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Abstract: This paper presents the idea of labeled fuzzy rough sets which constitutes a novel approach to rough approxi-
mation of fuzzy information systems. The labeled fuzzy rough sets approach is compared with the fuzzy flow
graph approach. The standard definition of fuzzy rough sets is based on comparing the elements of a universe
by using a fuzzy similarity relation. This is a complex task, especially in the case of large universes. The idea
of labeled fuzzy rough sets consists in comparison of elements of the universe to some ideals represented by
linguistic values of attributes. Every element of the universe can be bound up with a linguistic label. Fuzzy
rough approximations of any fuzzy set are obtained by describing its elements with the help of characteristic
elements of linguistic labels. In this paper, new parameterized notions of the positive, boundary, and negative
linguistic values are introduced.

1 INTRODUCTION

The fuzzy set theory (Zadeh, 1965), and the rough
set theory (Pawlak, 1991) are two complementary
paradigms, suitable for dealing with imperfect knowl-
edge. Both theories were combined together (Dubois
and Prade, 1992) in a fuzzy rough set approach
which was further developed by other researchers
(Radzikowska and Kerre, 2002). However, a signif-
icant problem in application of the standard fuzzy
rough set approach is the size and complexity of ob-
tained fuzzy similarity classes, in the case of large
universes with many linguistic values of fuzzy at-
tributes. In order to overcome this drawback, a novel
way of analysis of fuzzy information systems was
proposed recently (Mieszkowicz-Rolka and Rolka,
2016), which is called the labeled fuzzy rough set
approach. The crucial point of this method consists
in avoiding the determination of fuzzy similarity be-
tween particular elements of a universe. In the present
paper, we propose and discuss a new parameterized
version of that approach. We introduce new basic
notions of the positive (dominating), boundary, and
negative linguistic values. Determination of similar-
ity classes, approximation of fuzzy sets, and gener-
ating of decision rules can be done easier with the
help of linguistic labels. To show the effectiveness
of the method, we give an illustrating computational
example of analysis of a small fuzzy information sys-
tem, with the goal of obtaining a set of fuzzy deci-
sion rules. Flow graph-based representation is yet

another possibility of a formal description of (crisp)
decision tables (Pawlak, 2005a; Pawlak, 2005b). A
generalized fuzzy flow graph approach can be applied
to evaluate the statistical properties of fuzzy informa-
tion systems. As it can also be used for determin-
ing and evaluating the quality of fuzzy decision rules
(Mieszkowicz-Rolka and Rolka, 2014), we performed
a parallel computation for the example data. Finally,
we compare and discuss results obtained with both
approaches.

2 ANALYSIS OF FUZZY
INFORMATION SYSTEMS

2.1 Fuzzy Rough Sets

The fundamental operation of the rough set theory is
to find out classes of objects, being elements of a finite
universe of discourse, which are indiscernible with re-
spect to a subset of attributes. In the standard rough
set theory proposed by Pawlak, the attributes of ob-
jects have always crisp values. Relationship between
the classes of indiscernible elements of the universe
can be used for discovering dependencies between at-
tributes and for finding their reducts.

The attributes of elements of a universe U are
commonly divided into a subset of condition at-
tributes C and decision attributes D. In such a case,
the rough set theory is suitable for evaluating the
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quality of decision systems, detecting contradictions,
reducing decision tables, and determining decision
rules.

Another important and popular approach, devel-
oped in the last decades, is the fuzzy logic connected
with the fuzzy set theory founded by Zadeh. There
are many applications of fuzzy sets, e.g., in the form
of fuzzy inference systems used in automatic control
of technical plants.

The rough set theory and the fuzzy set theory ad-
dress different aspects of uncertainty. It is possible
to combine them together in one framework, but sev-
eral generalizations and assumptions need to be done.
First of all, a general form of a fuzzy information sys-
tem FS (Mieszkowicz-Rolka and Rolka, 2016) is nec-
essary that is defined as the 4-tuple

FS“ xU,Q,V, f y (1)

where:

U – denotes a nonempty set, called the universe,
Q – is a finite set of fuzzy attributes,
V – is a set of linguistic values of fuzzy attributes,

V“Ť
qPQVq,

f – is an information function, f : UˆVÑ r0,1s,
f px,V q P r0,1s, @V P V and @x PU .

