
ATL Transformation of Queueing Networks to Queueing Petri Nets

Issam Al-Azzoni
Department of Software Engineering, College of Computer and Information Sciences,

King Saud University, Riyadh, Saudi Arabia

Keywords: Model Transformation, MDE, ATL, Queueing Networks, Queueing Petri Nets, QPME.

Abstract: This paper presents an approach for model transformation from Queueing Network Models (QNMs) into
Queueing Petri Nets (QPNs). This would open up the benefits of QPNs in analyzing the performance of
QNMs. We present metamodels for QNMs and QPNs, and then present the transformation rules in the ATL
model transformation language. To validate our approach, we apply it to analyze the performance of a QNM
and compare the results with those obtained using analytic methods. Although the approach is presented using
ATL and Ecore meta modeling language in the context of the Eclipse Modeling Project, it can be realized
using other modeling frameworks and languages.

1 INTRODUCTION

Models have become the de facto standard approach
to deal with complexity present in today’s software
systems. Model-Driven Engineering (MDE) encom-
passes approaches that consider models not just as
documentation artifacts, but as central artifacts in
the software engineering process (da Silva, 2015).
Model transformation is a fundamental part of MDE.
In model transformation, a model can be automati-
cally transformed into another model that can be at a
different level of abstraction or in a different formal-
ism altogether. In doing so, the generated models can
be analyzed in possibly more efficient ways than the
original source models.

There exist several model transformation lan-
guages. In particular, the ATLAS Transformation
Language (ATL)1 is a well-known model transforma-
tion language with an Integrated Development Envi-
ronment (IDE) developed on top of the Eclipse plat-
form. ATL language and toolkit are parts of the
Eclipse Modeling Project (EMP)2 set of tools and lan-
guages which provide MDE capabilities to the Eclipse
community.

Queueing Network Models (QNMs) provide
a powerful notation for modeling and analyzing
the performance of many different kinds of sys-
tems (Harchol-Balter, 2013). QNMs help in predict-
ing system performance during the design phase. This

1http://www.eclipse.org/atl/
2https://eclipse.org/modeling/

is useful to detect potential problems before the re-
sources are actually committed. In addition, these
performance models help in managing design trade-
offs and alternatives. QNMs can be analyzed using
analytic techniques or simulation. The analytic tech-
niques allow for quick performance analysis, however
these can only be applied on specific kinds of QNMs
under several assumptions and conditions. Many
QNMs can only be analyzed using simulation. The
main drawback of simulation is the incurred compu-
tational cost.

An approach to reduce the simulation cost
is to transform QNMs into Queueing Petri Nets
(QPNs) (Kounev, 2006; Kounev et al., 2012) that
have equivalent performance characteristics. QPNs
provide a powerful general-purpose modeling formal-
ism that can be exploited for modeling systems and
analyzing their performance. One tool for analyz-
ing QPNs is QPME (Queueing Petri net Modeling
Environment)3 which includes a simulation engine
(SimQPN (Kounev and Buchmann, 2006)) especially
optimized to simulate QPNs. SimQPN has been de-
signed to exploit the knowledge of the structure and
behavior of QPNs to improve the efficiency of sim-
ulation. The main challenge of this approach is that
QPMs and QPNs are two different formalisms with
different notations and constructs. In order to over-
come this challenge, developing an automated trans-
formation from QNMs into QPNs is desired.

This paper attempts to fill this gap by presenting

3http://qpme.sourceforge.net/

Al-Azzoni I.
ATL Transformation of Queueing Networks to Queueing Petri Nets.
DOI: 10.5220/0006110002610268
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 261-268
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

261



1

3

2

1

2

3

3

3

4

4

out

out

out

out

Route 1:
Poisson (λ=3)

Route 2:
Poisson (λ=4)

Route 3:
Poisson (λ=5)

Route 4:
Poisson (λ=6)

Service Rates:
µ1= 10, µ2= 10, µ3= 20, µ4= 10

Figure 1: Routes for connection-oriented network (based on Figure 18.5 in (Harchol-Balter, 2013)).

an approach for model transformation from QNMs
into QPNs. The transformations rules are presented
using ATL in the context of the EMP. To the best of
our knowledge, this paper is the first to present model
transformation from QNMs into QPNs. One needs
to note that although the model transformation is pre-
sented using ATL in the context of EMP, the same
concepts can be realized using other model transfor-
mation languages and tools such as QVT4.

