
Proactive Prevention of False-positive Conflicts in
Distributed Ontology Development

Lavdim Halilaj, Irlán Grangel-González, Maria-Esther Vidal, Steffen Lohmann and Sören Auer
Enterprise Information Systems, Fraunhofer IAIS and University of Bonn, Bonn, Germany

Keywords: Ontology Development, Unique Serialization, Version Control System, Editor Agnostic, RDF, OWL, Turtle.

Abstract: A Version Control System (VCS) is usually required for successful ontology development in distributed set-
tings. VCSs enable the tracking and propagation of ontology changes, as well as collecting metadata to de-
scribe changes, e.g., who made a change at which point in time. Modern VCSs implement an optimistic
approach that allows for simultaneous changes of the same artifact and provides mechanisms for automatic
as well as manual conflict resolution. However, different ontology development tools serialize the ontology
artifacts in different ways. As a consequence, existing VCSs may identify a huge number of false-positive
conflicts during the merging process, i.e., conflicts that do not result from ontology changes but the fact that
two ontology versions are differently serialized. Following the principle of prevention is better than cure, we
designed SerVCS, an approach that enhances VCSs to cope with different serializations of the same ontol-
ogy. SerVCS is based on a unique serialization of ontologies to reduce the number of false-positive conflicts
produced whenever different serializations of the same ontology are compared. We implemented SerVCS on
top of Git, utilizing tools such as Rapper and Rdf-toolkit for syntax validation and unique serialization, re-
spectively. We have conducted an empirical evaluation to determine the conflict detection accuracy of SerVCS
whenever simultaneous changes to an ontology are performed using different ontology editors. The evalua-
tion results suggest that SerVCS empowers VCSs by preventing them from wrongly identifying serialization
related conflicts.

1 INTRODUCTION

During the ontology development process, the num-
ber, structure, and terminology of the modeled con-
cepts and relations is subject to continuous change.
This process, which requires significant efforts and
knowledge, is often a collaborative one, involving
many people, or even different teams, who are geo-
graphically distributed (Palma et al., 2011). The main
challenge for the involved ontology engineers is to
work collaboratively on a shared objective in a har-
monic and efficient way, while avoiding misunder-
standings, uncertainty, and ambiguity (Halilaj et al.,
2016a). Tracking and propagating the changes made
to the ontology to all contributors and thus allow-
ing them to be synchronized with the work of each
other is crucial in this process. Therefore, supporting
change management is indispensable for successful
ontology development in distributed settings.

A Version Control System (VCS) assists users in
working collaboratively on shared artifacts, and helps
to prevent them from overwriting changes made by
others. Two prominent mechanisms used to avoid

change overwriting are called the pessimistic and op-
timistic approach (Mens, 2002). The first is based on
the lock-modify-unlock paradigm, which implies that
modifications to an artifact are permitted only for one
user at a time. The second mechanism is based on
the copy-modify-merge paradigm, where users work
on personal working copies, each reflecting the re-
mote repository at a certain time. After the work is
completed, the local changes are merged into the re-
mote repository by an update command, comprising
the phases comparison, conflict detection, conflict res-
olution, and merge.

Different techniques, such as line-, tree-, and
graph-based ones, can be employed to compare two
versions of the same artifact (Altmanninger et al.,
2009). The line-based technique, which achieved
wide applicability, compares artifacts line by line,
with each line being treated as a single unit. This tech-
nique is also known under the terms textual or line-
based comparison (Mens, 2002). Examples of VCSs
that are based on the line-based approach are Sub-
version, CVS, Mercurial, and Git. Line-based com-
parisons are applicable on any kind of text artifact,

Halilaj, L., Grangel-González, I., Vidal, M-E., Lohmann, S. and Auer, S.
Proactive Prevention of False-Positive Conflicts in Distributed Ontology Development.
DOI: 10.5220/0006054600430051
In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016) - Volume 2: KEOD, pages 43-51
ISBN: 978-989-758-203-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

43

as they do not consider syntactical information (Alt-
manninger et al., 2009). Accordingly, the line-based
approach does also neglect syntactical information of
ontologies, which are commonly represented in some
text-based OWL serialization nowadays.

Challenges emerge when two ontology develop-
ers modify the same artifact on their personal work-
ing copies in parallel. The modifications might con-
tradict each other, for instance, the developers may
both change the name of an ontology concept simul-
taneously. Such parallel and controversial modifica-
tions can result in conflicts during the merging of
two ontology versions. In general, a conflict is de-
fined as “a set of contradicting changes where at least
one operation applied by the first developer does not
commute with at least one operation applied by the
second developer” (Altmanninger et al., 2009). Con-
flicts can be detected by the identification of units that
were changed (i.e., added, updated, deleted) in paral-
lel. They can either be automatically resolved or it re-
quires the user to manually fix them by resolving the
conflictual changes.