In a fuzzy decision system, every element x
of the universe U is described by fuzzy condi-
tion attributes C “ tc1,c2, . . . ,cnu, and fuzzy de-
cision attributes D “ td1,d2, . . . ,dmu. We denote
by Ci “ tCi1,Ci2, . . . ,Ciniu the family of linguis-
tic values of the i-th condition attribute ci, and by
D j “ tD j1,D j2, . . . ,D jm ju the family of linguistic
values of the j-th decision attribute d j, where i “
1,2, . . . ,n , j “ 1,2, . . .m, respectively. Any element
x P U possesses a membership degree in every lin-
guistic value of all fuzzy attributes. The membership
degree has a value in the interval r0,1s.

Furthermore, we require that the sum of member-
ship degrees in all linguistic values of each particular
fuzzy condition and decision attribute is equal to 1 for
every element x of the universe U . This is a general-
ization of the property of crisp decision systems, in
which every element x PU has a unique value of each
attribute.

powerpCipxqq “
niÿ

k“1

µCikpxq “ 1 , (2)

powerpD jpxqq “
m jÿ

k“1

µD jkpxq “ 1 . (3)

Fulfilment of the requirements (2) and (3), that we
consider a fundamental property of a well-defined
fuzzy inference system, is assumed in both the labeled

fuzzy rough set approach and the fuzzy flow graph
method.

The standard rough set theory is based on com-
parison of elements of the universe of a crisp in-
formation system that is performed with the help of
an indiscernibility relation. This is a binary equiva-
lence relation which is reflexive, symmetric, and tran-
sitive. In a fuzzy information system, a generalized
counterpart in the form of a fuzzy similarity relation
is applied. Determination of similarity between any
two elements of a universe is not so straightforward
and unambiguous as in the crisp case. The degree
of similarity can be any value in the interval r0,1s.
Furthermore, the obtained fuzzy similarity classes
with respect to condition attributes need to be ap-
propriately used in approximation of fuzzy similarity
classes generated with respect to decision attributes.
However, various fuzzy T-norm and implication op-
erators can be used in computation (Mieszkowicz-
Rolka and Rolka, 2004). Since there is no unique
way to determine the fuzzy rough approximations, it
seems that many degrees of freedom, which is a char-
acteristic feature of the fuzzy set theory, is not always
a preferable phenomenon. This is a motivation for the
labeled fuzzy rough set approach. We want to sim-
plify the method of comparing the elements of a fuzzy
information system. Instead of using a fuzzy similar-
ity relation, we want to act like a human expert, who
does not perform a detailed comparison of particular
objects. A human expert tries to assess how similar a
new object is to a labeled prototype, which is a pat-
tern that can be expressed with the help of linguistic
values of attributes.

Hence, our task consists in discovering the labeled
prototypes. We need to find out "active" linguistic
values of attributes which are dominating in the infer-
ence process. To formalize this goal, we use a level β
which satisfies the following inequality

0.5ă βď 1 . (4)

A selected value of the parameter β will be used
in criteria for classifying particular linguistic values
of attributes. Given a fuzzy information system FS,
we define for any element x of the universe U and any
fuzzy attribute q P Q:
the set pVqpxq Ď Vq of positive (or dominating) lin-
guistic values

pVqpxq “ tV P Vq : f px,V q ě βu, (5)

the set pqVqpxq Ď Vq of boundary linguistic values
pqVqpxq “ tV P Vq : 0.5ď f px,V q ă βu, (6)

and the set qVqpxq Ď Vq of negative linguistic values
qVqpxq “ tV P Vq : 0ď f px,V q ă 0.5u. (7)
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Taking into account the constraints (2) and (3), we
get the properties of the sets (5), (6), and (7):

1. the set pVqpxq of dominating linguistic values can
contain at most one element,

2. the set pqVqpxq of boundary linguistic values can
contain at most two elements,

3. the set qVqpxq of negative linguistic values can con-
tain at most |Vq| elements.

