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Abstract: Accurate combat identification (CID) enables warfighters to locate and identify critical airborne objects as 

friendly, hostile or neutral with high precision. The current CID processes include processing and analysing 

data from a vast network of sensors, platforms, and decision makers. CID plays an important role in 

generating the Common Tactical Air Picture (CTAP) which provides situational awareness to air warfare 

decision-makers. The Big “CID” Data and complexity of the problem pose challenges as well as 

opportunities. In this paper, we discuss CTAP and CID challenges and some Big Data and Deep Analytics 

solutions to address these challenges. We present a use case using a unique deep learning method, Lexical 

Link Analysis (LLA), which is able to associate heterogeneous data sources for object recognition and 

anomaly detection, both of which are critical for CTAP and CID applications. 

1 INTRODUCTION 

An accurate, relevant and timely CID capability 

enables warfighters to locate and identify critical 

airborne objects as friendly, hostile or neutral with 

high precision. The objective of the CTAP is to 

provide tactical situational awareness to the 

decision-makers; and thereby provide critical 

information to support the engagement events and 

courses of action that protect Navy and Joint assets. 

An effective CID and CTAP capability supports the 

optimal use of long-range weapons, aids in fratricide 

reduction, and ultimately reduces or minimizes 

friendly forces’ exposure to enemy fire.  The CID 

process is an essential part of generating a CTAP. 

Traditionally, CID decisions are derived from 

data from intelligence, surveillance, and 

reconnaissance (ISR) sensors. This research group 

has noted that the size and heterogeneity of the data 

from these sensors creates a Big Data environment.  

The current tactical information systems cannot 

meet the timelines required for CID in complex 

threat environments.  Nor can they process and 

analyze additional types of data that may support 

CID, such as information from the Internet, social 

media, and commercial airline information.  We are 

studying new methods such as Big Data and Deep 

Analytics that show promise for handling and 

analyzing the rising tide of sensor and non-sensor 

data in a timely manner. 

The Aegis combat system, CEC, and Link 16 are 

critical systems supporting CID for sharing data 

among distributed platforms, correlating and fusing 

data, and displaying airborne object tracks.  

Additionally, the current CID processes include the 

use of Naval CTAP components and combinations 

of: 

• Platforms: destroyers, cruisers, carriers, F/A-

18s, E-2C/D, LHD/LHA’s and Amphibious 

Assault Ships. 

• Sensors: radar, Forward Looking Infrared 

(FLIR), Identification Friend or Foe (IFF), 

Precision Participation Location Identifier (PPLI), 

and National Technical Means (NTM) 

• Networks: Cooperative Engagement Capability 

(CEC), Link-16 Global Command and Control 

System (GCCS), and Global Information Grid 

(GIG) 

• Decision makers: Air and Missile Defense 

Commander (AMDC), Air Warfare (AW) 

Officer, Tactical Action Officer (TAO) and Air 

Defense Officer (ADO) 
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The challenges for CTAP and CID include: 

• An extremely short dwell time for fusion, 

decision making, and targeting.  

• Uncertain and/or missing data outside sensor 

ranges (e.g., radar). For example, track pictures 

are uncertain with track conflicts, multiple 

objects per track or multiple tracks per object.  

• Manual decision-making. For example, complex 

threat environments can create situations in 

which decision-makers can be overwhelmed by 

large amounts of data, uncertain track pictures, 

and complicated doctrine. 

• Hard-to-detect anomalies and a lack of predictive 

analytic capabilities. 

• Manual methods for incorporating electronic 

warfare (EW), electronic intelligence (ELINT), 

and non-cooperative sensor measurements and 

signature databases, into the CID process. 

The contribution of this paper is to position 

various Big Data and Deep Analytics in the context 

of Big “CTAP and CID” Data. We also show a 

unique Deep Learning method, i.e., Lexical Link 

Analysis (LLA), which uses a bi-gram model to link 

any two entities across multiple contexts and 

associate heterogeneous data sources for object 

recognition and anomaly detection. 