The organization of the paper is as follows. Sec-
tion 2 covers the Ecore metamodels for QNMs and
QPNs. We present in Section 3 the ATL rules for
transforming QNs into QPNs. Section 4 discusses a
case study that validates our model transformation ap-
proach. The conclusion and future work are discussed
in Section 5.

2 METAMODEL DEFINITIONS

2.1 Queueing Network Models

Queueing network models provide powerful nota-
tions for modeling and analyzing the performance
of many different kinds of systems (Harchol-Balter,
2013). A designer of a software system, for instance,
can develop a queueing network model that captures
performance-relevant details of the system and then
use it to analyze its performance. The model is useful
for the designer to verify whether or not performance-
related requirements are met. In addition, the model
can help the designer in making design decisions that
improve the system performance and to manage de-
sign tradeoffs that are typically faced in the design of
software systems.

A queueing network is made up of servers. Each
server is associated with a queue. Jobs that arrive
to a busy server (already executing another job) are
queued in the server’s queue. There can be several

4http://www.omg.org/spec/QVT/

classes of jobs. Each job class represents a workload
in the queueing network. There are two main types of
workloads: open and closed. For an open workload,
the jobs arrive from outside the network. For a closed
workload, the number of jobs inside the network is
constant and there is no job arriving from outside the
network. The open workload intensity is character-
ized by the job arrival rates to the servers. On the
other hand, the closed workload intensity is character-
ized by the number of jobs circulating in the network.

A server uses a fixed scheduling policy to choose
the next job to serve. First-Come-First-Served
(FCFS) and Last-Come-Fist-Served (LCFS) are ex-
ample scheduling policies. When a server serves a
job of a given class, the service time refers to the
time it takes the job to run on this server. The ser-
vice time distribution depends on the server and the
job class. The exponential distribution is a common
service time distribution. The distribution parameters
are those parameters that are needed to characterize
the distribution. For example, the exponential distri-
bution requires a single parameter: the rate µ. For
the exponential distribution, the mean is 1/µ. For a
server, the service time distributions and their param-
eters need to be specified for all job classes that can
be served by the server.

For an open class workload, jobs arrive from out-
side the network. Jobs of a given class can arrive to
one or more servers. The arrival time distributions
and their parameters need to be specified for each job
class at each server to which its jobs arrive. The Pois-
son distribution is a common arrival time distribution
and it requires a single parameter λ. For a closed class
workload, the workload intensity is characterized by
the number of jobs circulating in the network. Thus,
the number of jobs needs to be specified. In order to
model interactive systems, a think device is used for
closed class workloads. A think device can be thought
of as an infinite server farm that can serve any incom-
ing job immediately. The think device requires a think

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

262



Figure 2: Ecore metamodel for queueing networks.

time distribution and its parameters.
When a job is served by a server, it can be routed

to another server or outside the network. We consider
networks of queues with probabilistic routing. For a
job of class c, Pc

i, j denotes the probability that job at
server i of class c next moves to server j. Pc

i,out denotes
the probability that job at server i of class c is routed
outside the network after it is served by the server i.
The routing probabilities need to be completely spec-
ified for all workloads in a given queueing network.

There are several performance metrics that can be
computed for a given queueing network model. These
include the average job response time T , the average
number of jobs in the system N, and the utilization
and throughput for a given server. The job response
time is the time difference between the time when the
job leaves the system and the time when the job ar-
rived to the system. The number of jobs in the sys-
tem includes those jobs in the queues plus the ones
being served. For multi-classed networks, T and N
can be computed at a class level basis. The utilization
of a server is the fraction of time the sever is busy.
The throughput of a server is the rate of job com-
pletions at the server. In this paper, we use several
performance metrics to validate the model-to-model
transformation.

We discuss a queueing network model example
borrowed from (Harchol-Balter, 2013). It models a
network where each packet follows a particular route
based on its type. The routes are shown in Figure 1.
There are four servers and four job classes (work-
loads). All of the four workloads are open. The ser-
vice rates depend only on the servers, thus jobs of all
classes are served at the rate of µi (packets per second)
at server i. The service times are exponentially dis-
tributed and the job arrivals follow Poisson processes.
The rates are given in the figure. An example for a
performance metric to be computed is the average re-
sponse time for packets on route 2.