From the ontology development point of view, the
situation is exacerbated when different ontology edi-
tors are used during the development process. This is
due to the fact that these editors often produce differ-
ent serializations of the same ontology, i.e., the ontol-
ogy concepts are grouped and sorted differently in the
files generated by the editors.1 As a result, the ability
of VCSs to detect the actual changes in ontologies is
lowered, since a number of conflicts are detected that
are actually not given but are a result of different seri-
alizations of the ontology file. In order to increase the
accuracy of conflict detection in VCSs, the problem
of different groupings and orderings must be tackled.

In this paper, we present SerVCS, a generic ap-
proach for the realization of optimistic and tool-
independent ontology development on the basis of
Version Control Systems. As a result, VCSs become
editor agnostic, i.e., capable to detect actual changes
and automatically resolve conflicts using the built-in
merging algorithms. We implemented and applied the
SerVCS approach on the basis of the widely used Git
VCS. In addition, we developed a middleware service
to generate a unique serialization of ontologies before
they are pushed to the remote repository. The unique
serialization ensures that ontologies have always the
same serialization in the remote repository, regardless
of the used ontology editor. Therefore, we avoid the
incompatibility problem with regard to wrongly de-

1With “different serializations”, we refer to two different
ontology files that represent the same ontology using the
same syntax (RDF/XML, Turtle, Manchester, etc.) but use
a different structure to list and group the ontology concepts.

tected conflicts resulting from the use of different on-
tology editors, and assist ontology developers to col-
laborate more efficiently in distributed environments.

The remainder of this paper is organized as fol-
lows: In Section 2, a motivating scenario is presented.
In Section 3, our SerVCS approach is described. In
Section 4, we outline the implementation of SerVCS.
We evaluate our approach against concrete cases in
Section 5 and compare our work with the current
state-of-the-art in Section 6. In Section 7, we con-
clude the paper and provide an outlook to meaningful
extensions of this work.

2 MOTIVATING EXAMPLE

As a motivating example, we consider two users
working together in developing an ontology for a spe-
cific domain. In order to ease collaboration and main-
tain different versions of the developed ontology that
result from changes, they decide to use Git. They pro-
ceed by setting up the working environment and cre-
ating an initial ontology repository which contains
several files. Together, the users define the ontology
structure with the most fundamental concepts and up-
load the ontology file F to the remote repository. After
that, they decide to proceed with their tasks by sepa-
rately working on their local machines.

The users start synchronizing their local working
copies with the remote repository, as illustrated in
Scene 1 of Figure 1. Scene 2 depicts simultaneous
changes performed on different copies of the same
ontology file, such as adding new concepts, modify-
ing existing ones, or deleting concepts. For realizing
this task, different ontology editors are used. In our
case, User 1 works with Desktop Protégé2, whereas
User 2 prefers to edit the ontology with TopBraid
Composer3. After finishing the task, User 1 uploads
her personal working copy (F*) to the remote repos-
itory, as shown in Scene 3. Next, User 2 completes
his task and starts uploading the changes he made on
his local copy to the remote repository. While trying
to trigger this action, he receives a rejection message
from the VCS, listing all changes which result in con-
flicts, as depicted in Scene 4. These conflicts need to
be resolved in order for the VCS to allow the user to
successfully upload his version (F**) to the remote
repository. User 2 starts resolving the conflicts manu-
ally by comparing his version of the ontology with the
one of User 1 that has already been uploaded to the
remote repository. Since the users are working with

2http://protege.stanford.edu
3http://www.topquadrant.com/composer/

KEOD 2016 - 8th International Conference on Knowledge Engineering and Ontology Development

44

1 2

3 4

User 1 User 2

Editor X

F

F F

Editor Y

Scene 1
Synchronization of repositories

Remote
Repository

Download

7

5

User 1 User 2

Editor X

F

F* F**

Editor Y

Scene 2
Perform local changes

Remote
Repository

User 1 User 2

Scene 3
User 1 – uploaded successfully

Remote
Repository

Upload

F*

F*

Editor X

F**

Editor Y

User 1 User 2

Scene 4
User 2 – unable to upload

Remote
Repository

F*

Editor X

F*

F**

Editor Y

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3

4

6

1

2

3

4 5

1 2

3

4 7

6

1

2

3

4

5

1 2

3

4

5

1 2

3

4

5

1 2

3

4

7

6

1

2

3

4

Merge Conflicts

Figure 1: Illustration of the problem that results from the use of different ontology editors.

different ontology editors that use each its own serial-
ization when saving the ontology file, the files are dif-
ferently organized. For instance, while the concepts
in one of the files are grouped into categories, such
as Classes and Properties, they are ordered alphabet-
ically in the other case, without any grouping. Con-
sequently, the information about actual changes, i.e.,
concrete changes on the ontology performed by each
user, can no longer be detected by the line-based com-
parison of the VCS, but a huge number of conflicts
result that are due to the different organization of the
ontology files. This prevents User 2 from merging his
changes, and his version of the ontology cannot be
uploaded to the remote repository.

