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Abstract: Theoretical properties of particle swarm optimization approach with inertia weight are investigated. Particu-
larly, we focus on the convergence analysis of the expected value of the particle location and the variance of
the location. Four new measures of the expected particle convergence time are defined: (1) convergence of the
expected location of the particle, (2) the particle location variance convergence and (3-4) their respective weak
versions. For the first measure an explicit formula of its upper bound is also given. For the weak versions of
the measures graphs of recorded values are presented.

1 INTRODUCTION

Particle swarm optimization (PSO) is a stochastic
population-based search algorithm successfully ap-
plied in numerous real-world problems (Poli, 2008a;
Bonyadi and Michalewicz, 2016b). Usually, when
PSO is implemented some drawbacks or limitations
can be observed. They can be divided into two
main groups: related to transformation invariance and
to convergence (Bonyadi and Michalewicz, 2016b).
The latter group concerns problems with stability and
local convergence of a swarm, patterns of particle
movements, and first hitting time. All of them were a
subject of theoretical analysis.

Phenomenon of uncontrolled growth of particle
velocities for some values of velocity equation co-
efficients was one of the first identified limitation of
PSO. Obtaining a non divergent behavior of a swarm
needed to identify boundaries for a so called conver-
gence region of safe coefficients values. Even for the
PSO configuration from this region there appeared a
problem of swarm stagnation. This is a case when
swarm obtains its equilibrium state and converges to
a point which is, however, not a local optimum.

Another issue concerning effectiveness of the
search process are the patterns of particle movements.
For velocity equation coefficients from the conver-
gence region one can observe different patterns of par-
ticles paths. Depending on the optimized function dif-
ferent configurations prove to be the most efficient.
However, there exist coefficients settings commonly

regarded as a ”good starting point” of PSO configura-
tion tuning for selected classes of problems.

In the case of the PSO first hitting time issue, the
subject of interest is the time (precisely, a number of
evaluation function calls) necessary to obtain satisfac-
tory solution. Due to stochastic nature of PSO an ex-
pected runtime of the algorithm is rather investigated.
In the presented research we focus on this very aspect
of the theoretical analysis. New definitions of parti-
cle convergence in the stochastic model of the particle
movement are proposed and estimations of the num-
ber of steps necessary for the particle to obtain the
stability state are presented.

The paper consists of six sections. In Section 2
a brief review of selected areas of PSO theoretical
analysis can be found, that is, analysis concerning (1)
stability and region of stable particle parameter con-
figurations and (2) runtime analysis, particularly, esti-
mation of times necessary to hit a staisfying solution.
In Section 3 the stochastic model of the particle move-
ment is presented. Section 4 introduces definitions of
particle convergence expected time (pcet) and particle
weak convergence expected time (pwcet). Section 5
focuses on the convergence of particle location vari-
ance and introduces next two definitions of the par-
ticle location variance convergence time pvct(δ) and
its weak version. Section 6 concludes the paper.
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2 RELATED WORK

The PSO model with inertia weight implements fol-
lowing velocity and position equations:
{

vt+1 = w ·vt +ϕt,1⊗ (yt −xt)+ϕt,2⊗ (y∗t −xt),
xt+1 = xt +vt+1

(1)
where vt is a particle’s velocity, xt — particle’s lo-

cation, yt — the best location the particle has found
so far, y∗t — the best location found by particles in
its neighborhood, w – inertia coefficient, ϕt,1 and
ϕt,2 control influence of the attractors on the veloc-
ity, ϕt,1 = Rt,1c1, ϕt,2 = Rt,2c2, and c1,c2 represent
acceleration coefficients, Rt,1,Rt,2 are two vectors of
random values uniformly generated in range [0,1] and
⊗ denotes pointwise vector product. Values of coef-
ficients w, c1 and c2 define convergence properties of
the particle.

2.1 Stability and Stable Regions

In (Cleghorn and Engelbrecht, 2015) assumptions ac-
companying theoretical PSO research can be classi-
fied into the following four: (1) deterministic assump-
tion, where ϕ1 = ϕt,1 and ϕ2 = ϕt,2, for all t, (2)
stagnation assumption, where yt = y and y∗t = y∗, for
all t sufficiently large, (3) weak chaotic assumption,
where both yt and y∗t will occupy an arbitrarily large
but finite number of unique position, and (4) weak
stagnation assumption, where the global attractor of
the particle that has obtained the best objective func-
tion evaluation remains constant for all t sufficiently
large. Under the deterministic assumption the follow-
ing region of particle convergence was derived ((Tre-
lea, 2003; van den Bergh and Engelbrecht, 2006)):

{
0 < ϕ1 +ϕ2 < 2(1+w),
0 < w < 1, ϕ1 > 0 ∧ ϕ2 > 0 (2)

and the stability is defined as limt→∞ xt = y.
To deal with randomness of ϕt,1 and ϕt,2 they

are replaced with their expectations c1/2 and c2/2
respectively. In this case stability is defined as
limt→∞ E|xt |= y ((Poli, 2009)) and is called the order-
1 stability. The region defined with Ineq. (2) satisfies
this stability, thus, it is also called the order-1 stable
region. In later publications (e.g. (Cleghorn and En-
gelbrecht, 2014; Bonyadi and Michalewicz, 2016a;
Liu, 2015)) the region is extended to |w| < 1 and
0 < ϕ1 +ϕ2 < 2(1+w).