2 BIG DATA  

2.1 Big Data Problem 

Today, Big Data is omnipresent. Big Data science 

intervenes with traditional data sciences.  We are 

compelled to ask - What is new?  Here, we examine 

some aspects of the problem: 

• Big rise in data: Data creation is remarkable for 

its volume, velocity, and variety.  “Volume” 

considers the rise of new data creation platforms 

of multimedia, social media, mobile devices, the 

Internet of Things (IOT) and new sensors.  

“Velocity” considers these new platforms 

capturing millions of events per second and in 

real-time. “Variety” considers captured data are 

also unstructured text, images, audios, videos, 

geospatial data, and 3D data.  

• Big rise in needs: It is critical for business to 

transform data into smart data, or actionable 

knowledge.   

• Big rise in analytics: Traditional data sciences 

including statistics, numerical analysis, machine 

learning, data mining, business intelligence, and 

artificial intelligence have evolved into Big 

Data analytics or Deep Analytics.  These 

technologies can be overwhelmingly complex, 

requiring diversified and extensive expertise. 

2.2 Tools and Challenges 

Big Data requires massively parallel software on 

thousands of servers. The current technologies are 

dominated by systems that provide 1) data 

collection, ingestion, integration and safe storage; 2) 

parallel/distributed processing; and 3) Deep 

Analytics. 

As part of the open-sourced Apache Hadoop 

ecosystem, Hadoop Distributed File System (HDFS) 

provides distributed and fault-tolerant data storage. 

Beehive and Pig are "SQL-like" tools for 

conventional database queries on a HDFS. NoSQL 

systems include document and graph databases in a 

“cloud” such as Amazon and Cloudera. NoSQL 

databases are increasingly used because of 

simplicity of design, horizontal scaling, and finer 

control over availability. 

Operational systems for messaging, banking, 

advertising and mobile devices can utilize Apache 

Storm to handle day-to-day transactions in real-time, 

or with no- or low-latency of response. 

Map/Reduce is an analytic programming 

paradigm for Big Data. It consists of two tasks: 1) 

the "Map" task, where an input dataset is converted 

into key/value pairs; and 2) the "Reduce" task, 

where outputs of the "Map" task are combined to a 

reduced key-value pairs. Apache Spark (Spark, 

2016) is replacing Map/Reduce for its speed and in-

memory computation. 

As the data size gets bigger, the statistical 

significance for an analysis is often guaranteed due 

purely to the data size.  This positive impact of the 

data size can be a great advantage. However, other 

challenges rise. For example, traditional data 

sciences used in small- or moderate-sized analysis 

typically require tight coupling of the computations 

of the “Map” and “Reduce” steps. Such an algorithm 

often executes in a single machine or job and reads 

all the data at once. How can these algorithms be 

modified so they can be executed in parallel in 

thousands of clusters? 

2.3 Big CTAP and CID Data 

Data sources for Department of Defense (DoD) 

applications including disparate, multi-sourced real-

time sensors are of extremely high rates and large 

volumes. In DoD collaboration environments, the 

needs for information sharing and agility as well as 
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strict security across all domains make the matter 

more complex. While commercial applications such 

as massive marketing may require identifying 

information with popular and repeatable patterns, 

emerging and anomalous information are more 

useful for DoD applications (e.g., intelligence 

analysis and resource management).  Deep learning 

regarding pattern recognition, anomaly detection, 

and data fusion can be even more useful. The US 

Navy has now begun to take initiatives to move Big 

Bata into the battlefield (NBD, 2014). 

The data used for CID come from a combination 

of massive cooperative and non-cooperative sensors, 

organic sensors and non-sensor information.  In 

reality, each sensor collects certain attributes. The 

Big CID Data need to be fused over time and space 

since they are collected in a distributed fashion as 

shown in Figure 1. 

 

Figure 1: A holistic view of Big CTAP and CID Data. 

3 DEEP ANALYTICS 

3.1 Commercial Trends 

It is critical to turn Big Data into smart data. One 

important trend is Deep Analytics including analytic 

algorithms that can be run in parallel and distributed 

fashion. 