Every element x of the universe U is represented
by a row in a decision table. Since we want to com-
pletely describe any element x PU in terms of linguis-
tic values, we should determine a combination of the
linguistic values that are dominating for the selected
element x. In this way, we get a linguistic label of
the element x. We define the set of linguistic labels
pEPpxq of any element x PU , for a subset of fuzzy at-
tributes P Ď Q, as the cartesian product of the sets of
dominating linguistic values pVp, for p P P

pEPpxq “
ź

pPP

pVppxq. (8)

From definition (5) and property 1, we conclude
that every element x PU can possess at most one lin-
guistic label. We want to generate the family pEP of
linguistic labels for the entire universe U . When the
value of the parameter β is increased, the number of
linguistic labels belonging to the family pEP can be
only decreasing.

Each dominating linguistic label is bound up with
a set, denoted by XEP , that represents a linguistic label
EP P pEP, for a subset of fuzzy attributes P Ď Q. This
is a subset of those elements x P U which have the
linguistic label EP P EP

XEP “ tx PU : EP P pEPpxqu. (9)

We call XEP the set of characteristic elements of the
linguistic label EP P EP.

Linguistic label EP P EP has the form of an or-
dered tuple of dominating linguistic values for all at-
tributes p P P

EP “ pV̂1,V̂2, . . . ,V̂|P|q, (10)

and the resulting membership degree of x PU in the
linguistic label EP P EP can be determined as follows

µEPpxq “minpµV̂1
pxq,µV̂2

pxq, . . . ,µV̂|P|pxqq. (11)

By finding the membership degree for all elements
of a universe U in a linguistic label EP P EP, we get a
fuzzy similarity class denoted by ẼP

ẼP “ tµEPpx1q{x1,µEPpx2q{x2, . . . ,µEPpxNq{xNu
(12)

The lower and upper approximations of a set con-
stitute basic notions of the rough set theory. There are
many possibilities to define fuzzy rough approxima-
tions of a fuzzy set (Radzikowska and Kerre, 2002;
Mieszkowicz-Rolka and Rolka, 2004). As we prefer
to propose a simple method, which avoids problems
with selecting appropriate fuzzy operators, we want
to define the approximations by using characteristic
elements of a fuzzy set to be approximated.

Given a fuzzy set A, we define the set XA of char-
acteristic elements of the set A as follows

XA “ tx PU : µApxq ě 0.5u (13)

Now, we use the sets of the characteristic elements
of linguistic labels to approximate the set of charac-
teristic elements of a fuzzy set A. We define lower
approximation EPpAq of a fuzzy A by the set of lin-
guistic labels EP, which are obtained with respect to
a subset of fuzzy attributes PĎ Q, as follows

EPpAq “
ď

EPPEP

ẼP: XEP Ď XA (14)

Upper approximation EPpAq of a fuzzy set A by
the set of linguistic labels EP, which are obtained with
respect to a subset of fuzzy attributes PĎQ, is defined
as

EPpAq “
ď

EPPEP

ẼP: XEP XXA ‰H (15)

In analysis of an information system given in the
form of a decision table, two families of linguistic la-
bels will be generated: pEC for the condition attributes
C, and pED, for the decision attributes D, respectively.
We need a convenient measure for evaluating the con-
sistency of a fuzzy information system. Approxima-
tion quality γCpEDq of the fuzzy similarity classes ẼD

by the fuzzy similarity classes ẼC is defined as

γCpEDq “ powerpPosCpEDqq
cardpUq (16)

PosCpEDq “
ď

EDPED

ECpẼDq (17)

The value of approximation quality γCpEDq be-
longs to the interval r0,1s. It is decreasing in the
case of inconsistency, i.e., when different decisions
are taken for the same condition.