Unfortunately, the order-1 stability is not enough
to ensure convergence, simply the particle may oscil-
late or even diverge and the expectation converges to
a point. The convergence of the variance (or stan-
dard deviation) is also necessary, which is called

the order-2 stability condition ((Jiang et al., 2007;
Poli, 2009)). In (Jiang et al., 2007) the stabil-
ity is defined as limt→∞ E[xt − y]2 = 0 where y =
limt→∞ E[xt ]. In (Poli, 2009) the stability is defined as
limt→∞ E[x2

t ] = β0 and limt→∞ E[xtxt−1] = β1 where
β0 and β1 are constant. Eventually, both authors ob-
tain the same set of inequalities which define the so
called order-2 stable region:

ϕ <
12(1−w2)

7−5w
where ϕ1 = ϕ2 = ϕ. (3)

2.2 Runtime Analysis

For applications of PSO for real-world problems it
is important to estimate when a swarm or a parti-
cle reaches close vicinity of the optimum. Need for
analysis of this problem appeared in (Witt, 2009) and
in (Lehre and Witt, 2013) authors introduced for-
mal definition of the first hitting time (FHT) and ex-
pected FHT (EFHT). Both concepts refer to an en-
tire swarm, precisely, FHT represents the number of
times the evaluation function feval is called until the
swarm for the first time contains a particle x for which
| feval(x)− feval(y∗)|< δ.

Another approach can be found in (Trojanowski
and Kulpa, 2015), where subsequent locations of par-
ticles are a subject of analysis. Authors proposed
a concept of particle convergence time (pct) as a
measure of speed at which the equilibrium state is
reached. In this case the ”equilibrium state” is the
state when the distance between current and the next
location of the particle is never greater than the given
threshold value δ. Authors assumed that the global
attractor remains unchanged (the so-called stagnation
assumption), that is, the value of global attractor is
never worse than the value of any location visited
during the convergence process. This means that the
shape of evaluation function feval is negligible as far
as this condition is satisfied.

Definition 2.1 (The particle convergence time). Let
δ be a given positive number and S(δ) be a set of nat-
ural numbers such that:

s ∈ S(δ)⇐⇒ ||xt+1−xt ||< δ for all t ≥ s. (4)

The particle convergence time (pct(δ)) is the minimal
number in the set S(δ), that is

pct(δ) = min{s ∈ S(δ)}. (5)

Under the deterministic and stagnation assump-
tions, and also the best particle stagnation assumption
(that is, yt = y∗t = y), the explicit version of an upper
bound formula of (pct), that is, pctb(δ) is given ((Tro-
janowski and Kulpa, 2015)).
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3 THE STOCHASTIC MODEL

Under the best particle stagnation assumption the
update equation of the particle location in one-
dimensional search space can be reformulated as fol-
lows:

xt+1 = (1+w−φt)xt −wxt−1 +φty, (6)
where w is a constant parameter of inertia and φt is
the sum of two independent random variates, φt =
ϕt,1 +ϕt,2, ϕt,i ∼U(0,ci), i = 1,2. It is also assumed
that φt , t = 1,2,3 . . . are independent and identically
distributed.

Thus, in the further evaluations E[φt ] and E[φ2
t ]

equal

E[φt ] =E[φt,1]+E[φt,2] =
c1 + c2

2
E[φ2

t ] =Var[φt ]+ (E[φ])2 =

c2
1

12
+

c2
2

12
+

(
c1 + c2

2

)2

Set et = E[xt ], mt = E[x2
t ], ht = E[xtxt−1], f =

E[φt ] and g=E[φ2
t ].

The proposed model is a simplified version of the
model presented in (Poli and Broomhead, 2007; Poli,
2008b; Poli, 2009), particularly, we apply the same
analysis of dynamics of first and second moments of
the PSO sampling distribution.

We apply the expectation operator to both sides
of Eq. (6). Because of the statistical independence
between φt and xt we obtain

et+1 = (1+w− f )et −wet−1 + f y. (7)
Eq. (7) gives us the same model as the model de-
scribed by Eq. (6), however, instead of the acceler-
ation coefficient φt we have its expected value f and
instead of the particle location xt we have particle ex-
pected location et . We can say that the update of ex-
pected position of a particle follows in the same way
as the particle trajectory in the deterministic model
described by Eq. (6).