This scenario illustrates that, despite the various
benefits provided by a VCS for collaborative ontol-
ogy development, it has not been possible so far to
effectively use a VCS in cases where different editors
and ontology serializations are used. This is changed
with the SerVCS approach we present in this paper.

3 APPROACH

In this section, we define the basic terminology and
provide a formal description of the SerVCS approach.
Formally, an RDF document A is defined as A ⊂
(I∪B) × I × (I∪B∪L), where I, B, and L correspond
to sets of IRIs, blank nodes, and literals (typed and
untyped), respectively (Gutierrez et al., 2011).

Definition 1 (Changeset). Given two RDF documents
A and A∗, a changeset of A∗ with respect to A is de-
fined as follows:

ChangeSet(A∗/A)= (δ+(A∗/A),δ−(A∗/A),<), where

• δ+(A∗/A) = {t | t ∈ A∗∧ t 6∈ A},
• δ−(A∗/A) = {t | t ∈ A∧ t 6∈ A∗}, and

• < is a partial order between the RDF triples in
δ+(A∗/A)∪δ−(A∗/A).

Example 1. Consider two RDF documents A =
{t1, t2, t3} and A∗ = {t1, t2, t4} such that A∗ is a new
version of A where the RDF triple t4 was added and
the triple t3 was deleted. Then, the changeset of A with
respect to A∗, ChangeSet(A∗/A), is as follows:

• δ+(A∗/A) = {t4},
• δ−(A∗/A) = {t3}, and
• <= {(t4, t3)}.

Definition 2 (Syntactic Conflicts). Given two
RDF documents A and A∗, and the changeset
of A∗ with respect to A, ChangeSet(A∗/A) =
(δ+(A∗/A),δ−(A∗/A),<), there is a syntactical con-
flict between A and A∗ iff there are RDF triples ti and
t j such that:

• ti ∈ δ−(A∗/A),
• t j ∈ δ+(A∗/A),
• (ti, t j) ∈< , and
• ti = (s, p,oi), t j = (s, p,o j), and oi 6= o j.

Example 2. Consider two RDF documents A and A∗

with triples t3=(:Bus,rdfs:label,"Bus"@en)
and t4=(:Bus,rdfs:label,"Buss"@en). Since
the object value of the property rdfs:label of the
subject :Bus has been changed, there is a syntactic
conflict between the RDF documents A and A∗.

Definition 3 (RDF Document Serialization). Given
an RDF document A and an ordering criteria η, a
serialization of A according to η , Γ(A,η) corresponds
to an ordering of the triples in A according to η:

Γ(A,η) =< t1, t2, ..., tn >

Example 3. Suppose three RDF triples t1, t2,
and t3 are defined as follows in an RDF docu-
ment A: t1=(:Car,rdfs:label,"Car"@en),

Proactive Prevention of False-Positive Conflicts in Distributed Ontology Development

45

Repository Hosting
Platform

Version Control
System
(VCS)

Syntax
Validation

Unique
Serialization

UniSer

Ontology Editor

7

2

3

6

1

4

User

SerVCS

Figure 2: SerVCS architecture: (1) the VCS handles differ-
ent RDF document versions via changesets; (2) the UniSer
component generates unique serializations; (3) the reposi-
tory hosting platform stores the RDF documents and prop-
agates the changes.

t2=(:Truck,rdfs:label,"Truck"@en), and
t3=(:Bus,rdfs:label,"Bus"@en), respec-
tively. A serialization Γ(A,η) of A listing the triples
by their labels in alphabetical order η would be:

Γ(A,η) =< t3, t1, t2 >

Definition 4 (False-Positive Conflicts). Given two
RDF documents A and A∗ such that F1 and F2 are
serializations of A and A∗ according to some order-
ing criteria η1 and η2, respectively. There is a false-
positive conflict between F1 and F2, iff there exist η
ordering criteria such that:

Γ(A,η) = Γ(A∗,η) and F1 6= F2

Example 4. Consider serializations F1 =< t1, t3, t2 >
and F2 =< t2, t1, t3 > both representing two identi-
cal RDF documents A = A∗, respectively, such that
A = {t1, t2, t3}. Then, there are three false-positive
conflicts between F1 and F2, because there exist or-
dering criteria η, Γ(A,η) = Γ(A∗,η).