Figure 2 shows the Ecore metamodel for queueing
networks. A queueing network model is composed of
one or more Nodes, zero or more Arcs, one or more
Workloads, zero or more WorkloadRoutings, and zero
or more ServiceRequests. The Arc class connects
nodes. For any given arc, there is one source node and
one target node. Node is an abstract class and there
are five types of nodes: SourceNode, SinkNode, Non-
ServerNode, ThinkDevice and Server. SourceNodes
and SinkNodes are used for open workloads to repre-
sent the entry and exit points. ThinkDevice node is
used to represent the think device. A NonServerNode
is optionally used in batch processing closed work-
loads in which there is no think device. In such
workloads, we can use a NonServerNode to re-route
a job after it finishes service to a server so that the
job starts a new service cycle with a think time of
zero. A Server node provides a processing service.
A Server has a scheduling policy represented by the
attribute schedulingPolicy whose type is the enumer-
ated type SchedulingPolicy. In Figure 2, we include
representative scheduling policies that are used in the
case study presented in the paper. Note that the at-
tributes arrivalDistribution and arrivalParams are used
in SourceNode class to characterize the arrival time
process in open workloads.

A Workload has an optional name and a nu-
mOfJobs attribute used in closed workloads to rep-
resent the number of jobs. A Server is associated
with zero to many Workloads. For the other types
of nodes, a node is associated with one Workload.
This is because a server may serve jobs of differ-
ent workloads. A ServiceRequest associates Work-
loads with Servers. ServiceRequests represent the ser-
vice times. Since the service time of a job depends
on its class (workload) and the server, the relations
from ServiceRequest to Server and ServiceRequest
to Workload are one to one in both cases. The Ser-
viceRequest class has two attributes used to charac-

ATL Transformation of Queueing Networks to Queueing Petri Nets

263



Figure 3: Ecore metamodel for queueing Petri nets.

terize the service time: serviceDistribution and ser-
viceParams. The value of the first attribute sets the
service time distribution. An enumerated type, Proba-
bilityDistribution, is used to enumerate the supported
probability distributions. We only include the three
distributions used in the case study, however the tool
QPME supports several others as well. The distribu-
tion parameters are represented by the sequence ser-
viceParams. The job routing probabilities are rep-
resented using WorkloadRoutings. Each Workload-
Routing is a associated with one Arc and one Work-
load and it has a probability property. For example,
to represent the routing probability Pc

i, j, the modeler
creases a WorkloadRouting whose probability is set
to Pc

i, j. The WorkloadRouting is associated with the
Arc from Server i to Server j and with the Workload
representing job class c.

The metamodel shown in Figure 2 can be used to
define a wide variety of queueing network models in-
cluding networks which have no product-form solu-
tions. However, the metamodel cannot capture net-
works having one or more of the following features:

1. Jobs can change classes after being served.

2. Some servers have load-dependent service times.

3. Some servers have finite queue capacities.

4. Job routing is not probabilistic.

2.2 Queueing Petri Nets

Queueing Petri nets extend Colored Generalized
Stochastic Petri Nets (CGSPNs) by allowing queues
to be integrated into places of CGSPNs. In QPNs,
there are two types of places: ordinary places and
queueing places. The ordinary places are defined the
same way as in CGSPNs. Queueing places, on the
other hand, add queueing and timing aspects to the
places of CGSPNs. A queueing place consists of two
components: a queue and a depository. When an in-
put transition of a queueing place fires, tokens are in-
serted into the queue of the queueing place accord-
ing to the queue’s scheduling policy. After comple-
tion of its service, a token is moved to the depository
where it becomes available for the output transitions
of the place. The queue has an associated service
station for which service time distribution needs to
be defined. QPNs strengthen the power of CGSPNs
modeling by the direct inclusion of queueing aspects
into their models. The reader is referred to (Kounev,
2006; Kounev et al., 2012) for more comprehensive
overview of QPNs.

