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Abstract: V̇ O2 and V̇CO2 measurements are central to methods for assessment of physical fitness and endurance ca-
pabilities in athletes. As measuring V̇ O2 and V̇CO2 is difficult outside a lab, models with good prediction
properties are necessary for online analysis and modeling in the field. Easier to measure are heart rate and
during cycling also power. Thus, the here described models are based on either one of them or both. It is
commonly accepted that the relationship between power and V̇ O2, V̇CO2 and heart rate can be described
by a linear and a nonlinear component. The latter describes a drift over time without increase in workload.
Thus, block-structured systems such as Hammerstein-Wiener models with linear and nonlinear elements can
be employed for modeling and prediction. Modeling and prediction power of these models is compared with
a dynamic model based on physiological evidence. Our findings show that the simpler Hammerstein-Wiener
model performs slightly better for both modeling and prediction with the advantage of being easier to estimate
and evaluate. Overall, both models performed with errors smaller than the range of the natural variability of
the modeled quantities. Thus, such models allow for applications in the field where V̇ O2 and V̇CO2 cannot be
measured.

1 INTRODUCTION

Physiological quantities such as heart rate or respira-
tory gas exchange are important parameters to assess
the performance capabilities of athletes in competi-
tive sports. In particular the respiratory gas exchange
is a valuable source of information since it allows
for a non-invasive, continuous, and precise measure-
ment of the gross oxygen uptake and carbon dioxide
output of the whole body. Particularly in endurance
sports, the metabolic rates of this substantial fuel and
the degradation product of the exercising muscles are
reflected in that rate.

For endurance sports like cycling the models for
power demand due to mechanical resistance are well
understood by Martin et al. (1998). However, the indi-
vidual power supply model of an athlete is the bottle-
neck that has hindered the design of an individual ad-
equate feedback control system that guides him/her to
perform a specific task such as to find the minimum-
time pacing in a race on a hilly track (Dahmen, 2012).
For such purposes, a model for the prediction of gas
exchange rates in response to load profiles given by a
particular race course would be beneficial.

There are two kinds of approaches to get such a

model. The first model type is directly based on con-
cepts of physiology, such as exponential saturation
functions with appropriate time-constants. Another
approach are black box models without relation to
physiology such as Hammerstein-Wiener models.

2 PREVIOUS WORK

A detailed review and historical account of the math-
ematical modeling of the V̇ O2 kinetics for constant
work rate has recently been given by Poole and Jones
(2012), containing over 800 references. See also
Jones and Poole (2005) and, for a clarification, Ma
et al. (2010).

Artiga Gonzalez et al. (2015) generalized success-
fully the established constant work rate models to-
wards a dynamic model for variable work rate. The
result is a model that consists of two differential
equations based on a steady-state function for oxy-
gen demand. For completeness, we briefly review
this dynamic model in the following and later com-
pare the performance of Hammerstein-Wiener models
with that of the dynamic model.

The steady-state oxygen demand is given by a
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constant baseline component, the first, fast compo-
nent, and the second, slow component with ampli-
tudes V̇ O2base, A1(P), and A2(P), respectively. In
terms of formulas, the amplitudes are

A1(P) = min(s ·P, V̇ O2max−V̇ O2base)

A2(P) =
{

V∆ · exp(−(Pc−P)/∆) P≤ Pc
V̇ O2max−V̇ O2base−A1(P) P > Pc

where s is the slope (or gain) for the fast component,
Pc denotes the critical power, V∆ is the maximal am-
plitude of the slow component for exercise load up to
critical power, and ∆ is the corresponding decay con-
stant that governs the decay of the steady-state slow
component as the load is decreased from the critical
power.

The following equations describe the first and sec-
ond component, x1(t), x2(t),

ẋk = τ−1
k (Ak(P)− xk), xk(Tk) = 0, k = 1,2

defined for times t ≥ Tk (and setting xk(t) = 0 for
t < Tk). Here, the power demand is a function of time
P = P(t) and Ak(P), k = 1,2, are the steady state am-
plitudes for the fast and slow components. The total
V̇ O2 accordingly is given by

V̇ O2(t) = V̇ O2base + x1(t)+ x2(t).

The differential equations require the four parameters
τ1,τ2,T1, and T2.

In our previous work (Artiga Gonzalez et al.,
2015) this dynamic model was applied to oxygen con-
sumption V̇ O2. Figure 1 shows that there is a strong

relationship between V̇ O2, V̇CO2 and heart rate and
thus, the model can be expected to work well also for
V̇CO2 and heart rate. Corresponding results are given
below in Table 1.

