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Abstract: Markov Decision Processes (MDPs) and their variants are standard models in various domains of Artificial
Intelligence. However, each model captures a different aspect of real-world phenomena and results in different
kinds of computational complexity. Also, MDPs are recently finding use in the scenarios involving aggregation
of preferences (such as recommendation systems, e-commerce platforms, etc.). In this paper, we extend one
such MDP variant to explore the effect of including observations made by stochastic agents, on the complexity
of computing optimal outcomes for voting results. The resulting model captures phenomena of a greater
complexity than current models, while being closer to a real world setting. The utility of the theoretical model
is discussed by application to the real world setting of crowdsourcing. We address a key question in the
crowdsourcing domain, namely, the Exploration Vs. Exploitation problem, and demonstrate the flexibility of
adaptation of MDP-based models in Dynamic Voting scenarios.

1 INTRODUCTION

The Internet exhibits a variety of voting and prefer-
ence aggregation schemes. This is immediately ev-
ident from the wide use of such schemes in rank-
ing product features, ranking of songs and artists, etc
(Altman and Tennenholtz, 2005). In many of these
settings the aggregated ranking is dynamic, i.e. the
system announces the ranking at each particular point,
and may revise it when new agents arrive to the sys-
tem and announce their votes, or when existing agents
change their votes. Therefore, the Internet calls for
additional study of voting and preference aggregation
schemes, that goes beyond the classical models. We
refer to this setting asDynamic Voting(Tennenholtz,
2004).

A recent treatment of Dynamic Voting is due to
(Parkes and Procaccia, 2013). The authors modelled
preference aggregation as a discrete-space, discrete-
time evolutionary model, which was then modelled as
a stochastic process. In order to construct a tractable
algorithm for their model, a symmetry-based contrac-
tion was used to reduce the state space of the prob-
lem. The results generated from their approach dif-
fered from traditional results in Social Choice since
an axiomatic approach was traded for specifying the

behaviour of the system formally. The study focused
on the dynamic behaviour of the system as opposed
to axiomatic insights.

In this paper, we extend stochastic modelling tech-
niques to scenarios in Dynamic Voting. The rest of
the paper is organized as follow. We begin Section 2
by surveying the approach taken in (Parkes and Pro-
caccia, 2013). Section 3 extends the groundwork to
newer stochastic models to deal with more complex
settings. Specifically, we introduce a model that al-
lows us to account for observations made by voters
about their surroundings (including the votes of fel-
low voters) and interpret the findings from using the
model in that setting. In Section 4, a high-level ap-
plication of this model to existing scenarios presents
potential benefits, thereby justifying the use of such a
novel approach. We conclude in Section 5.

2 DYNAMIC VOTING AS AN MDP

In a voting or preference aggregation scenario, the un-
certainty stems from the possible action that an agent
may take from a set of actions, given a particular set
of inputs. Current methods in Dynamic Voting focus
on relating these actions to the future evolution of the
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system. This relation is achieved by defining the pos-
sible actions that a voter can take as a random vari-
able for constructing a stochastic process. Random
variables from multiple voters can then be aggregated
into a single random variable that represents the ag-
gregate uncertainty of the entire system of voters.

In (Parkes and Procaccia, 2013), the class of
stochastic processes chosen to model Dynamic Vot-
ing areMarkov Decision Processes(Puterman, 2014),
(Howard, 1960). A Markov Decision Process (MDP)
is a tupleM =< S,A,R,T >. S represents the finite
state space of the process.A is the finite set of ac-
tions that can be taken to change the state of the sys-
tem from one state to another.R : S×A→ R is a
reward function that where, fors ∈ S anda ∈ A,
R(s,a) is a reward obtained by taking actiona in state
s. T : S×(S×A)→R is the transition function, where
T(s′|s,a) (or T(s,a,s′)) is the probability that the sys-
tem will move to states‘ when actiona is taken in
states. Notice that the rewards for the voter are de-
fined only in terms of the action taken in the current
state, which is known as theMarkov property. A
deterministic optimal policymaps set of preferences
from multiple voters to a single aggregated preference
that satisfies some optimality criteria.