2.2 Fuzzy Flow Graphs

Another method for describing and analyzing of in-
formation systems utilizes the idea of flow graph
(Pawlak, 2005a; Pawlak, 2005b). A decision flow
graph has the form of layers of nodes, which repre-
sent particular values of condition and decision at-
tributes, connected by branches. Every element of a
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universe, corresponding to a row of the decision ta-
ble, flows through the graph by taking a unique path.
The original flow graph concept of Pawlak was pro-
posed for dealing with decision tables with crisp at-
tributes. A generalized fuzzy flow graph approach
(Mieszkowicz-Rolka and Rolka, 2006) can help to
evaluate quality and statistical properties of fuzzy in-
ference systems. It should be emphasized that this
generalization is valid for the product T-norm opera-
tor only. Furthermore, the membership functions of
the linguistic values for all attributes must satisfy the
inequalities (2) and (3). In the case of information
systems with fuzzy attributes, each element of the uni-
verse U can flow through more than one path in the
flow graph.

A selected path in a fuzzy flow graph represents a
single fuzzy decision rule. We denote by Rk the k-th
decision rule from the set of r possible decision rules

Rk : IF c1 is Ck
1 AND c2 is Ck

2 . . . AND
cn is Ck

n
THEN d1 is Dk

1 AND d2 is Dk
2 . . . AND

dm is Dk
m

(18)
where k “ 1,2, . . . ,r ,

Ck
i P Ci , i“ 1,2, . . . ,n ,

Ck
j P D j , j “ 1,2, . . . ,m.

For every element x of the universe U , we can de-
termine the degree of confirmation cdpx,kq of the de-
cision rule Rk, by using a T-norm operator as follows

cdpx,kq “ Tpcdapx,kq,cdcpx,kqq , (19)

where cdapx,kq denotes the confirmation degree of the
decision rule’s antecedent

cdapx,kq “ TpµCk
1
pxq,µCk

2
pxq, . . . ,µCk

n
pxqq , (20)

and cdcpx,kq is the confirmation degree of the deci-
sion rule’s consequent, respectively

cdcpx,kq “ TpµDk
1
pxq,µDk

2
pxq, . . . ,µDk

m
pxqq . (21)

By computing the confirmation degrees (20), (21)
and (19), for all elements of the universe U , we get
the support set of the decision rule’s antecedent

supportpcdapx,kqq “ tcdapx1,kq{x1, cdapx2,kq{x2,
. . . , cdapxN ,kq{xNu ,

(22)
the support set of the decision rule’s consequent

supportpcdcpx,kqq “ tcdcpx1,kq{x1, cdcpx2,kq{x2,
. . . , cdcpxN ,kq{xNu ,

(23)
and the support of the decision rule Rk, respectively

supportpRkq “ tcdpx1,kq{x1, cdpx2,kq{x2,
. . . , cdpxN ,kq{xNu . (24)

Finally, we can evaluate the quality of a decision
rule Rk by taking into account the relative throughflow
in the corresponding path of the flow graph. This is
done by determining the fuzzy cardinality (power) of
the obtained support sets. The certainty factor cerpRkq

cerpRkq “ powerpsupportpRkqq
powerpsupportpcdapx,kqqq (25)

expresses the determinism of the decision rule Rk,
whereas the measure strengthpRkq

strengthpRkq “ powerpsupportpRkqq
cardpUq (26)

indicates how many elements of the universe U flow
through the selected path of the flow graph.

3 EXAMPLE

In the following, we perform an analysis of a fuzzy in-
formation system (Table 1) including a universe U of
ten elements, which are described by three fuzzy con-
dition attributes c1, c2, c3, and one decision attribute
d1. All condition and decision attributes have three
linguistic values. Observe, that for every element of
the universe U , and every attribute, the constraints (2)
and (3) are always satisfied.

Let us assume β equal to 0.55 in application of
the labeled fuzzy rough set approach. Only positive
linguistic values of attributes for each element of the
universe U are taken into account. After inspecting
the decision table, we get six linguistic labels with
respect to the condition attributes C:

EC
1 “ pC11,C21,C32q, EC

2 “ pC12,C22,C31q,
EC

3 “ pC13,C23,C33q, EC
4 “ pC13,C21,C32q,

EC
5 “ pC11,C21,C31q, EC

6 “ pC12,C22,C32q,
and three linguistic labels with respect to the decision
attributes D:

ED
1 “ pD11q, ED

2 “ pD12q, ED
3 “ pD13q.