Data Collection

The same dataset as in Artiga Gonzalez et al. (2015)
is taken to allow a comparison of methods for mod-
eling and prediction. For the sake of completeness
we give a short description of data collection and data
preprocessing.

Five healthy, recreational to well trained subjects
(age 37.8±14.8 yrs, height 180.4±10.1 cm, weight
75.2±7.6 kg) completed four different cycle ergome-
ter (Cylus2, RBM elektronik-automation GmbH,
Leipzig, Germany) tests with continuous breath-by-
breath gas exchange and ventilation measurements at
the mouth (Ergostik, Geratherm Respiratory GmbH,
Bad Kissingen, Germany). The tests featured a vari-
ety of load profiles in order to comprehensively eval-
uate the model prediction quality.

The testing procedure commenced with an incre-
mental step test starting at a workload of 80 W with
increments of 20 W every 3 minutes. In the initial
step the subjects were instructed to choose their pre-
ferred cadence between 80–100 rpm and were then
instructed to keep the cadence constant at that level
in all four test trials. The step test was terminated at
volitional exhaustion of the subject. After test termi-
nation subjects recovered actively at 80 W and at or

Figure 1: Measured V̇ O2, V̇CO2 and heart rate for the power profile of the third test and one subject.
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near their self-selected cadence for five minutes.
The second ergometer test consisted of four

sprints of 6 s duration each and an incremental ramp
test. Two sprints were carried out before and two after
the ramp test to obtain the subjects’ maximal power
output and V̇ O2 profiles in a recovered and a fatigued
state.

In the third test subjects had to complete a vari-
able step protocol. The steps varied in load and dura-
tion and alternated between low and moderate or se-
vere intensity. The linearly in- or decreasing intensity
between the steps was also varied in time. The load
profile is illustrated in Figure 1.

For the final ”synthetic hill climb test” the er-
gometer was controlled by our simulator software in
Dahmen et al. (2011). The load was defined by the
mathematical model by Martin et al. (1998) to simu-
late the resistance on a realistic track. The gradient of
that track and the subjects’ body weight were the ma-
jor determinants of the load. While holding the same
cadence as before, the subjects were able to choose
their exercise intensity by gear shifting. (On the steep-
est section most subjects were not able to hold the ca-
dence even in the lowest gear.)

Data Preprocessing

In order to validate and compare the models, data se-
ries of time-stamped values of produced power and
resulting breath-by-breath oxygen consumption are
required for exercise intensities ranging from moder-
ate to severe. These time series from ergometer labo-
ratory experiments are typically very noisy, have dif-
ferent sampling rates and the samples may be irregu-
larly spaced.

Therefore, a combined smoothing and resampling
operator has to be applied. In this study we have
used the standard Gaussian smoothing filter with ker-
nel (σ

√
2π)−1 exp(−0.5t/σ2) and σ = 20 s for respi-

ratory gas, heart rate and power measurements.

Dynamic Model

We have extended the dynamic model from Ar-
tiga Gonzalez et al. (2015) described above with
two more parameters. With these two additional pa-
rameters, a much smaller average root-mean-square
modeling error was obtained and also the predictive

power of the model was improved (details to be pub-
lished elsewhere). For a better comparison between
the dynamic model and Hammerstein-Wiener mod-
els, we also applied this modified dynamic model for
V̇CO2 and heart rate modeling and prediction based
on power.

3 HAMMERSTEIN-WIENER
MODELS

The dynamical model for V̇ O2 under variable work
rate (Artiga Gonzalez et al., 2015) described in Sec-
tion 2 is based on physiological evidence collected in
many years of research. Thus, in addition to the ap-
plication for modeling and prediction, the estimated
model parameters can be used as indicators for per-
formance capabilities of athletes or enhance the com-
prehension of physiological processes. For instance,
a deeper analysis of the second differential equation
might lead to a better understanding of the so called
slow component.

Black box models like Hammerstein-Wiener mod-
els do not offer the same understanding as physio-
logical models have, but they bring other advantages.
Detached from physiological evidence they are more
flexible and can adjust better to data and therefore,
may deliver better fitting results.

Though not derived by principles of physiology, it
is still important to select the right model type and
model settings to obtain good results. For this re-
search MATLAB R© was used. The System Identifica-
tion Toolbox

TM
offers a large selection of models. Dif-

ferent linear (ARX, ARMAX, State-Space) and non-
linear (ARX, Hammerstein-Wiener) models from that
toolbox have been tested on selected data sets with
the System Identification App. Best results have been
achieved with State-Space and Hammerstein-Wiener
models. In a direct comparison Hammerstein-Wiener
models have shown the best modeling results.