Predictive analytics turns Big Data into smart 

data, for example, accurately forecasting high-value 

targets. The topic has been thoroughly studied in 

traditional supervised learning. Some algorithms are 

implemented using Big Data and Deep Learning 

requirements such as Map/Reduce paradigm, 

Mahout (2016) and Spark, (2016).   

Social network analysis and graph search require 

graph analyses leveraging massively parallel 

processors. Graph algorithms can process petabytes 

of data and are considered as the core drivers of Big 

Data. Spark, Titan and Neo4j are used for Big 

Graph. 

3.2 Deep Learning 

Deep Learning models, in a nutshell, are much 

larger machine learning models with many more 

parameters that are specifically designed to handle 

Big Data. Deep Learning models including Deep 

supervised machine learning models, e.g., convo-

lutional neural networks (CNN, 2016) with much 

deeper hidden layers; Deep reinforcement learning 

models; and Deep unsupervised machine learning 

models for recognizing objects and patterns of 

interest. Sparse coding (Olshausen and Field, 1996) 

and self-taught learning (Le, Ranzato, Monga, 

Devin, Chen, Corrado, Dean, and Ng, 2012) make 

Deep unsupervised learning possible. The self-

taught learning is also a deep unsupervised learning 

model that approximates the input for unlabelled 

objects as a succinct, higher-level feature representa-

tion of sparse linear combination of the bases. It uses 

the Expectation and Maximization (EM) method to 

iteratively learn coefficients and bases (LeCun, 

Bottou, Bengio, and Haffner, 1998). Deep Learning 

models links machine vision and text analysis smar-

tly. For example, Latent Dirichlet Analysis (LDA, 

Blei, Ng and Jordan, 2003) is a sparse coding where 

a bag of words used as the sparsely coded features 

for text (Raina, Battle, Lee, Packer and Ng, 2007). 

Our methods Lexical Link Analysis (LLA, Zhao, 

Gallup and Mackinnon, 2011, 2015), System-Self-

Awareness (SSA, Zhao and Zhou, 2016), and Colla-

borative Learning Agents (CLA, Zhou, Zhao and 

Kotak, 2009) can be viewed as Deep models, in the 

sense similar to the LDA method as a Deep Learning 

method (Raina, Battle, Lee, Packer and Ng, 2007). 

4 DEEP ANALYTICS FOR CID 

4.1 The CTAP Cloud Concept 

We first explored how Big Data and Deep Analytics 

could address the challenges of CID.  We developed a 

CTAP Cloud Concept as shown in Figure 2. 

Conceptually, it can be physically associated with 

a Big Data cloud implementation such as the Naval 

Tactical Cloud (NTC). It could store traditional 

CTAP and CID data sources as well as the 

additional non-traditional data sources, such as 

temporal, spatial and organic sensor data that are 

collected but not currently used (e.g. Aegis residual 

data), open sources flight schedules, advanced 
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(EW/ELINT) signature data sources, and intelligence 

data.  These new data sources could be fused and 

analyzed in parallel using Deep Analytics in a CTAP 

Cloud. The resulting knowledge repository, i.e., 

smart data, could be searched, matched, and cross-

validated with real-time new data streams. For 

example, the cloud could send or push the smart data 

(e.g. early warnings or alerts) to various platforms 

within a battlespace. A platform with partial or 

uncertain sensor/track data could send a real-time 

query to the cloud to find a higher certainty match.  

The smart data push and pull would have a relatively 

small data size and therefore not strain current 

networks for transmission between platforms. 

 

Figure 2: The CTAP Cloud Concept. 

The CID/CTAP application domain is an 

extremely complex and amazingly interesting field 

in terms of the roles that many Big Data and Deep 

Models can play.  We investigated Big Data and Deep 

Analytics to address CTAP and CID challenges 

including the following areas: 

• Machine vision and Deep Learning models: These 

algorithms have the potential to improve object 

recognition, classification accuracy and probability 

of correctly identifying air objects by associating, 

correlating, and fusing heterogeneous data 

sources that do not share data models. This 

process is demonstrated with unclassified tactical 

data samples of infrared (IR) and Electro-optical 

(EO) images in this paper (Section 4.1). 