With each of these linguistic labels, a respective sim-
ilarity class in the form of an appropriate fuzzy set is
connected (Tables 2 and 3).

In the next step, we calculate the lower and up-
per approximations of every fuzzy similarity class to
the linguistic labels for the decision attributes D, by
the fuzzy similarity classes to the linguistic labels for
the condition attributes C, according to the formulae
(14) and (15). It turns out that for all decision sim-
ilarity classes, the lower approximation is equal to
the upper approximation. Hence, we get six certain
decision rules, presented in Table 4, and denoted by
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Table 1: Decision table with fuzzy attributes.

C1 C2 C3 D1

C11 C12 C13 C21 C22 C23 C31 C32 C33 D11 D12 D13

x1 0.75 0.25 0.00 0.90 0.10 0.00 0.00 0.80 0.20 0.85 0.15 0.00
x2 0.35 0.65 0.00 0.15 0.85 0.00 0.90 0.10 0.00 0.10 0.90 0.00
x3 0.00 0.25 0.75 0.00 0.20 0.80 0.00 0.25 0.75 0.00 0.10 0.90
x4 0.00 0.45 0.55 0.60 0.40 0.00 0.30 0.70 0.00 0.00 0.20 0.80
x5 0.80 0.20 0.00 1.00 0.00 0.00 0.00 0.75 0.25 0.90 0.10 0.00
x6 0.20 0.80 0.00 0.10 0.90 0.00 1.00 0.00 0.00 0.05 0.95 0.00
x7 0.00 0.10 0.90 0.00 0.10 0.90 0.00 0.00 1.00 0.00 0.00 1.00
x8 0.00 0.10 0.90 0.00 0.25 0.75 0.00 0.10 0.90 0.00 0.15 0.85
x9 0.90 0.10 1.00 0.85 0.15 0.00 0.90 0.10 0.00 1.00 0.00 0.00
x10 0.25 0.75 0.00 0.00 0.90 0.10 0.10 0.90 0.00 0.00 0.90 0.10

Table 2: Fuzzy similarity classes to linguistic labels for the
condition attributes C.

EC
1 EC

2 EC
3 EC

4 EC
5 EC

6

x1 0.75 0.00 0.00 0.00 0.00 0.10
x2 0.10 0.65 0.00 0.00 0.15 0.10
x3 0.00 0.00 0.75 0.00 0.00 0.20
x4 0.00 0.30 0.00 0.55 0.00 0.40
x5 0.75 0.00 0.00 0.00 0.00 0.00
x6 0.00 0.80 0.00 0.00 0.10 0.00
x7 0.00 0.00 0.90 0.00 0.00 0.00
x8 0.00 0.00 0.75 0.00 0.00 0.10
x9 0.10 0.10 0.00 0.00 0.85 0.10
x10 0.00 0.10 0.00 0.00 0.00 0.75

Table 3: Fuzzy similarity classes to linguistic labels for the
decision attributes D.

ED
1 ED

2 ED
3

x1 0.85 0.15 0.00
x2 0.10 0.90 0.00
x3 0.00 0.10 0.90
x4 0.00 0.25 0.75
x5 0.90 0.10 0.00
x6 0.05 0.95 0.00
x7 0.00 0.00 1.00
x8 0.00 0.15 0.85
x9 1.00 0.00 0.00
x10 0.00 0.10 0.90