This outcome coincides with the knowledge that
there is a strong linear relationship between power
and V̇ O2 (fast component) and a smaller nonlinear
relation (slow component), because Hammerstein-
Wiener models consist of nonlinear and linear ele-
ments. This holds also for the relationship between
power and V̇CO2 or heart rate.

Figure 2: Block diagram of Hammerstein-Wiener model.
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In general Hammerstein-Wiener models consist
of the three elements shown in Figure 2. The first
element is a static nonlinear function transforming
the input. MATLAB R© offers seven options for
the nonlinearity (Piecewise linear function, Sigmoid
network, Wavelet network, Saturation, Dead zone,
One-dimensional polynomial, Unit gain, Custom net-
work). The input nonlinearity is followed by the sec-
ond element, a linear block that applies a discrete time
linear model (Transfer function model, Input-output
polynomial model, State-space model) to the output
of the first element. The last element is again a static
nonlinear function modifying the result of the second
element. The same nonlinear functions as for the first
block can be selected.

Different configurations of Hammerstein-Wiener
models have been tested and have resulted that for
modeling of V̇ O2, V̇CO2 and heart rate, we can omit
the first element. Thus, our chosen model consists
only of a linear block followed by a nonlinear func-
tion. This model type is called a Wiener model.
Wiener models with a linear transfer model for the
linear block and a piecewise linear function for the
output nonlinearity performed best.

The Hammerstein-Wiener models were estimated
with the MATLAB R© function nlhw. This function re-
quires, in addition to the input and target output data
for training, the orders of the linear transfer function.
Orders are the number of zeros, the number of poles
and the input delay. To cover a large range of possible
combinations for the orders, the Genetic Algorithm

ga from the Global Optimization Toolbox
TM

was used
to search the best combination where all three values
have varied in the set {2,3, ..,20}.

These models has also been estimated with heart
rate as input and with heart rate and power as com-
bined input for modeling and predicting V̇ O2 and
V̇CO2.

4 RESULTS

The models were estimated for all four tests and five
subjects. For prediction, the models estimated for
each subject for Test 3 were applied on the other three
tests of the subject. The resulting average root-mean-
square error (RMSE) and the average mean absolute
percentage error (MAPE) for modeling and prediction
are given in Table 1 for the dynamic model and in
Table 2 for the Wiener models. The results for V̇ O2
modeling and prediction are better than those reported
in (Artiga Gonzalez et al. (2015), first data row in Ta-
ble 1) because the improved extended version with
two additional parameters was used.

The dynamic model has an average V̇ O2 modeling
error of 0.09 l/min RMSE respectively 3.1 % MAPE.
The Wiener models that are also based on power, per-
form better with only 0.06 l/min RMSE and 1.8 %
MAPE. Figure 3 illustrates V̇ O2 and power data and
the modeling result for Test 3 of Subject 1.

With heart rate as additional input, performance is
even better with 0.04 l/min RMSE and 1.3 % MAPE.

Figure 3: V̇ O2 modeling results for Test 3 and Subject 1. Both models are based on power as independent variable. The noisy
grey signals are the original (unfiltered) measurements.
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Figure 4: V̇ O2 prediction results for Test 4 and Subject 1. Both models are based on power and trained on Test 3.

Table 1: Average modeling and predicting errors for V̇ O2,
V̇CO2 and heart rate based on power with the dynamic
model.

Modeling Prediction
RMSE MAPE RMSE MAPE
l/min % l/min %

V̇ O2 (2015) 0.23 0.37
V̇ O2 0.09 3.1 0.30 8.8

V̇CO2 0.12 4.7 0.41 12.6
Heart Rate 4.55 2.5 7.46 4.4

The Wiener models with only heart rate as input have
similar errors compared to the Wiener models with
power or power and heart rate as input.

For the dynamic model, a prediction error of 0.30
l/min RMSE respectively 8.8 % MAPE was observed.
With 0.27 l/min RMSE and 7.5 % MAPE the Wiener
model performed slightly better. Figure 4 visualizes
the prediction results for Subject 1 and Test 4 based
on power and models trained on Test 3. Predictive
power did not benefit from heart rate as additional in-
put (0.28 l/min RMSE, 8.4 % MAPE).

As expected, estimation of V̇CO2 with Wiener
models works as well as estimation of V̇ O2, but pre-
diction is worse. Especially with combined input
of power and heart rate the Wiener models perform
poorly with 0.64 l/min RMSE and 17.6 % MAPE.
With the dynamic model similar results were obtained
for V̇CO2 based on power. The average modeling
root-mean-square error is 0.12 l/min or 4.7 % MAPE
while the average prediction error is 0.41 l/min RMSE
or 12.6 % MAPE.