• Pattern recognition, anomaly detection and 

unsupervised learning models: We developed and 

selected pattern recognition and anomaly 

detection algorithms that could be used for 

identifying intent, air picture event anomalies or 

launch predictions.  

• Optimization, decision making and deep 

reinforcement learning models: We investigated 

Big Data optimization, decision making and 

reinforcement learning models such as Q-learning 

in Soar (2016) and DeepMind (2016) that can be 

used for CTAP and CID. The models could not 

only automate many current manual CTAP and 

CID processes but also have the potential to enhan-

ce future CTAP capabilities such as uncooperative 

game theory and total battle management. 

• Fast, parallel and distributed computing models: 

Commercial tools for Big Data may not satisfy 

CTAP and CID which requires fast, parallel and 

distributed computing. Tools such as associative 

arrays (Kepner, Chaidez, Gadepally and Jansen, 

2014), BigDAWG polystore (2016) and 

GraphBLAS (2016) may have the potential to 

address the requirements. 

4.2 Machine Vision and LLA 

LLA is an unsupervised deep learning method, 

implemented in parallel and distributed fashion. By 

using LLA, a complex system can be expressed in a 

list of attributes or features with specific 

vocabularies or lexicon terms to describe its 

characteristics and surrounding environment. LLA 

uses bi-gram word pairs, compared to LDA, are 

potentially more meaningful and sparse coded 

features. Specifically, LLA is a form of text analysis. 

For example, word pairs or bi-grams as lexical terms 

and features can be extracted and learned from a 

document repository. For a text document, words are 

represented as nodes and word pairs as the links 

between nodes. Figure 3 shows an example of such 

a word network, for example, “cash dividend”, 

“dividend report”, and “market influence” are 

examples of bi-gram word pairs from a financial 

news data sample. LLA is related to Latent Semantic 

Analysis (LSA, Dumais, Furnas, Landauer and 

Deerwester, 1988), Probabilistic Latent Semantic 

Analysis (PLSA, Hofmann, 1999), WordNet (Miller, 

1995), Automap (CASOS, 2009), and LDA (Blei, 

Ng and Jordan, 2003). LDA uses a bag of single 

words (e.g., associations are computed at the word 

level) to extract concepts and topics. LLA uses bi-

gram word pair. LLA was previously used in many 

examples for understanding DoD data (Zhao, 

McKinnon and Gallup, 2009, 2011, 2015). 

The unique characteristic of LLA is that the Bi-

gram also allows it to be extended to data other than 

text (e.g., numerical or categorical data). For 

example, structured data from databases can be 

discretized or categorized to word-like terms. For 
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example, features, such as “age_older_than_65” and 

“gender female” can be generated from the “age” 

and “gender” attributes. 

The word pair model can further be extended to 

a context-concept-cluster (CCC, Zhao and Zhou, 

2014) model. A context is a word or attribute that are 

shared by multiple data sources.  A context can be a 

location, a time point or an object that are shared 

across data sources.  Using this generalization, a bi-

gram or word pair model can used to link any two 

entities across multiple contexts. This is the key 

point for LLA used in the CTAP and CID analytics 

to associating heterogeneous data sources (see the 

use case in Section 4.3). 

 

Figure 3: An example of a theme or topic discovered by 

LLA for a text data. 

4.3 Use Case  

4.3.1 Data Samples 

The sample data contains a large collection of 

visible and IR imagery collected by the US Army 

Night Vision and Electronic Sensors Directorate 

(NVESD).  It contains 207 GB of IR imagery and 

106 GB of visible imagery along with an image 

viewer, ground truth data, meteorological data, 

photographs of the objects, and other documentation 

to assist the user in correctly interpreting the 

imagery.  All imagery was taken using commercial 

cameras operating in the IR and visible bands.  

The data was pre-processed using SiFT-like code 

(SiFT,2016) to generate 400 visual “words” 

(histograms to the centers of k-means) so LLA bi-

gram models can be applied.  Figure 4 summarizes 

the processed data, consisting of 4500 total training 

images with 400 features or visual words for nine 

classes of objects (target vehicles) and two different 

modalities (i.e., IR and EO sensors).  Therefore with 

4500 total images per test, there were a total of 9000 

images. Each object in each mode contained 500 

images. The baseline object recognition for this 

data was given using the method of representation 

learning through topic models (Flenner, 2015).  