R1, . . . ,R6 (` in column LFRS). By applying the for-
mulae (16) and (17), we determine the approximation
quality, which has the value equal to 0.75. We see that
the value of approximation quality is less than 1, al-
though all decision rules are certain. This is caused by
intersection of the membership functions of the neigh-
bouring linguistic values of fuzzy attributes. Hence,
the approximation quality can reach the value of 1

only in the case of a consistent crisp information sys-
tem. The measure of approximation quality can also
be used for determining which of the condition at-
tributes could be removed from the information sys-
tem. The results of attribute reduction are presented in
Table 5. Only the attribute c2 can be removed, and we
obtain the same decision rules in the reduced infor-
mation system. The approximation quality decreases,
when we remove the remaining attributes. In other
words, the number of certain decision rules becomes
smaller. For example, after removing the attribute c3,
we get only three certain decision rules: pC11,C21q Ñ
pD11q, pC13,C23q Ñ pD13q, and (C13,C21q Ñ pD13q.
Without the attribute c3, the decision rules R3 and R5
become uncertain, and the decision rules R1 and R2
merge together. The results indicate that the attributes
c1 and c3 are indispensable in the information system.

Another problem to be considered is the influ-
ence of the parameter β. The presented results were
obtained for β equal to 0.55. When we increase
β to 0.6, we observe that the linguistic label EC

4 “pC13,C21,C32q disappears, and we obtain five certain
decision rules R1, . . . ,R5.

In order to make a comparison, we generate deci-
sion rules with the help of the fuzzy flow graph ap-
proach. In this method, all combinations of linguistic
values for all attributes are taken into account. Since
the decision table contains four attributes, and each at-
tribute possesses three linguistic values, there are 81
possible decision rules. Only part of these rules will
be activated, for which the flow in the corresponding
path is not equal to zero. We select the most signif-
icant decision rules by applying threshold values for
the factors of certainty and strength. By setting the
limit of the certainty factor to 0.7, we get 21 deci-
sion rules. Together with a limit value of the factor of
strength equal to 1.7%, we eventually obtain eight de-
cision rules R1, . . . ,R8. Table 4 contains the decision
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rules generated by the labeled fuzzy rough set (LFRS)
and the fuzzy flow graph (FFG) approaches. Two ad-
ditional rules R7 and R8, obtained with the fuzzy flow
graph approach, are denoted by ´ in column LFRS.
As we can see, the rules R7 and R8 are composed of
such linguistic values that do not form linguistic la-
bels determined with the labeled fuzzy rough set ap-
proach. On the other hand, the decision rule R6 has a
low value of strength. This rule would be discarded,
when we set a slightly higher threshold of the strength
of rules.

Table 4: Decision rules.

Decision rule LFRS FFG

strength [%] cer

R1: pC11,C21,C31q Ñ pD11q ` 6.94 0.92
R2: pC11,C21,C32q Ñ pD11q ` 10.76 0.88
R3: pC12,C22,C31q Ñ pD12q ` 11.52 0.85
R4: pC13,C23,C33q Ñ pD13q ` 17.31 0.92
R5: pC12,C22,C32q Ñ pD13q ` 6.55 0.79
R6: pC13,C21,C32q Ñ pD13q ` 1.73 0.75
R7: pC11,C22,C31q Ñ pD12q ´ 4.14 0.70
R8: pC13,C23,C33q Ñ pD13q ´ 3.63 0.89

Table 5: Approximation quality of the information system.

Removed attribute

none c1 c2 c3

0.75 0.64 0.77 0.56

4 CONCLUSIONS

Both the labeled fuzzy rough set approach and the
fuzzy flow graph method generate comparable results.
Due to a new way of determination of fuzzy similar-
ity classes, which helps to reduce the computational
complexity of the standard fuzzy rough set algorithm,
the labeled fuzzy rough set approach is a preferable
method. It is also less computationally demanding in
comparison with the fuzzy flow graph approach. By
acting like a human expert, who takes into account
only the most significant features of the observed phe-
nomenon, a system of fuzzy decision rules can be
easy obtained. The presented example of analysis
of a simple information system with fuzzy attributes
confirms the effectiveness of the developed method.
Nevertheless, due to a detailed analysis of informa-
tion system with a fuzzy flow graph representation,
all possible decision rules can be taken into consid-
eration, which can help to refine the fuzzy inference

system. However, selecting suitable threshold values
for the factors of certainty and strength of rules can
be problematic. In future work, another variants of
parameterized fuzzy rough set approach will be in-
vestigated.
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