2.1 Formal Model of Dynamic Voting as
an MDP

Formally, the approach taken by the authors is to
model individual voters as MDPs, then combine the
individual models into an aggregate model. This
model is then optimized for computation of the op-
timal policy. The voter MDPs are defined as follows:

• The state space of the voter is the set of preference
orderings that the voter can vote for. Formalterna-
tives,S is a set of sizem!.

• The actions that the voter can take is to change
his current ordering over the various preferences.
Therefore,A is also a set of sizem!, since the agent
can change to any of the other orderings.

• T and R are provided as input. In a real-world
setting, these functions could come from machine
learning techniques over past data for the voter.

In the aggregate setting,S becomes a state space of
size(m! )n, since every one of then voters can be in
one of the individualm! states.A, while still remain-
ing a set of sizem! now represents the system declar-
ing a particular preference ordering as the winner of
the lot. Since each voter evolves independently, the
aggregateT for a states ands′ is the product of the
probabilities of each voter to move froms to s′. The

rewards are simply the sum total of rewards for each
voter in the state change.

Finally, the authors also note that the system can
be designed to comply with certain desirable be-
haviour. Briefly, they propose modifying the aggre-
gate reward function to heavily penalize certain ac-
tions in certain states.

3 PARTIALLY OBSERVABLE
MDPs IN DYNAMIC VOTING

A Partially Observable MDP (POMDP) differs from
basic MDPs in that, the state of the evolving agent
is not completely visible to the agent. The agent, in-
stead of being in a particular state, maintains abe-
lief vectoror probabilities of being in various states.
The agent then receives certain observations on ev-
ery state change, through which it updates its be-
lief vector on which state it is likely to be in. For-
mally, a Partially Observable Markov Decision Pro-
cess (POMDP) (Kaelbling et al., 1998), (Sondik,
1971) is a tuple< S,A,Ω,T,O,R>. Besides the el-
ements already defined as part of an MDP,Ω is a fi-
nite set of observations that the voter can receive on a
state change, andO(o|s) (or O(s,o)) is a probability
of making a given observation in a particular state.

3.1 Formal Model of Dynamic Voting as
a POMDP

Formally, the voter POMDPs are defined the same
way as they are for MDPs, with the only difference
coming in the voter state space. In our model, we
propose the voter state space as an(m! )n set, contain-
ing all the possible preference orderings of the other
agents, as well. Therefore, if the voter does not have
perfect information about the preferences reported by
all the other voters in the setting, then he is unsure
about his present state. The voter therefore maintains
his current state as a probability distribution orbelief
vector bover the state space, whereb(s) is the agent’s
belief that it is in states. This lack of perfect infor-
mation is a reasonable assumption in most real-world
scenarios involving Dynamic Voting.

Additionally, we define the observation set as a
subset of the preference orderings reported by the
other voters. That is, we say that voteri observes
the votes of some subsetLi = {1, · · · , l} of the other
agents. Therefore, the observation space becomes a
set of size(m! )l for each agent. We observe that, defi-
nitions of the observation set and observation function
need not be limited to observations of the behaviour
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of other voters. It may not even be a single observable
phenomena. Multiple classes of observations can be
combined into a unified observation function and ob-
servation set through Bayesian operations. As we dis-
cuss later, this allows for greater adaptability in using
this model in real-world settings. Also, as for transi-
tion and reward functions, observation functions are
also entered as input.

The aggregate POMDP can be obtained from the
individual voter POMDPs following the process de-
scribed in section 2.2. We observe that, in defining the
observation set for the aggregate model, since each
agent makes an independent observation, the size of
the observation set becomes|Ω| = ∏

i ∈N
(m! )|Li | =

(m! )∑i∈N|Li |. Finally, at the combination stage, a bi-
nary constraint functionC(s,a) is also added, which
is used to enforce desirable behaviour on the system.
C(s,a) returns 1 if an actiona is not allowed in a par-
ticular state, and 0 otherwise.

