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Abstract: In this work, a framework for fully automated lung extraction from magnetic resonance imaging (MRI) inspi-
ratory data that have been acquired within a on-going epidemiological child cohort study is presented. The
method’s main steps are intensity inhomogeneity correction, denoising, clustering, airway extraction and lung
region refinement. The presented approach produces highly accurate results (Dice coefficients≥ 95%), when
compared to semi-automatically obtained masks, and has potential to be applied to the whole study data.

1 INTRODUCTION

Magnetic resonance imaging (MRI) is a non-invasive,
non-ionizing 3D imaging method that is increasingly
applied in research settings. Numerous MR data are
acquired from thousands of subjects (Völzke et al.,
2011; Hetterich et al., 2015).

Thereafter, the parameters of interest, such as lung
or liver volumes, need to be extracted from the im-
ages. Manual processing is rather unfeasible due to
time constraints and inter- and intra-observer variabil-
ity. Therefore, automated methods for segmentation
of different organs from MRI are developed (Balafar
et al., 2010; Setarehdan and Singh, 2012; Ivanovska
et al., 2014; Toennies et al., 2015).

However, in a child cohort MR technique is not
so easily implementable, since the participants might
be scared of the closed environment or the necessity
to lie still for some amount of time. Moreover, chil-
dren anatomy varies widely due to the different stages
of growth. Thus, anatomical assumptions used to de-
velop algorithms for adult data might not hold, and,
therefore, the methods implemented for adult subjects
may not be directly applicable.

Here, we discuss the data from a population-based
prospective study with a child cohort and, in particu-
lar, a lung segmentation problem from these data, and
propose a fully automated solution for lung segmen-
tation.

The paper is organized as follows. In Section 3,
the general study information as well as MR protocols

are presented. The ultimate goals of the pulmonary
study and the structured step-by-step tasks are formu-
lated in Section 4.1. In Section 2, related works are
discussed. The algorithmic solution is proposed in
Section 4.2. The results and findings are presented
and discussed in Section 5. The Section 6 concludes
the paper.

2 RELATED WORK

In recent years, multiple automated approaches for
lung segmentation were proposed (Ivanovska et al.,
2016; Ivanovska et al., 2012; Tustison et al., 2015;
Kohlmann et al., 2015; Heimann et al., 2012) have
been proposed. The approaches for detection of
the lung volumes from anatomical MR scans can be
roughly separated in two groups: classical intensity-
based and model-based methods. The model-based
methods consist from a prior model or atlas construc-
tion (Tustison et al., 2015; Tustison et al., 2011), and
require usually a significant amount of training data.

The intensity-based methods (Ivanovska et al.,
2012; Kohlmann et al., 2015) rely on some low-level
features and general considerations on human lung
anatomy. Such methods are usually fast and require
no prior training.

Although there are some methods for airway sys-
tem segmentation available, there are only few meth-
ods that have been proposed for analysis of child
airway MR data. Heimann et al. (Heimann et al.,
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2012) presented a method for automated scoring of
regional lung perfusion in children with cystic fibro-
sis using contrast enhanced MRI. They used a com-
bined intensity- and model-based approach. Arens et
al. (Arens et al., 2003) applied a fuzzy connectedness
approach to perform a detailed analysis of the upper
airway (Liu et al., 2002) in children with obstruc-
tive sleep apnea. Thayyil et al. (Thayyil et al., 2009)
used a semiautomatic method for non-invasive in-
ternal organ weight measurement using post-mortem
MR imaging in fetuses, newborns, and children.

3 MATERIALS

3.1 Information on the Generation R
Study

The Generation R Study is a population-based
prospective cohort study, which is initiated in Rotter-
dam, the Netherlands, from fetal life until adulthood.
The study is designed to identify the early environ-
mental and genetic causes and causal pathways lead-
ing to normal and abnormal growth, development and
health during fetal life, childhood and adulthood. The
study focuses on six areas of research:
• maternal health;

• growth and physical development;

• behavioral and cognitive development;

• respiratory health and allergies;

• diseases in childhood;

• health and healthcare for children and their par-
ents.

