 
these two waves (Born and Wolf, 1964): 
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where 0 ≤ ξ0,1 ≤ 1. Similarly, if the sum of three or 
even more fields with frequencies ω0; ω1; ... ωn is 
considered, where each frequency ωk=ω0+ωdk (k=1, 
2, 3 … n), then: 
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Without the loss of generality, we may accept 
for further analysis ξ0,k=const=ξ. Since for LDF all 
Ek at k>0 are the field amplitudes scattered by 
RBCs, then coefficients of their mutual coherence 

ξm,k at m≠0 are ξm,k<<ξ0,k because the correlation 
between reference and scattered fields always is 
higher than the correlation between two randomly 
scattered fields. It is obvious, also, that Ek<<E0 at 
k≠0 because a fraction of RBCs in tissues is much 
less than a fraction of the tissue matrix. Thus, with a 
high degree of accuracy we may retain only first 
two sums in the equation (9). It yields: 
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In analogy with (3)-(8), the spectral density of 
the registered signal (10) will consist of a series of 
“k” lines, which spectral amplitudes Ak at 
frequencies ω=ωdk  for k >0  are: 

 kk EEA 02  .           (11) 

Equations (10)-(11) allow one to obtain the spectral 
density of the registered signal if all Ak are known.  

4 EVALUATION OF SPECTRAL 
AMPLITUDES 

Analytical estimation of the amplitudes Ak is always 
preferable. For this purpose, the improved two-flux 
Kubelka-Munk model is a good tool (Lapitan et al., 
2016). To obtain the general qualitative result, the 
homogenous tissue model in the form of a semi-
infinite turbid medium filled with blood can be 
used. The absorption coefficient μa as well as the 
average density μρ of scattering inhomogeneities 
inside the tissue can be written as follows: 

babata C ;    bbt C  ,       (12) 

where μat and μab are absorption coefficients of a 
bloodless tissue and a blood, μρt and μρb are the 
average density of scatterers inside the bloodless 
tissue and the blood respectively, Cb is a relative 
fraction (Cb=0…1) of the blood in tissues. In (12) it 
is assumed, that the volume of blood in tissues is 
much less than the volume of the tissue matrix.  

For LDF it is sufficient to consider only the 
single scattering approximation (SSA). The 
intensity of a backscattered flux for SSA and for the 
semi-infinite turbid medium can be written as 
follows (Dmitriev et al., 2004): 
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where R is a reflection Fresnel coefficient on 
borders of inhomogeneities inside the medium, F0 – 
incident flux. Since Cb<1 and usually |μa/μρ|˂˂1, 
together with (12) the equation (13) can be 
expanded in a Taylor series by μa/μρ and Cb. After 
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transformations, living only two first terms, one will 
have: 
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The total backscattered radiation incident on a 
photodetector is the mixed radiation: 

dBS III  0
,   (15) 

where I0 is the intensity of the scattered flux without 
Doppler shift and Id is the intensity of the Doppler-
shifted flux scattered on moving RBCs. For SSA, I0 
can be determined from (14) at Cb≠0, μab≠0, μρb=0:  
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Then, Id can be determined as follows:  
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If different groups of RBCs have different 
speeds Vk (k =1, 2...n), then for each k-th fraction 
Cbk of RBCs its Doppler-shifted flux can be written 
as: 
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conditions closing the distribution. If the discrete 
velocity distribution of RBCs is proposed, then all 
fluctuation amplitudes Ak at frequencies ωdk can be 
computed easily with the use of (10)-(18):   
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From (19) it follows exactly, that Ak depend on 
ωdk like the distribution of 

bkC , because other 

multipliers in (19) are independent on ωdk. 

5 EVALUATION OF 
CONTINUOUS SPECTRA 

Usually in LDF, a continuous distribution of RBCs’ 
velocities such as Maxwell’s distribution is used: 
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where V is the RBCs velocity, σV is r.m.s. deviation 
of V. The density of this distribution has the form: 
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It also can be expressed with the use of the most 
probable value Vm of the velocity: 