Figure 3 shows the Ecore metamodel for QPNs.
A QPN model is composed of one or more Places,
zero or more Transitions, zero or more Arcs, zero
or more Modes, zero or more ServiceDemands, and
one or more Colors. The Arc class connects places
to transitions and vice-versa: TransToPlaceArc con-
nects a Transition to a Place and PlaceToTransArc
connects a Place to a Transition. There are two types

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

264



Figure 4: The QPN corresponding to the connection-oriented network of Figure 1.

of places: QueueingPlaces and OrdinaryPlaces. A
QueueingPlace has the necessary attributes to define
the scheduling policy of its queue. A Place is associ-
ated with one or more Colors. A Place has a name and
numOfTokens attribute which sets the initial marking.
When a place has more than one color, it is neces-
sary to define the token service time distribution and
the distribution parameters for each color. This is
achieved by using a ServiceDemand that associates
one QueueingPlace with a single Color. If a queueing
place has a single color, it suffices to define the token
service time distribution and its parameters by using
the attributes of the QueueingPlace, serviceDistribu-
tion and serviceParams, without the need to use any
ServiceDemand. A Transition is associated with one
or more Modes. The Mode class has a single attribute
defining the firing weight of the mode.

We use QPME to create the QPNs and to ana-
lyze their models. QPME is an open-source tool for
stochastic modeling and analysis of QPNs. QPME
has a discrete-event simulation engine specialized for
QPNs. It exploits the knowledge of the structure and
behavior of QPNs to improve the efficiency of simula-
tion. Using simulation in QPME, many performance
metrics can be computed including metrics defined on
the token response times, queue utilization, and token
population and occupancy.

3 MODEL TRANSFORMATION
OF QNMs INTO QPNs

The ATL code for the QN to QPN transformation
is presented in the Appendix. It consists of two
helpers and ten rules. The allArcs helper calculates
a set that contains all the Arc model elements of
the input MultiClassQN model. Similarly, the all-
SourceNodes helper calculates a set that contains all
the SourceNode model elements of the input Multi-
ClassQN model. All the rules are matched rules that
follow the declarative style of specifying transforma-
tions. The target elements are created and initialized
following the ATL execution semantics of matched
rules.

4 CASE STUDY

In this section, we validate our model transforma-
tion approach using the the queueing network exam-
ple presented in Section 2.1. For the queueing net-
work, we create a source model that conforms to the
Ecore metamodel for queueing networks. Then, we
use the ATL toolkit to run the ATL module (presented
in the Appendix) which generates a target model that
conforms to the Ecore metamodel for queueing Petri
nets. We then use QPME to analyze the queueing
Petri net and compute the required performance met-
rics. We compare the computed performance met-
rics using QPME simulation with the analytic results
using queueing theory. The resulting QPN model is

ATL Transformation of Queueing Networks to Queueing Petri Nets

265



shown in Figure 4.
In the QN model of the connection-oriented net-

work of Figure 1, there are 12 nodes: four servers,
four source nodes, and four sink nodes. There are
four open workloads and each workload has its own
source and sink nodes. There are 14 arcs connect-
ing the nodes. Each arc is associated with a single
WorkloadRouting element having probability that is
equal to one. Thus, there are 14 WorkloadRouting el-
ements. Each WorkloadRouting element is associated
with one workload. There are 10 ServiceRequest ele-
ments that are used to define the service rates: server1
serves workloads 1 and 2, server2 serves workloads 1
and 3, server3 serves workloads 1, 2, 3, and 4, and
server4 serves workloads 2 and 3.

The resulting QPN model is shown in Figure 4.
It consists of 12 places: eight queueing places and
four ordinary places. For each server or source node
in the source QN model, there is one corresponding
queueing place in the target QPN model. For each
sink node in the source QN model, there is one cor-
responding ordinary place in the target QPN model.
There are four colors: one color corresponding to
each workload in the source QN model. There are 14
transitions: one transition for each arc in the source
QN model. Each transition is associated with a sin-
gle mode whose firing weight is equal to the corre-
sponding arc’s WorkloadRouting probability. There
are 10 ServiceDemands: one ServiceDemand for each
ServiceRequest in the source QN model. There are
32 arcs in the target QPN model: 28 arcs are gener-
ated by rule Arc while four arcs are generated by rule
SourceNode.