3.1.1 Computation of the Optimal Policy

There exists a large body of literature on the chal-
lenges and methods for computation of optimal poli-
cies for POMDPs. Readers are directed to (Kael-
bling et al., 1998), (Sondik, 1971), (Kaelbling et al.,
1996) and (Amato et al., 2014) for further reading.
For the purpose of our study, however, we choose
the algorithm presented in (Undurti and How, 2010).
We do this since the algorithm deals with constrained
POMDPs, is reasonably simple in complexity and
the authors emphasise the tractability of the algo-
rithm through offline, pre-computation methods. An
adapted version of the algorithm is presented in the
appendix. The algorithm computes the optimal pol-
icy by computing future belief states (encapsulated in
the τ function, which comes from (Kaelbling et al.,
1998)), while using a discount factorγ for deciding
the impact of future rewards on current optimal ac-
tions. We observe that, in the computation process for
the optimal policy, the system anticipates each of the
possible observations in the aggregate observation set,
and calculates an expected reward in the event of mak-
ing that observation, making the computational com-
plexity of the algorithm polynomial in|Ω|. However,
as defined earlier, this observation set grows exponen-
tially in the number of voters that can be observed by
each voter (assuming the number of alternatives re-
mains constant).

3.1.2 Model Optimization

An assumption that we can make in the design of
our model, which would improve tractability, is that

each individual voter, instead of observing the pref-
erences of a fixed subsetLi of all the other voters,
simply observes|Li | votes. That is, the reported pref-
erences are disassociated from the people reporting
the preference. Intuitively, one way to interpret this
simplification is the difference between aggregation
behaviour on social networks (where we can observe
which of our connections “liked” or “followed” an
alternative) versus aggregation behaviour on e-retail
websites (where some people rated a product 5 stars,
some others rated it 4 stars, etc.). This clearly re-
duces the size of the voter observation sets, and con-
sequently, the aggregate observation set.

The exact size of the observation set in this new
setting can be calculated as follows. If we assume an
“alphabet” of sizem! (where each “letter” is a prefer-
ence ordering), then we wish to know how many sets
of length |Li | can be formed from this alphabet. An
established result in combinatorics allows us to com-
pute this result as∏

i∈N

m!+|Li |−1C|Li |. Again, assuming

the number of alternatives to be fixed (for example,
3), then the expression evaluates to a polynomial of
order 5, orO(|Li |5) complexity.

4 CROWDSOURCING AS
DYNAMIC VOTING

In this section, we apply the model to a real-world set-
ting and discuss the advantages. We apply this model
to crowdsourcing(Slivkins and Vaughan, 2014). We
begin by defining the problem in crowdsourcing plat-
forms, briefly analysing existing methodologies, and
comparing our model to these methodologies.

We identify three interacting components in a
crowdsourcing platform, namely, the workers, the re-
questers and the platform matching these two compo-
nents to one another. Two observations about crowd-
sourcing encourage an approach from a Dynamic Vot-
ing perspective. Firstly, with each iteration, workers
and requesters can form an insight into how the other
group is making decisions. The platform can gener-
ate profiles to predict the kinds of tasks that workers
might choose, or their performance in the completion
of tasks, or it might match requesters to a set of work-
ers which give the requesters the most optimal output.

Secondly, we observe the presence of two differ-
ent strategic elements in the system. In the firstlo-
cal element, members of individual components are
seeking to maximize their payoff with strategic in-
teractions. These interactions can be between work-
ers and requesters, such as when workers are debat-
ing how much effort to put in for the amount of-
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fered by the requester (Mason and Watts, 2010), or
by requesters who want to incentivize good behaviour
through mechanisms such as reputation systems (Del-
larocas, 2005). In the secondglobal element, we ob-
serve that, for long-term sustainability of a crowd-
sourcing platform, it should have certain desirable
characteristics that are guaranteed in it’s performance
over a horizon of repeated decisions.

These observations make crowdsourcing a good fit
for the constrained POMDP Dynamic Voting model
presented in the earlier sections.

4.1 Current Perspectives

A general model for the study of crowdsourcing is
due to Cesa-Bianchi et al., known in literature as
the multi-armed banditmodel (Auer et al., 1995),
(Slivkins and Vaughan, 2014). The problem state-
ment for the model is stated as follows. In a simple
scenario, an agent plays against a Vegas-style slot ma-
chine (colloquially referred to as a ‘one-armed ban-
dit’). In such a setting, the agent does not know the
probabilities of payoff with repeated play. The multi-
armed scenarios extends this setting tok arms or ma-
chines, with each machine having a unique probabil-
ity distribution for the payoffs assigned.