3.1 SerVCS

With the objective of enabling ontology development
in distributed environments, where sets of changes are
performed (cf. Definition 1) using different editors,
the detection of False-Positive Conflicts (cf. Defini-
tion 4) by the VCS must be avoided. For this rea-
son, ontologies should have a unique serialization
(see Definition 3). In order to realize that, we devel-
oped SerVCS, which generates a unique serialization
of ontologies regardless of the used editing tool. The
modeled concepts (triples) are ordered alphabetically
in this unique serialization, first according to the sub-
ject name, then by property name. That way, ontolo-
gies (represented as text-based RDF documents) have
always a consistent serialization in the remote repos-
itory. As a result, a high accuracy of conflict detec-
tion can be achieved and the identified conflicts are

reduced to those caused by overlapping changes, Syn-
tactical Conflicts (cf. Definition 2). This enables a
VCS to automatically resolve most conflicts using its
built-in algorithms. In the worst case, a user is con-
fronted with conflicting changes and has to manually
resolve them by providing a valid and consistent on-
tology. Since all ontologies have a unified serializa-
tion in the remote repository, the user is able to see
the differences between any two versions of the on-
tology. Figure 2 illustrates the SerVCS architecture,
which consists of three main components: (1) a VCS,
which handles different RDF document versions via
changesets; (2) a UniSer component, which generates
unique serializations for the RDF documents; and (3)
a repository hosting platform, which stores the RDF
documents and propagates the changes.

Figure 3 depicts the ontology development work-
flow using the SerVCS approach. After personal
working copies are synchronized with the remote
repository (cf. Scene 1 of Figure 1), users start per-
forming their tasks using different ontology editors.
When making any changes, such as adding, remov-
ing, or modifying existing concepts, the updated on-
tology is saved locally on the machine of the user, as
illustrated in Figure 3, Scene 2 (which is still identical
to Scene 2 of Figure 1). Next, these changes are up-
loaded to the remote repository. Scene 3 shows that a
unique serialization of the ontology is created as inter-
mediate step. As a result, the concepts are organized
using a common ordering criteria. In Scene 4, User 1
uploads her changes successfully to the remote repos-
itory. Lastly, as illustrated in Scene 5, User 2 starts
uploading his changes to the remote repository. Since
the ontology has a unified serialization, the VCS can
merge both versions. In case of overlapping changes,
the VCS shows exactly the lines which resulted in
conflicts. Formally, a list of conflicts LC identified by
SerVCS is defined as follows:

Definition 5 (List of Conflicts). Given two RDF doc-
uments A and A∗ such that F1 and F2 are serializa-
tions of A and A∗ according to ordering criteria η1
and η2, a list LC =< c1, . . . ,cn > of conflicts between
F1 and F2, identified by SerVCS, comprises triples
ci = (i,entryi1,entryi2):

• i ∈ [1,MIN(size(F1),size(F2))],
• entryi1 = (si1, pi1,oi1) and entryi2 = (si2, pi2,oi2)

are RDF triples at the position i in F1 and F2, re-
spectively,
• entryi1 and entryi2 are different, i.e., si1 6= si2 or

pi1 6= pi2 or oi1 6= oi2.

Theorem 1. Given serializations F1 and F2 according
to ordering criteria η of RDF documents A and A∗,
respectively. Consider LC =< c1, . . . ,cn > the list of

KEOD 2016 - 8th International Conference on Knowledge Engineering and Ontology Development

46

User 1 User 2

Editor X

F

F* F**

Editor Y

Scene 2
 Perform local changes

Remote
Repository

UniSer
Service

User 1 User 2

Editor X

F* F**

Editor Y

Scene 3
Generate unique serialization

F

Remote
Repository

UniSer
Service

s s

User 1 User 2

Scene 4
User 1 – uploaded successfully

User 1 User 2

Upload

Editor Y

F*

Editor X

F*

Editor X

F** F**

Editor Y

Upload

Scene 5
 User 2 – uploaded successfully

Remote
Repository

UniSer
Service

F*

Remote
Repository

UniSer
Service

F**

s

f

s

f

s s

1 2

3 4

1 2

3 4

5

1 2

3

4 7

6

1

2

3

4

7

2

3

6

1

44

1 2

3

5

4

1 2

3

5

4

1 2

3

5 7

2

3

6

1

4

7

2

3

6

1

4

7

2

3

6

1

4

5

4

1 2

3

5

Unique Serialization

Figure 3: The ontology development workflow using SerVCS.

conflicts between F1 and F2 identified by SerVCS. If
there are only syntactical conflicts between A and A∗4,
then for all ci = (i,entryi1,entryi2) ∈ LC

• entryi1 = (s, p,oi1) and entryi2 = (s, p,oi2), and
• oi1 6= oi2.