Main exposures of interest include environmental, en-
docrine, genetic and epigenetic, lifestyle related, nu-
tritional and socio-demographic determinants. In to-
tal, 9778 mothers with a delivery date from April
2002 until January 2006 were enrolled in the study.
Response at baseline was 61 %, and general follow-
up rates until the age of 6 years exceed 80 %. Data
collection in mothers, fathers and children include
questionnaires, detailed physical and ultrasound ex-
aminations, behavioral observations, and biological
samples. A genome and epigenome wide association
screen is available in the participating children. From
the age of 5 years, regular detailed hands-on assess-
ments are performed in a dedicated research center in-
cluding advanced imaging facilities such as Magnetic
Resonance Imaging (MRI). Eventually, results forth-
coming from the Generation R Study contribute to the
development of strategies for optimizing health (Jad-
doe et al., 2012).

3.2 MRI Protocol

The goal of the MRI-study, which comprises ap-
proximately 4000 children aged 9, is to assess car-
diac, pulmonary, fat, and liver parameters. The MR
scanner is a 3-T MR 750w (GE Healthcare, Mil-
waukee, WI, USA). The pulmonary sequence is the
3D Spoiled Gradient Echo (SPGR) at end-inspiration
and end-expiration repeated twice (2 insp and 2 exp).
The parameters are: TR=repetition time: 1.6 ms,
TE=echo time: 0.7 ms, Flip angle=2◦; Average: 0.75,
FOV=40cm; Matrix= 200× 200, in-plane resolution
2×2×2 mm3, 32 channel torso coil. Additionally, a
mock scanner is used, in which children can practice
to lie within the MR scanner in a friendly way and get
used to the scanner protocols.

3.3 Test Set and Expert Annotations

To evaluate the approach, we randomly selected ten
subjects and evaluated two inspiratory scans for each
of them, i.e., twenty datasets were used as a test set.

We asked an experienced observer to semi-
automatically measure lung volumes including tra-
chea with a simple global thresholding, which was a
reasonable trade-off between the time and measure-
ment accuracy.

It has to be noted that with such and approach tra-
chea was included in the lung volume, whereas the
automated method produces the results without the
tracheal volume. This does not appear to be a prob-
lem though, due to the fact that trachea is a relatively
small organ, when compared to lungs, and its volume
is a minor addition (about 200-300 ml) to the total
lung volume. Moreover, the spirometry parameters
do not exclude the tracheal volume as well. However,
in the automatic approach, the trachea is detected and
excluded, since we are interested in separate lung vol-
umes as well as further tracheal analysis is planned for
future work.

The expert evaluated each dataset two times. In
Section 5, two rounds of measurements are denoted
asRe1 andRe2.

4 METHODS

4.1 Formulated Task

The ultimate goal of the research is to fully analyze
the pulmonary system in a child cohort study using
the available MRI data. The sub-tasks include (but
are not limited to)
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1. assessment of lung volumes from inspiratory MR
scans;

2. their correlation with spirometry data;

3. analysis of tracheal dimensions;

4. analysis of expiratory lung data.

In this work, we propose a solution to the first sub-
task, namely, a fully automated framework for lung
volume extraction in inspiratory MR scans.

4.2 Proposed Approach

The proposed algorithm is the extended version of the
framework proposed by Ivanovska et al. (Ivanovska
et al., 2012). The framework scheme is shown in Fig-
ure 1.

Data Input

IIH Correction Denoising

ClusteringLung
Extraction

Trachea
Removal

Lung
Separation

Lung
Smoothing

LungVolumes

Figure 1: The framework scheme. The modules that differ
from the work of Ivanovska et al. (Ivanovska et al., 2012)
are marked green.

First, since the study data contain significant in-
tensity inhomogeneity, it requires correction. The
recently proposed method N4ITK (Tustison et al.,
2010) is applied three times in a row, and the results
are of acceptable quality. The example result is shown
in Figure 2.

Second, the corrected data are denoised us-
ing a boundary preserving method, the classical
Anisotropic diffusion filter (Perona et al., 1994),
and the intensity clustering, namely, the Fuzzy C-
Means (Bezdek et al., 1984) method, is applied.

Third, the regions that are classified to the dark-
est intensity class are selected, and the background
is removed from further processing. Here, a special
region evaluation procedure is introduced to prevent
the extraction of non-lung regions. We apply a re-
gion growing-based procedure, which evaluates the
lung region overlap in consecutive slices. Since a

rather smooth lung area decay is expected, any re-
gions that have an overlap with regions in the previ-
ous slice smaller than a pre-selected threshold value
are disregarded from the further processing.