This model addresses a key challenge in exist-
ing crowdsourcing literature known as theExplo-
ration Vs. Exploitationproblem. This is a challenge
wherein, given a set of repeated plays against multi-
armed bandits, an agent has to decide whether a par-
ticular play should be allotted to the task of explo-
ration or exploitation. An in-depth presentation of the
problem is due to Slivkins and Vaughan. (Slivkins
and Vaughan, 2014). Emphasis on the Exploration
Vs. Exploitation problem has the effect of localizing
the study of crowdsourcing to a per-agent basis. That
is, “efficiency” and “optimal behaviour” of such mod-
els are defined in terms of maximizing payoff for only
the task requesters and workers of the system, and not
in terms of desiderata which exist beyond those dis-
tributions.

While a few studies have been done which factor
in desiderata from literature on Social Choice theory
(Lee et al., 2014), (Mao et al., 2013), our model dif-
fers from these in two ways. Firstly, we focus on inte-
grating Dynamic Voting models into existing crowd-
sourcing models. This separates our work from the
work done by Lee et al. (Lee et al., 2014), where the
end product is a new model based on an alternative
definition of “exploration vs. exploitation”. Secondly,
our model aims to be closer to real-life situations by
factoring in the aspect of repeated decision-making,
which is not covered by the work of Mao et al. (Mao

et al., 2013).

4.2 An Initial Model

While the action and state spaces have a direct defini-
tion as per section 3, the definition of the observation
space provides some more insight. Defining obser-
vations and relating them to the progression of the
model is a challenge, since the original multi-armed
bandit model proposed updations of the static and dy-
namic elements of the MDP with each observation.
Essentially, this resulted in models of the multi-armed
bandit problem being constructed as one-state MDPs,
with every iteration changing the probabilities of out-
comes from playing. The POMDP version fixes this
issue by adding all the information of the system that
can be known as a static set, and the effects of an
observation made at one iteration are manifested in
the value function of the next iteration, not in the ele-
ments of the POMDP itself.

4.3 Adding Exploration Vs.
Exploitation

Adding elements to model the question of Exploration
Vs. Exploitation can now be achieved by modify-
ing the action space and reward function of the agent
POMDP.

1. We redefine the action space by adding a redun-
dancy. Let one action spaceAexploration be an
m! sized set of the preference orderings when
the agent is taking an action from an explo-
ration perspective. Similarly, another action space
Aexploitation be them! sized set of all the prefer-
ence orderings when the agent is exploiting the
current system with his current knowledge. The
transition function for an agent is also redefined
for this new action space. For example, a more
exploration-prone agent would have greater transi-
tion probabilities for an action inAexploration than
for the same action inAexploitation.

2. To reflect the trade-off between the two actions, we
redefine the reward function. In a trivial case, if,
for an actiona, the reward function in all states is
R(aexploration,s) = R(aexploitation,s), then the agent
is playing apurely random strategy, where the in-
formation from the observations are not playing
a role in deciding the next action that the agent
should take. However, without loss of generality,
we can define the relationships between the reward
functions in the two cases asR(aexploration,s) =
R(aexploitation,s)+∆a,s, where the∆a,s term defines
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the extra value that the agent gains in terms of in-
formation about the system, in addition to the re-
ward from taking the action in that particular state.

3. Now, the Exploration Vs. Exploitation problem
can be expressed by modifying the Value Func-
tion and Optimal Policy. We define this problem in
terms of the difference betweenVideal(s), the ideal
or maximum value that an agent can gain from the
current state, if he were playing with full observa-
tions and complete knowledge of the system and
Vactual(s). We now assert that the Exploration Vs.
Exploitation problem is to minimize the distance
between this value, and the value that the agent
gains in it’s own iterations i.e.

(1)
Vactual(s) = min

a ∈ A
[Videal(s) − R(s,a)

− γ ∑
s‘∈S

T(s′|s,ca).Vactual(s
′)]

Essentially, this optimality criteria asserts that the
best possible outcome occurs when the agent’s be-
haviour converges towards that shown by an iden-
tical agent operating under ideal conditions. The
value ofVideal(s), and the method for solving of
the recurrence relation is explained under the chap-
ter on Discounted MDPs (chapter 6) of (Puterman,
2014).