Proof. We proceed with a proof by contradiction. As-
sume that there are only syntactical conflicts between
A and A∗, and there is a conflict ci in LC, such that
ci = (i,(si1, pi1,oi1),(si2, pi2,oi2)), and si1 6= si2 or
pi1 6= pi2. Since F1 and F2 are serializations according
to the same ordering criteria η, entryi1 ∈ δ−(A∗/A)
and entryi2 ∈ δ+(A∗/A). However, the statement si1 6=
si2 or pi1 6= pi2 contradicts the fact that only syntacti-
cal conflicts exist between A and A∗.

4 IMPLEMENTATION

We implemented the architecture depicted in Figure 2
to empower VCSs for preventing wrongly indicated
conflicts.

4.1 Version Control System

Git5 is used as the Version Control System, i.e., Git
is responsible for managing different versions of the
RDF documents. Furthermore, the Git hook mecha-
nism is used to automatize the process of generating

4Given two RDF-documents A and A∗, and
ChangeSet(A∗/A) = (δ+(A∗/A),δ−(A∗/A),<), there
are only syntactical conflicts between A and A∗, iff
size(A∗) = size(A), and for each RDF triples ti and t j:

• ti ∈ δ−(A∗/A) and t j ∈ δ+(A∗/A),

then, there is a pair (ti, t j) ∈ < , and ti = (s, p,oi), t j =
(s, p,o j), and oi 6= o j.

5https://git-scm.com

the unique serialization of the ontologies before they
are pushed to the remote repository. Once the modi-
fication of the ontology is finished, it is added to the
Git stage phase. The next step proceeds with commit-
ting the current state to the personal working copy.
The initialization of the commit event triggers a hook
named pre-commit. This hook is adapted with a new
workflow to handle the process of automatically gen-
erate a unique serialization, apart from the default one
provided by Git. SerVCS uses Curl6 as command-line
HTTP client to send the modified files to the UniSer
service. In case that ontologies fail to pass the inte-
grated validation process, the commit is aborted and
a corresponding error message is shown to the user.
Otherwise, the files are organized according to the
unique serialization. Subsequently, newly generated
content overwrites the current content of the files by
replacing the old serialization created by the ontol-
ogy editor with the new unique serialization created
by UniSer. When no error occurs during the entire
process, the pre-commit hook event is completed and
the commit is applied successfully. As a result, a new
revision of the modified ontologies is created and the
user is able to further proceed with successfully push-
ing her version to the remote repository.

In addition, Github7 is used as hosting platform
for the repository to ease the collaborative develop-
ment among several contributors.

4.2 UniSer

Furthermore, we implemented a stand-alone service,
UniSer, using the cross-platform JavaScript runtime
environment NodeJS8. Other tools are integrated to

6https://curl.haxx.se
7https://github.com
8https://nodejs.org

Proactive Prevention of False-Positive Conflicts in Distributed Ontology Development

47

realize the tasks required for this service, e.g., syn-
tax validation and unique serialization. The service
accepts the ontology files as input through an HTTP
interface and returns to the client either the error mes-
sage from the validation process or the unique serial-
ization of the file. Once the input is received, UniSer
validates the ontology, since a prerequisite for the
unique serialization process is that ontology files are
free of syntactic errors. The syntax validation is per-
formed by Rapper9. In case of errors, a detailed re-
port comprising the file name, error type, and error
line is returned to the client. Otherwise, the process
continues with creating the unique serialization using
Rdf-toolkit10. During this task, a unified serialization
of the ontology file is created by (1) grouping the ele-
ments into categories, such as classes, properties, and
instances, and (2) ordering the elements within the
categories alphabetically. The unique serialization of
the ontology is send back to the client as final out-
come.

In the following, we give some serializations of
a simple ontology in Turtle11 format comprising two
concepts: a Bus class and a MiniBus instance.

@prefix : <http://example.com/> .
@prefix rdf: <http://.../22-rdf-syntax-ns#> .
@prefix rdfs: <http://.../rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

:Bus rdf:type owl:Class ;
rdfs:comment "Bus"@en;
rdfs:label "Bus"@en .

:MiniBus rdf:type :Bus ;
rdfs:label "MiniBus"@en .

The above excerpt serialized with Protégé is shown as
follows:

@prefix : <http://example.com/> .
@prefix rdf: <http://.../22-rdf-syntax-ns#> .
@prefix rdfs: <http://.../rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

##
Classes
##

http://example.com/Bus

:Bus rdf:type owl:Class ;
rdfs:label "Bus"@en ;
rdfs:comment "Bus"@en .