VmV 2 ,   (22) 

or with the use of the most expected mean value of 
the velocity <V>: 
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However, we need to have the Doppler-shift 
frequency distribution for RBCs, not the 
distribution of their velocities. To obtain one it is 
necessary to substitute in (20) a value of ωdk instead 
of V. In the case of SSA, we can use the well-
known expression: 
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It should be also taking into consideration that: 
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As a result, omitting the index "d" and taking into 
account (23), the distribution density of the Doppler 
frequency shift will get the form: 
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Each specific Cbk
* for the frequency interval Δωk 

is determined then from (26) by the integration:  
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If the density function f(ω) for Cbk is known, 
then it is possible to compute the distribution 

density for bkC - the function f’(ω) (see 

Appendix A): 
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Thus, the dependence of spectral amplitudes Ak 
on the frequency ω in the case of a continuous 
speed distribution gives the spectral density G(ω): 
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We should understand (29) in such a way, that it 
reflects qualitatively a spectrum of the photocurrent 
LFFs (ac part of i(t)). The function f’(ω), which 
determines G(ω) (29), is shown in Figure 2. There 
is a series of curves for different <V> in the typical 
range of practical relevance of <V>=0,02...1,5 mm/s 
at λ0=810 nm. In addition, the approximating 
exponential function (black dotted line) as well as 
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1/ω function (black solid line) are presented. 

 

Figure 2: Distribution density f’(ω) for 
bkC  as a 

function of the mean velocity <V> of RBCs (colored 
curves), approximating exponential function (black dotted 
line) and approximated 1/ω function (black solid line). 

Approximating exponential function for (28) is: 

)02,0exp(14,0)('  af  .             (30) 

It should be specially noted, that in the known 
B&N model the photocurrent spectrum (29) was not 
considered. All classic approaches considered the 
autocorrelation function for the photocurrent: 
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which is of the order of the squared photocurrent 
i2(t) and reflects its power spectrum. To register 
i2(t), the quadratic converter in the instrument is 
required. To compute P(ω) in our approach, it is 
necessary to take into consideration, that:    
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As a result, we will have three terms for i2(t) due 
to the strict phase synchronism of all components: 

 



n

k
dkk

n

k
dkk tEtE

1

2

1

22
1 2cos1

2

1
cos , 

(33a) 

 







n

k
dmdk

n

km
mk tEE

1

1

1
2 )cos( ,     (33b) 

 







n

k
dmdk

n

km
mk tEE

1

1

1
3 )cos( .     (33c) 

In this case, P(ω) will be determined by the 
distribution of Cbk (26), because each Ek and Em 
includes

bkC , and when multiplying they will give 

Cbk. Herewith, the cosines of close frequencies in 
(33b) in the limit to the continuous spectrum will be 
approximately equal to 1. The cosines of close 
frequencies in (33c) will give the doubled frequency 
and will become comparable with terms in (33a), 
allowing us to summarize them. The remaining 

components will be significantly less than the 
enhanced sum (33a), so for a qualitative analysis 
they can be neglected without the loss of the 
accuracy. Thus, the amplitude-frequency properties 
of i2(t) are mainly defined by Maxwell’s frequency 
distribution (26), but with twice-shifted frequencies 
upwards due to squared cosines.   

The distribution density f(ω) for Cbk, which 
determines P(ω), is shown in Figure 3. For P(ω) the 
approximating exponential function is: 

)0002,0exp(0007,0)(''  af .          (34) 

 

Figure 3: Distribution density f(ω) for Cbk as a function of 
the mean velocity <V> of RBCs (colored curves), 
approximating exponential function (black dotted line) 
and approximated 1/ω function (black solid line). 

6 DISCUSSION AND 
CONCLUSIONS 

In this study, we have attempted to propose a new 
approach in LDF theory. From “first principles” of 
the classic spectral analysis, using the simplest SSA 
to determine the intensity of backscattered 
radiation, as well as with the use of the Maxwell’s 
velocity distribution for moving RBCs, we have 
obtained the similar result as it was presented by 
Bonner and Nossal. For example, we have obtained 
the same order of the waveband of the summarized 
power spectrum P(ω) for the squared photocurrent 
i2(t) (Figure 3), but in a more simple way. What 
also is interesting in our result - the approximation 
function for P(ω) has the exponent power of 
0,0002ω, exactly as it was stated in the end of the 
article (Koelink et al., 1994). Moreover, unlike the 
B&N model, we have obtained the spectral density 
of the photocurrent G(ω), as well. It has the main 
spectral region in a low-frequency waveband 
(Figure 2), exactly where the LFF of the LDF signal 
are often observed. Is there in other publications 
such spectra? We have found the same spectra in 
the article on a portable Laser Doppler Flowmeter 
(Hu et al., 2013). It contains the spectrum of the 
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same order of the waveband. Determining the 
spectrum, authors used i(t), so our theoretical result 
is in a good correlation with their experimental one.  

And, at last, in contrast to the B&N equation (1), 
in our output the weighted beating frequency <ω>, 
which is defined as the first moment of P(ω), can be 
analytically derived from (24) as: 

0/4  V . 