Table 1 compares several performance metrics
computed analytically using queueing theory with
the results of QPME simulation. The details of
how the analytic results are determined can be found
in (Harchol-Balter, 2013). The table includes server
utilization, the average number of packets at each
server, the average packet response time at each
server, and the average response time for packets on
Route 2. The table demonstrates the high accuracy of
QPME simulation.

5 CONCLUSION AND FUTURE
WORK

In this paper, we have presented a new approach for
transforming QNMs into QPNs using ATL. The ap-
proach was validated using a case study in which sev-
eral performance metrics were predicted with high ac-
curacy. Our approach can be applied on QNMs with
several workloads (job classes) that can be of differ-

Table 1: A comparison between the analytic and QPME
simulation results for the network of Figure 1.

Performance Metric Analytic Result QPME Simulation Result
Utilization - Server 1 0.7 0.7
Utilization - Server 2 0.8 0.8
Utilization - Server 3 0.9 0.9
Utilization - Server 4 0.9 0.9

Average Number of Packets - Server 1 2.333 2.335
Average Number of Packets - Server 2 4 3.994
Average Number of Packets - Server 3 9 9.001
Average Number of Packets - Server 4 9 9.007

Average Packet’s Response Time - Server 1 0.333 0.334
Average Packet’s Response Time - Server 2 0.5 0.499
Average Packet’s Response Time - Server 3 0.5 0.5
Average Packet’s Response Time - Server 4 1 1.001

Average Response Time for Packets on Route 2 1.833 1.835

ent types (open and closed). The QNMs supported by
our approach need not be of product form.

The following points outline the main ideas in our
future work. First, it is of interest to implement the
transformation using other transformation languages
such as QVT on models conforming to MOF. Sec-
ond, a new plug-in on Eclipse can be developed to
help a user in creating QNMs and to apply the model
transformation and performance prediction in an au-
tomated fashion. Third, we can apply our approach
on larger case studies. Finally, it is of interest to ex-
pand the queueing network metamodel to support new
features such as those mentioned at the end of Sec-
tion 2.1.

REFERENCES

da Silva, A. R. (2015). Model-driven engineering: A survey
supported by the unified conceptual mode. Computer
Languages, Systems & Structures, 43:139–155.

Harchol-Balter, M. (2013). Performance Modeling and De-
sign of Computer Systems: Queueing Theory in Ac-
tion. Cambridge University Press, 1st edition.

Kounev, S. (2006). Performance modeling and evaluation of
distributed component-based systems using queueing
Petri nets. IEEE Transactions on Software Engineer-
ing, 32(7):486–502.

Kounev, S. and Buchmann, A. (2006). SimQPN: a tool and
methodology for analyzing queueing Petri net mod-
els by means of simulation. Performance Evaluation,
63(4):364–394.

Kounev, S., Spinner, S., and Meier, P. (2012). Introduc-
tion to queueing Petri nets: Modeling formalism, tool
support and case studies. In Proceedings of the In-
ternational Conference on Performance Engineering,
pages 9–18.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