9http://librdf.org/raptor/rapper.html
10https://github.com/edmcouncil/rdf-toolkit
11https://www.w3.org/TR/turtle/

###
Individuals
###

http://example.com/Bus1

:MiniBus rdf:type :Bus ;
rdfs:label "MiniBus"@en .

The following listing depicts the same ontology seri-
alized with TopBraid Composer:

@prefix : <http://example.com/> .
@prefix rdf: <http://.../22-rdf-syntax-ns#> .
@prefix rdfs: <http://.../rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

:Bus
a owl:Class ;
rdfs:label "Bus"@en ;
rdfs:comment "Bus"@en ;
.

:MiniBus
a :Bus ;
rdfs:label "MiniBus"@en ;
.

Using the UniSer service, the excerpt of the ontology
is generated according to the unique serialization. The
following listing depicts the result after the serializa-
tion by UniSer (which is nearly identical to the serial-
ization of TopBraid Composer in this case).

@prefix : <http://example.com/> .
@prefix rdf: <http://.../22-rdf-syntax-ns#> .
@prefix rdfs: <http://.../rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

:Bus
a owl:Class ;
rdfs:label "Bus"@en ;
rdfs:comment "Bus"@en ;
.

:MiniBus
a :Bus ;
rdfs:label "MiniBus"@en ;
.

5 EVALUATION

We conducted an empirical evaluation to assess the
usefulness of the SerVCS approach. During this eval-
uation, the following two hypotheses were tested:
H1. Is the number of false-positive conflicts between

two RDF documents that are modified by differ-

KEOD 2016 - 8th International Conference on Knowledge Engineering and Ontology Development

48

[CH3]
1

[CH1][CH2]
2

[CH2][CH3]
2

[CH1]
1

[CH1][CH3]
2

[CH3][CH2][CH2]
3

[CH3][CH1][CH3]
3

[CH3][CH2][CH1]
3

[CH2][CH1][CH3]
3

[CH1][CH2]
2

[CH1]
1

[CH1]
1

[CH3]
1

[CH1]
1

[CH1][CH3][CH2]
3

[CH2]
1

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

N
um

be
r

of
 c

ha
ng

es
 p

er
 h

ou
r

User 1 User 2

Figure 4: Number and types of changes per user in an in-
terval of 8 hours. A Poisson distribution with λ = 2 models
an average of two changes per hour. A uniform distribution
with replacement is followed to sample the type of changes.

ent ontology editors reduced when using SerVCS
compared to when it is not used?

H2. Are users able to effectively resolve the indicated
conflicts and collaborate with different ontology
editors when SerVCS is applied?

5.1 Experimental Setup

Ontology Generation. An ontology with a given
number of RDF triples is considered as initial input.
Then, changes are randomly generated following a
Poisson distribution, i.e., we simulate changes per-
formed by users assuming that these changes obey
a Poisson distribution. The parameter λ indicates the
average number of changes per time interval. It is set
to two (λ = 2) to simulate the number of expected
changes that users in the experiment may perform per
hour during a period of eight hours. Figure 4 illus-
trates the number and types of changes per hour for
two users. To ensure that our evaluation represents
as much as possible a real usage scenario, we used
a list of basic changes typically performed in ontol-
ogy development, as given in Table 1. These changes
are randomly chosen following a uniform distribution
with replacement. We consider the change type modi-
fication to be a combination of deletion and addition.

Metrics. We report on the number of conflicting
lines (NCL). It is computed as the number of conflicts
indicated by Git during the merge process of two ver-
sions of the ontology after each hour, and corresponds
to the cardinality of the list of conflicts LC (cf. Defi-
nition 5).

Gold Standard. We compute the gold standard
by summing up the number of conflicting lines, which

corresponds to the cardinality of overlapping changes
made by users in a specific hour (cf. Definition 2).

Implementation. Experiments were run on a Linux
Ubuntu 14.04 machine with a 4th Gen Intel Core i5-
4300U CPU, 3MB Cache, 2.90GHz with 8GB RAM
1333MHz DDR3. SerVCS was implemented using
NodeJS version 4.4.5. The syntax validation was per-
formed using Rapper version 2.0.15. The unique seri-
alization was created using Rdf-toolkit version 1.3.0.
The used Git version was 1.9.1. The change generator
was implemented using RStudio version 0.99.90212.