We see the linear relationship between <ω> and 
<V>, like in the B&N model, but we also see the 
inverse proportionality to the λ0. The absence of one 
in (1) looks not physically explained. Moreover, in 
(1) the inverse proportionality of <ω> to the 
average radius of scatterers “a” without taking into 
account any light diffraction looks not quite 
justified, as well. What if in the limit a→0?  

Thus, we see several advantages in our 
approach. It is a qualitative approach, an 
approximation only, but it allows to understand 
better several features of the input signal spectral 
properties in LDF. For example, it assists to 
understand better, that the power spectrum in the 
exponential form, similar to a fractal noise, is the 
consequence mainly of the Maxwell’s distribution, 
not of the specialties of light scattering in tissues. 
Additionally, at SSA the linear proportionality 
between <ω> and <V> is a trivial consequence of 
the Doppler effect, (24) not more. 

REFERENCES 

Bonner, R. and Nossal, R., 1981. Model for laser Doppler 
measurement of blood flow in tissue. Applied Optics, 
20(12), 2097-2107. 

Born, M., Wolf, E., 1964. Principles of optics. Second ed. 
Pergamon press, Oxford-London-Edinburgh-Paris.  

Cummins, H.Z. and Swinney, H.L., 1970. Light Beating 
Spectroscopy. Progress in Optics, 8, 133-200. 

Dmitriev, M.A., Feducova, M.V., Rogatkin, D.A., 2004. 
On one simple backscattering task of the general light 
scattering theory. Proc. SPIE., 5475, 115–122. 

Hu, C. L., Lin, Z. S., Chen, Y. Y., Lin, Y. H., Li, M. L., 
2013. Portable laser Doppler flowmeter for 
microcirculation detection. Biomedical Engineering 
Letters, 3(2), 109-114. 

Koelink, M.H., De Mul, F.F.M., Leerkotte, B., et al., 
1994. Signal processing for a laser-Doppler blood 
perfusion meter. Signal processing, 38(2), 239-252. 

Lapitan, D.G., Rogatkin, D.A., 2016. Variable hyperemia 
of biological tissue as a noise source in the input 
optical signal of a medical laser Doppler flowmeter. 
J. Opt. Techn., 83(1), 36-42. 

Mizeva, I., Maria, C., Frick, P., Podtaev, S., Allen, J., 
2015. Quantifying the correlation between 
photoplethysmography and laser Doppler flowmetry 
microvascular low-frequency oscillations. J. of 

Biomed. Optics, 20(3), 037007. 
Mizeva, I., Frick, P., Podtaev, S., 2016. Relationship of 

oscillating and average components of laser Doppler 
flowmetry signal. J. of Biomed. Optics, 21(8), 
085002. 

Nilsson, G.E., Tenland, T., Oberg, P.A., 1980. A new 
instrument for continuous measurement of tissue 
blood flow by light beating spectroscopy. IEEE 
Transactions on Biomed. Engineering, 27(1), 12-19. 

Podtaev, S., Stepanov, R., Smirnova, E., Loran, E., 2015. 
Wavelet-analysis of skin temperature oscillations 
during local heating for revealing endothelial 
dysfunction. Microvascular research, 97, 109-114. 

Rajan, V., Varghese, B., Leeuwen, T., 2009. Review of 
methodological developments in laser Doppler 
flowmetry. Lasers Med Sci, 24, 269–283. 

Roustit, M., Cracowski, J., 2012. Non-invasive 
assessment of skin microvascular function in humans: 
an insight into methods. Microcirculation, 19(1), 47-
64. 

Shiryaev, A.N., 1996. Probability. Springer, New York. 

APPENDIX A 

According to Kolmogorov’s axiomatic, a random variable 
is a measurable function on the probability space (Ω,	
࣠,ℙ) (Shiryaev, 1996). Let a real random variable     

has the probability density  p x . Let a continuous 

function of this random variable     f     has a 

probability density  p x . We are going to prove, that 

   
  :t f t x

d
p x p t dt

dx 


 
 
 
 

 . 

The definition of a distribution function  F x  of     
is:     :F x x     . Substituting the 
definition of    , we obtain 

     :F fx x     . Probability in the right 

hand side can be rewritten as an integral of p  over a set 

of points in which  f   is not greater than x : 

   
  :t f t x

F x p t dt 


  . To find the density  p x  it 

remains to differentiate  F x : 

     
  :t f t x

d d
p x F x p t dt

dx dx  


 
  
 
 
 .* 

* Note: The existence of the density 
 p x  is not 

guaranteed for all 
  

and
 f 

. Here, we don’t study 

conditions under which the density of 
  

 exists, but 
we require its existence. 
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