 

Figure 4: Images data were pre-processed to feed to LLA. 

4.3.2 Associating Data Sources 

Another challenge to improving CID is that traditional 

ISR sensor data does not have standardized or 

common data attributes; and often there are missing 

attributes.  For example, IR and EO sensors use 

completely different features (vocabularies).  We used 

a generalized LLA model of bi-gram co-occurrence 

of spatial locations (i.e., image patches) to link two 

modalities. For example, an IR image feature (i.e., 

the concept in a CCC model) describes the same 

image characteristics with an EO image feature 

because these two features are frequently used in the 

same image patches (i.e., contexts in the CCC model).  

This learning paradigm is a generic framework to fuse 

two data sources. The data sources do not share 

vocabularies and some data are even missing or 

uncertain. Nevertheless, they can all be fused into 

one picture using this method. 

4.3.3 Applying LLA 

We applied LLA to the data set as follows:  

Step 1: Divide data into a training data set 

and a  test data set:   each object has 500 images 

which are divided into 250 images for training and 

250 images for test.  Bi-gram and association 

learning are performed on 250 training images.  

There are 36 data sets of nine training sets and nine 

test sets for the two modalities for the nine objects.  

Step 2: Extract bi-gram features for each data 

set in a distributed fashion. Uni-gram or bi-gram 

features for each of 36 data sets are then processed 

separately. 
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Figure 5: Target types. 

An unsupervised learning system ideally should 

discover nine clusters. According to the data 

description in Figure 5, some of the nine (0-8) 

objects are very similar in nature. An automatic 

unsupervised method is expected to see fewer 

clusters of objects. Figure 5 shows that 36 data 

sets are grouped into five clusters. 

4.3.4 Results 

We first applied the “uni-gram” setting: this is 

related to the “bag-of words” approach where only 

the 400 features are used to distinguish the objects. 

The correlation for any of the two data sets is flat 

and similar, indicating a uni-gram or a bag-of-words.  

This indicates that the 400 features are not good for 

separating, recognizing and distinguishing these 

objects. 

 

Figure 6: LLA discovered five clusters of objects. 

The second setting of LLA we used generated 

both full bi-gram and association learning between 

IR and EO. This is shown in Figure 6. There are five 

clusters for nine classes of the objects as follows: 

• Cluster 1: class 0 (pick up) and class 1 (sport 

utility vehicle)  

• Cluster 2: class 2 (infantry scout vehicle), class 

3 (armored personal carrier) and class 8 

(armored reconnaissance vehicle towing a D20 

artillery piece) 

• Cluster 3: class 4 (armored personal carrier)  

• Cluster 4: class 5 (main battle tank) and class 6 

(anti-aircraft weapon)  

• Cluster 5: class 7 (self-propelled howitzer) 

Five clusters are consistent with the ones marked 

in Figure 5. Initial results in the use case show Deep 

Analytics such as LLA can automatically discover 

categories of objects in a Big Image Data. 

5 FUTURE WORK 

Our team plans to combine and test sample CID 

track data with FAA and twitter data.  We will test 

several behavior-based Deep Learning algorithms to 

see if there are normal patterns and anomalies for the 

military aircraft and commercial ones.  The goal is 

to see if added databases and Deep Analytics will 

improve CID and the CTAP.  

6 CONCLUSIONS 

We identified and assessed the current CTAP and 

CID Big Data problems and challenges; and 

identified key Deep Analytics required to address the 

challenges. Big Data and Deep Analytics were found 

to have potential in improving object recognition 

and classification through the utilization of more 

databases, distributed computation, and data fusion.  

These applications could be realized by the adoption 

of our cloud architecture concept which includes 

continuous monitoring in time and space; and 

collecting and processing data in a cloud.  Finally, the 

team found that the unique LLA method is able to 

associate heterogeneous data sources and perform 

Deep unsupervised Learning; which implies a future 

application to the CID and CTAP. 
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