5.2 Effectiveness of SerVCS

In order to test hypotheses H1 and H2, two users
were chosen and asked to use different ontology ed-
itors. User 1 worked with TopBraid, whereas User 2
worked with Protégé. The evaluation was conducted
in two scenarios in a controlled environment. In the
first scenario, the two users worked purely with the
functionalities of Git. In the second scenario, they
used SerVCS along with Git as VCS. We asked the
users to keep a log of the changes made to the on-
tology during the experiment. In total, they made
30 changes: 11 additions, 9 modifications, and 10
deletions. The distributions of changes per user are
aligned with the Poisson distribution shown in Fig-
ure 4. The complete history of changes, including the
conflicts that occurred in both scenarios, is available
on GitHub13. Figure 5 shows the number of conflict-
ing lines (NCL) detected in each scenario (using plain
Git and Git with SerVCS) compared to the gold stan-
dard. It can be observed that the number of conflicts
is significantly reduced when the SerVCS approach is
used. These results support hypotheses H1 and H2.

5.3 Discussion

Figure 5 shows that the number of conflicting lines
(NCL) wrongly indicated by Git is much higher com-
pared to SerVCS, i.e., the number of false-positive
conflicts of Git is higher. This negative performance
of Git is caused by both: different serializations of the
ontologies generated by the ontology editors, and the
line-based comparison implemented in Git. Contrary,
SerVCS exhibits much better performance and is able
to considerably reduce the number of false-positive
conflicts, which validates hypothesis H1. SerVCS per-
forms better because the modified ontologies are seri-
alized using a unique serialization where concepts are
alphabetically sorted before they are pushed to Git.

12https://www.rstudio.com/products/RStudio/
13https://github.com/lavdim/unistruct

Proactive Prevention of False-Positive Conflicts in Distributed Ontology Development

49

Table 1: Basic changes in ontology development.

ID Change Type Description Example
CH1 Addition Adding new elements like classes

and properties
Add a new class, e.g., the class Car with
properties rdfs:label and rdfs:comment

CH2 Modification Modifying existing elements Modify a property value, e.g., rdfs:label of
Buss class

CH3 Deletion Deleting existing elements Delete an instance, e.g., the MiniBus instance
if it exists

117

113

151

50

166

185

168

201

19
14

0 0

24

0 2 0 0 0 2
0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

N
CL

Git SerVCS Gold Standard

Figure 5: Number of conflicting lines (NCL) indicated by
Git and SerVCS compared to the gold standard.

However, as shown in Figure 5, SerVCS may also
wrongly identify conflicts, i.e., the number of false-
positive conflicts is not zero. This happens whenever
users concurrently modify the subject or predicate of
an RDF triple, i.e., a non-syntactical conflict is gener-
ated and Definition 1 is not satisfied.

Since the number of conflicting lines (NCL) in-
dicated by SerVCS is smaller, users are able to
quickly and easily resolve the reported conflicts.
Thus, SerVCS enables users to effectively resolve the
indicated conflicts and collaborate with different on-
tology editors, which validates hypothesis H2.

6 RELATED WORK

Recently, there has been some research investigating
the use of different ontology editors in distributed on-
tology development using version control systems.

We first discuss approaches focusing on provid-
ing version management for ontologies in the collab-
orative development process. An ontology for unique
identification of changes between two RDF graphs
is presented by (Lee and Connolly, 2001). To rec-
ognize these changes, a pretty-printed version of the
RDF graphs is also utilized. The authors distinguish
two types of deltas, which can be applied in form of

patches to the RDF graphs. Firstly, weak deltas, which
are directly applied to the graph from where they are
computed. Secondly, strong deltas, which specify the
changes independently from the context. In contrast
to SerVCS, the proposed approach focuses on the se-
mantic representation of changes and its application
to RDF graphs.

(Völkel and Groza, 2006) present SemVersion,
an RDF-based system for ontology versioning. It is
based on the two core components data management
and versioning functionality. The first is responsible
for the storage and retrieval of data chunks. The sec-
ond deals with specific features of the ontology lan-
guage, such as structural and semantic differences.
To find semantic differences between two versions,
e.g., whether a statement has been added or removed,
SemVersion uses a simplified heuristic method for
conflict detection.

A holistic approach for collaborative ontology de-
velopment based on the ontology change manage-
ment is described by (Palma et al., 2011). It comprises
different strategies and techniques to realize collabo-
rative processes in inter-organizational settings, such
as centralized, decentralized, and hybrid ones.

(Edwards, 1997) proposes techniques for manag-
ing high-level application-defined conflicts. Conse-
quently, the introduced mechanisms should be able
to handle conflict resolutions. Further, certain types
of conflicts can be tolerated and others forbidden ac-
cording to the specified application requirements.

All these works rely on their own version con-
trol mechanisms tailored for ontology development.
Therefore, they lack rich features provided by generic
VCSs, such as branching and merging. Our solution
targets generic VCS by enriching them with features
for avoiding wrongly indicated conflicts.