Fourth, the tracheal, namely, dark tubular regions
are identified using the Vesselness filter (Frangi et al.,
1998). It analyzes the eigenvalues of the Hessian ma-
trix. Thereafter, the filter’s response is overlaid with
the lung mask segmented in the previous step. Then,
the tracheal region is tracked and the cut is made,
where main bronchi enter the lung parenchyma. The
Vesselness filter allows one to detect tracheal regions
even in the cases, where there is no clearly visible
boundary between the trachea and the lung tissue.

Finally, the lung regions are separated with pre-
filled 3D Watershed (Roerdink and Meijster, 2000)
and smoothed with morphological operations (Sonka
et al., 2014) similar to the approach of Ivanovska et
al. (Ivanovska et al., 2011). The lung masks and vol-
umes are computed and saved to a file.

In Figure 3, we present 3D and 2D exam-
ple results, demonstrating the excluded trachea and
smoothed lungs.

5 RESULTS AND DISCUSSION

The automated approach was implemented in the
MeVisLab Framework (Heckel et al., 2009). The pa-
rameters were fixed for the test set. Average compu-
tation time for each dataset is about 3-4 minutes on a
AMD Athlon II X4 860K, 4x 3700 MHz with 16 GB
DDR3-RAM.

To evaluate the expert readings and automatically
computed results, we use two metrics, namely, the
DICE coefficient (Dice, 1945) and the Jaccard in-
dex (Real and Vargas, 1996). The definition of the
metrics is given below. For two sets, in our case, the
results obtained from the expert and the automatically
computed results,Re andRa, respectively, the overlap
coefficients are computed as

DSC=
2|Re∩Ra|
|Re|+ |Ra|

(1)

Jacc=
|Re∩Ra|
|Re∪Ra|

(2)

Since our observer analyzed the test set two times,
we assess the intra-observer variability and compare
the automatically obtained resultsRa to both expert
measurements, denotedRe1 and Re2, respectively.
The comparison results (meanµ± standard deviation
σ) for 20 test datasets are presented in Table 1. We
evaluated the intra-observer variability using the same
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Figure 2: Example slice in a sagittal view. Left: original data; Right: corrected data with three consecutive N4ITK cycles.

Figure 3: Example results from 2 datasets. Left: 3D results;Right: Segmentation results are overlaid with the originaldata in
axial projection.

metrics, and forRe1 vs Re2 the DICE and Jaccard co-
efficients are 0.9674±0.00597and 0.9364±0.02, re-
spectively.

As one can observe, the automatically computed
results lie close to both semi-automatically obtained
ground truth masks, and the Dice coefficient is about
95%. The differences are due to the fact that the
expert neither excluded the tracheal region from the
evaluation nor smoothed the lung regions. In Figure 4,
an overlay example of the expert readings (white) and
the automated results (green) are documented. The

Table 1: Manual and automated result comparison.

Proposed approach Previous
method (Ivanovska
et al., 2011)

DICE Jaccard DICE Jaccard
Ra vs. Re1 Ra vs. Re1

0.9521±
0.010

0.9083±
0.01

0.8901±
0.11

0.82 ±
0.0968

Ra vs. Re2 Ra vs. Re2

0.95485±
0.018

0.9145±
0.01

0.8875±
0.0906

0.81 ±
0.1004
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Figure 4: Comparison of manual readings (white) and auto-
mated results (green) in 2D.

expert readings differ from each other slightly (the
Dice coefficient is about 97%), since the differences
are only due to the selected global threshold value.

Additionally, we applied the technique of
Ivanovska et al. (Ivanovska et al., 2011) to our test
set. That method was designed for and tested on a dif-
ferent sequence with a higher spatial resolution and
less artifacts. The results are also presented in Ta-
ble 1. The previous technique did not include any
intensity inhomogeneity correction and the trachea
removal procedure was based only on region grow-
ing in the segmentation mask. We assume that this
affected the results negatively (the DICE coefficient
is less than 90%), since in some cases the parts of
lungs were either oversegmented or undersegmented
and misinterpreted as other structures and erroneously
removed. The proposed pipeline successfully over-
comes these problems and produces accurate results.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, a fully automated approach for lung seg-
mentation in MRI data from the Generation R child
study. The results were applied to a sample of 20
datasets. Our expert established groundtruth in a
semi-automatic manner in two measurement sessions.
We assessed the segmentation accuracy by compar-
ing the automatically computed results to the expert
readings. Moreover, the comparison to a previously
established technique was also done. The proposed
framework produces highly accurate results and has a
potential to be applied to the whole pulmonary dataset

(above 4000 subjects).
Future extensions of the framework include analy-

sis of tracheal regions and segmentation of expiratory
scans.
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