4.4 Insights

While the usage of a POMDP presents a steep cost in
terms of tractability over the single-state, multi-armed
bandit model used in literature, we note the bene-
fits that this model presents. Firstly, we observe that
the definition of general observation sets and func-
tions provides a distinct modelling advantage for real-
world settings over even the most widely-used gener-
alization of the multi-armed bandit model.

The second advantage is that the process followed
here to adapt the model can be generalized and used
to extend Dynamic Voting POMDPs in ways similar
to the various extensions of the multi-armed bandit
model. For example, to study regret minimization in
a system and reward based reputation systems (Auer
et al., 1995).

In conclusion, we propose that models for crowd-
sourcing based on dynamic voting approaches can
supersede current multi-armed bandit based models.
The core phenomena being modelled by the latter can
be incorporated into the former, while the former pro-
vides a more generalized and easily extensible frame-
work for the crowdsourcing scenario.

5 RESULTS

In this paper, we began with the problem of modelling
the evolving of preferences of agents on internet plat-
forms. Current approaches focus on evolving pref-
erences over a horizon of repeated decision-making.
This was a novel approach, since it studied aggre-
gate decision-making by constructing it as an evolv-
ing system, rather than using the standard logic-based
approaches that were the mainstay of the domain so
far. These approaches focused on a single instance of
decision aggregation, and questions asked were along
the lines of how best to map the individual inputs to
the output, to maximize overall social utility (Moulin
et al., 2016).

Therefore, with this work, this paper builds a case
for further investigation into the use of MDP vari-
ants and stochastic modelling techniques in real world
Dynamic Voting scenarios. We show that, stochastic
modelling yields greater insight into the relation be-
tween factoring a real-world aspect (such as the ob-
servation a voter makes about the votes of others), and
the resulting change in computational complexity.

For example,Semi Markov Decision Processes, a
class of MDPs where different state changes are com-
pleted in different times, presents a unique challenge
at the aggregation step. A workaround from (Gosavi,
2014) reduces SMDPs into regular MDPs for this ag-
gregation step. Therefore, while SMDP based mod-
els would be as tractable as the basic MDP model
(and much more tractable than the POMDP model),
the process for conversion changes the optimal pol-
icy for the system. Additionally, we have the novel
insight that, factoring in voter behaviour related to
speed of changing one’s own decisions has no effect
on computational complexity, while making observa-
tions about other voters results in more complex com-
putation.

Similarly, (Gmytrasiewicz and Doshi, 2004)
and (Wiering et al., 2007) introduceinteractive
POMDPsandMulti-objective MDPs. IPOMDPs ex-
tend POMDPs by allowing for interactions between
agents, and MOMDPs use multiple optimality crite-
ria, instead of the straightforward criteria used here,
which maximizes only the payoff of the entire sys-
tem.

Finally, another key line of research would use
these theoretical models on actual platforms, with real
data. Of particular interest would be a study on how
different methods for approximating policies would
translate in a Dynamic Voting scenario, in terms of
the tradeoff between optimal rewards and computa-
tional tractability.
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APPENDIX

Procedure OnlinePOMDPsolver
b : current belief state of the system
T : A tree -like data structure to

contain the current state of the
system and possible future
transitions

D : Expansion depth for lookahead
b← b0
T← b
WHILE ExecutionTerminationCondition

DO
Expand(b,D)
Execute action a∗ returned by

Expand
Receive observation o
Update b to reflect new belief

state of the system
Update tree T

END WHILE

Procedure Expand(b, d)
IF {d = 0}

V(s)← 0
ELSE

V(s)←−∞
END IF
FOR a ∈ |A| AND C(s,a) = 0 DO

P(o|b,a)← ∑
s′∈S

O(o|s′)∑
s∈S

T(s′|s,a)b(s)

V(s,a)← ∑
n∈N

[R(s,a) + γ ∑
o∈Ω

P(o|b,a)Expand(

τ(bn,a,o),d−1)]
IF {V(s,a)>V(s) AND C(s′,a) = 0}

V(s) =V(s,a)
a∗← a

END IF
END FOR
RETURN a∗, V(s)
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