Power based heart rate modeling and prediction
outperforms the Wiener models for V̇ O2 and V̇CO2
with a MAPE of 0.9 % respectively 4.8 %. The
dynamic model also produces reliable results with a
modeling MAPE of 2.5 % and a MAPE of 4.4 % for
prediction.

5 DISCUSSION

Overall, the results show that Hammerstein-Wiener
models, respectively Wiener models with a linear

Table 2: Average modeling and predicting errors for V̇ O2 and V̇CO2 based on power, heart rate and both with Wiener models.

Power Heart rate Power + Heart rate
RMSE MAPE RMSE MAPE RMSE MAPE
l/min % l/min % l/min %

Modeling V̇ O2 0.06 1.8 0.09 2.8 0.04 1.3
V̇CO2 0.08 2.9 0.07 2.5 0.04 1.6

Prediction V̇ O2 0.27 7.5 0.34 10.0 0.28 8.4
V̇CO2 0.44 14.2 0.43 13.3 0.64 17.6

icSPORTS 2016 - 4th International Congress on Sport Sciences Research and Technology Support

138



Figure 5: Response of an estimated Wiener model applied on a synthetic power profile with two ramps and two plateaus.

transfer function followed by a static piecewise non-
linear function, perform slightly better than the dy-
namic model. It should be noted that the steady-state
function for the dynamic model also consists of a lin-
ear component followed by a nonlinear increase. Fig-
ure 5 illustrates the linear relationship and the nonlin-
ear influence of an estimated Wiener model applied
on a synthetic power profile with two ramps and two
plateaus.

In a small study (unpublished work) a grand av-
erage root-mean-square difference of 0.09 l/min be-
tween V̇ O2 measurements of two identical tests of
the same subject was obtained. The corresponding
mean absolute percentage difference is 2.95 %. The
best one can expect from an optimal modeling is that
the accuracy is in the range of this natural variabil-
ity of the modeled quantities. For our results with
the Wiener models for V̇ O2 consumption we have ob-
tained 0.06 l/min, 0.09 l/min and 0.04 l/min (see first
row in Table 2) and with the dynamic model we have
obtained an error of 0.09 l/min (see Table 1).

Thus, both models are suitable and the choice
of the right model depends on other factors. For
example estimation and evaluation of Hammerstein-
Wiener models is much faster than parameter estima-
tion for the physiological model. But the latter offers
more insights into the physiological processes and
estimates parameters like critical power or V̇ O2max
which can be used for further analysis.

The overall predictive power for both models is
not as promising as the modeling results. This is

most likely based on the big differences between the
four tests and the small data set per subject. Train-
ing on only one test may lead to overfitting and there-
fore weak predictive power. Figure 6 illustrates that
both models overestimate V̇CO2 in the severe domain.
The models may misbehave there, because Test 3 on
which they have been trained does not contain that
large parts in the severe intensity domain.

Moreover, there is evidence for an asymmetry be-
tween on- and off-transient dynamics (Özyener et al.,
2001) but neither model can distinguish between on-
and off-transient parts. This leads again towards over-
estimation, at least for the dynamic model (unpub-
lished work).

In addition to V̇ O2 and V̇CO2, heart rate was suc-
cessfully modeled with power based Hammerstein-
Wiener models and the dynamic model. In general,
heart rate prediction is not useful because heart rate
can easily be measured directly. But there are some
use cases, for example in medical applications where
it is important to control and predict heart rate (Cheng
et al., 2008). However, forecasting models that know
past values collected by a heart rate measurement de-
vice are expected to perform much better for control-
ling issues.

Our results indicate that heart rate based Wiener
models also perform well. This could be an inter-
esting alternative to power based prediction in the
field as heart rate belts are much cheaper compared
to power meters. However there may arise compli-
cations because heart rate varies depending on train-
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Figure 6: V̇CO2 prediction results for Test 4 Subject 1. Both models are based on power and trained on Test 3.

ing state, daily condition and environment conditions,
e. g. temperature.

6 CONCLUSIONS

We showed that Hammerstein-Wiener models are a
suitable tool for modeling and predicting V̇ O2, V̇CO2
and heart rate. They performed slightly better than the
dynamic model for V̇ O2 under variable work rate (Ar-
tiga Gonzalez et al., 2015), that is based on physiolog-
ical evidence. Thus, both model types are suitable for
modeling and prediction.

We expect a better predictive power for both mod-
els when trained on a more suitable or bigger data set.

An alternative modeling approach that was not
discussed yet and could perform well or even better
are models based on neural networks.
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