Next, we look at approaches whose main focus is
on overcoming the problem of wrongly indicated con-
flicts. Several efforts have been made in the field of
Model-Driven Development, where the model itself is
the main artifact. (Altmanninger, 2007) describes an
approach for semantically enhancing VCS’s allowing
semantic conflict detection for models. Using the se-
mantic views concept to explain aspects of a modeling

KEOD 2016 - 8th International Conference on Knowledge Engineering and Ontology Development

50

language, a better conflict detection is achieved and
the reason of the conflict can be easily determined.
(Brosch, 2009) suggests using a model checker for de-
tecting semantic merge conflicts of an evolving UML
sequence diagram. When an automatic merge is not
possible due to conflicting changes, additional redun-
dant information essential for the models is used to
determine invalid solutions. By using this technique,
it is possible to assert the concrete modifications real-
ized in a sequence diagram.

In contrast to these works, SerVCS focuses on on-
tologies as main artifacts. It utilizes the functionality
of available VCSs to merge versions of the same on-
tology created by different editors.

7 CONCLUSION

We presented SerVCS, an approach for empowering
VCSs to deal with various serializations of the same
ontology. As a result, the number of false-positive
conflicts is reduced allowing users to collaboratively
develop ontologies in a distributed and multi-editor
environment. We conducted an empirical evaluation
to study the effectiveness of SerVCS in comparison to
existing VCSs, in this case Git. The results suggest
that SerVCS is able to reduce the number of false-
positive conflicts whenever users work concurrently
using different ontology editors on the same ontology.

As one of the next steps, SerVCS will be added
as a service to VoCol (Halilaj et al., 2016b). VoCol
is an integrated environment for developing ontolo-
gies and vocabularies in distributed settings. Along
with other services, such as documentation genera-
tion, visualization, and evolution tracking, VoCol fa-
cilitates ontology and vocabulary development using
version control systems. It enables people with dif-
ferent knowledge backgrounds to develop ontologies
and vocabularies collaboratively.

Future work also concerns the development of
new mechanisms for improving conflict detection and
resolution. Further, we plan to add a semantic layer
to SerVCS in order to prevent semantic inconsisten-
cies generated after merging two ontology versions.
Finally, we plan to conduct a more comprehensive
evaluation of the effectiveness of conflict prevention
in terms of accuracy and usefulness.

ACKNOWLEDGEMENTS

This work has been supported by the German Fed-
eral Ministry of Education and Research (BMBF)

in the context of the projects LUCID (grant no.
01IS14019C) and SDI-X (grant no. 01IS15035C).

REFERENCES

Altmanninger, K. (2007). Models in conflict – A semanti-
cally enhanced version control system for models. In
Doctoral Symposium at the ACM/IEEE 10th Interna-
tional Conference on Model-Driven Engineering Lan-
guages and Systems, CEUR-WS 262. CEUR-WS.org.

Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A
survey on model versioning approaches. International
Journal of Web Information Systems, 5(3):271–304.

Brosch, P. (2009). Improving conflict resolution in model
versioning systems. In Companion Volume of the
31st International Conference on Software Engineer-
ing (ICSE ’09), pages 355–358. IEEE.

Edwards, W. K. (1997). Flexible conflict detection and
management in collaborative applications. In 10th An-
nual ACM Symposium on User Interface Software and
Technology (UIST ’97), pages 139–148. ACM.

Gutierrez, C., Hurtado, C. A., Mendelzon, A. O., and Pérez,
J. (2011). Foundations of semantic web databases.
Journal of Computer and System Sciences, 77(3):520–
541.

Halilaj, L., Grangel-González, I., Coskun, G., Lohmann, S.,
and Auer, S. (2016a). Git4voc: Collaborative vocabu-
lary development based on git. International Journal
on Semantic Computing, 10(2):167–192.

Halilaj, L., Petersen, N., Grangel-González, I., Lange, C.,
Auer, S., Coskun, G., and Lohmann, S. (2016b). Inte-
grated environment to support version-controlled vo-
cabulary development. In 20th International Con-
ference on Knowledge Engineering and Knowledge
Management (EKAW 16). Springer, to appear.

Lee, T. B. and Connolly, D. (2001). Delta: an ontology
for the distribution of differences between rdf graphs.
Technical report, W3C.

Mens, T. (2002). A state-of-the-art survey on software
merging. IEEE Transactions on Software Engineer-
ing, 28(5):449–462.

Palma, R., Corcho, Ó., Gómez-Pérez, A., and Haase, P.
(2011). A holistic approach to collaborative ontology
development based on change management. Journal
of Web Semantics, 9(3):299–314.

Völkel, M. and Groza, T. (2006). SemVersion: An RDF-
based ontology versioning system. In IADIS Inter-
national Conference on WWW/Internet (IADIS ’06),
pages 195–202. IADIS.

Proactive Prevention of False-Positive Conflicts in Distributed Ontology Development

51