266



APPENDIX: ATL TRANSFORMATION CODE

-- @path MultiClassQN=/MultiClassQN2QPN/Metamodels/MultiClassQN.ecore1

-- @path MultiClassQPN=/MultiClassQN2QPN/Metamodels/MultiClassQPN.ecore2

module MultiClassQN2QPN;3

create OUT : MultiClassQPN from IN : MultiClassQN;4

helper def: allArcs : Set(MultiClassQN!Arc) =5

MultiClassQN!Arc.allInstances()->asSet();6

helper def: allSourceNodes : Set(MultiClassQN!SourceNode) =7

MultiClassQN!SourceNode.allInstances()->asSet();8

rule Main {9

from qn : MultiClassQN!QNM10

to qpn : MultiClassQPN!QPN (11

places <- qn.nodes,12

transitions <- qn.arcs,13

modes <- qn.workloadRoutings,14

colors <- qn.workloads,15

serviceDemands <- qn.serviceRequests,16

arcs <- thisModule.allArcs->collect(e | thisModule.resolveTemp(e, ’qpn_ia’))17

->union(18

thisModule.allArcs->collect(e | thisModule.resolveTemp(e, ’qpn_oa’))19

)->union(20

thisModule.allSourceNodes->collect(e | thisModule.resolveTemp(e, ’qpn_oas’))21

)22

)23

}24

rule Server {25

from qn_s : MultiClassQN!Server26

to qpn_qp : MultiClassQPN!QueueingPlace (27

name <- qn_s.name,28

schedulingPolicy <- qn_s.schedulingPolicy,29

color <- qn_s.workload,30

incoming <-qn_s.incoming->collect(e | thisModule.resolveTemp(e, ’qpn_oa’)),31

outgoing <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, ’qpn_ia’))32

)33

}34

rule SourceNode {35

from qn_s : MultiClassQN!SourceNode36

to qpn_qp : MultiClassQPN!QueueingPlace (37

name <- qn_s.name,38

schedulingPolicy <- #IS,39

serviceDistribution <- qn_s.arrivalDistribution,40

serviceParams <- qn_s.arrivalParams,41

numOfTokens <- 1,42

color <- qn_s.workload,43

incoming <-thisModule.resolveTemp(qn_s, ’qpn_oas’),44

outgoing <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, ’qpn_ia’))45

),46

qpn_oas : MultiClassQPN!TransToPlaceArc (47

source <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, ’qpn_t’))->first(),48

target <- thisModule.resolveTemp(qn_s, ’qpn_qp’)49

)50

}51

rule SinkNode {52

from qn_s : MultiClassQN!SinkNode53

to qpn_op :MultiClassQPN!OrdinaryPlace (54

name <- qn_s.name,55

color <- qn_s.workload,56

incoming <-qn_s.incoming->collect(e | thisModule.resolveTemp(e, ’qpn_oa’)),57

outgoing <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, ’qpn_ia’))58

)59

}60

ATL Transformation of Queueing Networks to Queueing Petri Nets

267



rule NonServerNode {61

from qn_s : MultiClassQN!NonServerNode62

to qpn_op : MultiClassQPN!OrdinaryPlace (63

name <- qn_s.name,64

numOfTokens <- qn_s.workload.numOfJobs,65

color <- qn_s.workload,66

incoming <-qn_s.incoming->collect(e | thisModule.resolveTemp(e, ’qpn_oa’)),67

outgoing <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, ’qpn_ia’))68

)69

}70

rule ThinkDevice {71

from qn_s : MultiClassQN!ThinkDevice72

to qpn_op : MultiClassQPN!QueueingPlace (73

name <- qn_s.name,74

schedulingPolicy <- #IS,75

serviceDistribution <- #Exponential,76

serviceParams <- Sequenceqn_s.thinkTime,77

numOfTokens <- qn_s.workload.numOfJobs,78

color <- qn_s.workload,79

incoming <-qn_s.incoming->collect(e | thisModule.resolveTemp(e, ’qpn_oa’)),80

outgoing <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, ’qpn_ia’))81

)82

}83

rule Arc {84

from qnm_a : MultiClassQN!Arc85

to qpn_t : MultiClassQPN!Transition (86

incoming <- qpn_ia,87

outgoing <- qpn_oa88

),89

qpn_ia : MultiClassQPN!PlaceToTransArc (90

source <- qnm_a.source,91

target <- qpn_t92

),93

qpn_oa : MultiClassQPN!TransToPlaceArc (94

source <- qpn_t,95

target <- qnm_a.target96

)97

}98

rule ServiceRequest {99

from qn_sr : MultiClassQN!ServiceRequest100

to qpn_sd : MultiClassQPN!ServiceDemand (101

serviceDistribution <- qn_sr.serviceDistribution,102

serviceParams <- qn_sr.serviceParams,103

queueingPlace <- qn_sr.server,104

color <- qn_sr.workload105

)106

}107

rule WorkloadRouting {108

from qn_wr : MultiClassQN!WorkloadRouting109

to qpn_m : MultiClassQPN!Mode (110

weight <- qn_wr.probability,111

transition <- qn_wr.arc,112

color <- qn_wr.workload113

)114

}115

rule Workload {116

from qn_w : MultiClassQN!Workload117

to qpn_c : MultiClassQPN!Color (118

name <- qn_w.name119

)120

}121

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

268