We raise both sides of Eq. (6) to the second power
and obtain

x2
t+1 =(1+w−φt)

2x2
t +w2x2

t−1 +φ2
t y2

−2(1+w−φt)wxtxt−1−2wyφtxt−1

+2yφt(1+w−φt)xt

(8)

Applying the expectation operator to both sides of
Eq. (8) and again because of the statistical indepen-
dence between φt , xt and xt−1 we obtain

mt+1 =mt((1+w)2−2(1+w) f +g)

+mt−1w2−ht2w(1+w− f )
+ et2y( f (1+w)−g)

− et−12wy f + y2g

(9)

Multiplying both sides of Eq. (6) by xt we get

xt+1xt = (1+w−φt)x2
t −wxtxt−1 +φtyxt (10)

Again, we apply the expectation operator to (10)
and obtain

ht+1 = (1+w− f )mt −wht + f yet (11)

Now, a vector zt = (et ,et−1,mt ,mt−1,ht)
T can be

introduced. Equations (7), (9), and (11) can be rewrit-
ten as a matrix equation

zt+1 = Mtzt +b (12)

where

Mt =




m1,1 −w 0 0 0
1 0 0 0 0
m3,1 m3,2 m3,3 w2 m3,5
0 0 1 0 0
f y 0 m5,3 0 −w


 (13)

where the matrix components are

m1,1 = 1+w− f ,
m3,1 = 2y( f (1+w)−g),
m3,2 =−2wy f ,
m3,3 = (1+w)2−2(1+w) f +g,
m3,5 =−2w(1+w− f ),
m5,3 = 1+w− f .

and
b = ( f y,0,y2g,0,0)T (14)

The particle is order-2 stable if et , mt , and ht con-
verge to to stable fixed points. This happens when all
absolute values of eigenvalues of M are less than 1.

In that case, there exist a fixed point of the system
described by equation

z∗ = (I−M)−1b. (15)

When the system is order-2 stable, by the change
of variables ut = zt − z∗, we can rewrite Eq. (12)

ut+1 = Mut , (16)

which can be integrated to obtain the explicit formula

ut = Mtu0. (17)

The order-2 analysis of the system described by
Eq. (17) is not easy because of complicated formulas
for eigenvalues of M. However, the order-1 analysis
can be done, because two of them are known as

λ1 =
1+w− f + γ

2
,

λ2 =
1+w− f − γ

2
,

(18)

where
γ =

√
(1+w− f )2−4w. (19)
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For fixed initial values of e0 and e1, the explicit for-
mula for et , first time obtained by (van den Bergh and
Engelbrecht, 2006), is given by equation

et = k1 + k2λt
1 + k3λt

2, (20)

where
k1 = y,

k2 =
λ2(e0− e1)− e1 + e2

γ(λ1−1)
,

k3 =
λ1(e1− e0)+ e1− e2

γ(λ2−1)
,

e2 = (1+w− f )e1−we0 + f y.

(21)

4 PARTICLE CONVERGENCE
EXPECTED TIME

Due to the analogy between the deterministic model
based on the update equation of the particle location
(6) and the studied order-1 stochastic model of PSO
described by Eq. (7) we can define a measure of par-
ticle convergence expected time (pcet) respectively to
the idea given in Def. (2.1),
Definition 4.1 (The particle convergence expected
time). Let δ be a given positive number and S(δ) be
a set of natural numbers such that:

s ∈ S(δ)⇐⇒ |et+1− et |< δ for all t ≥ s. (22)

The particle convergence expected time (pcet(δ)) is
the minimal number in the set S(δ), that is

pcet(δ) = min{s ∈ S(δ)}. (23)

Briefly, the particle convergence expected time
pcet is the minimal number of steps necessary for the
expected particle location to obtain its stable state as
defined above.

The explicit formula for solutions of the recur-
rence Eq. (6) is given in (van den Bergh and Engel-
brecht, 2006). This formula was used in (Trojanowski
and Kulpa, 2015) to find an upper bound formula of
pct, that is, pctb(δ). Because of the analogy between
the models described by Eq. (6) and Eq. (7) we obtain
the following upper bound for pcet, namely pcetb

pcetb(δ) = max
(

lnδ− ln(2|k2||λ1−1|)
ln |λ1|

,

lnδ− ln(2|k3||λ2−1|)
ln |λ2|

) (24)

for real value of γ given by (19) and

pcetb(δ) =
lnδ− ln(|λ1−1|(|k2|+ |k3|))

ln |λ1|
(25)

for imaginary value of γ, where λ1 and λ2 are given
by Eq. (18) and k1, k2 and k3 are given by Eq. (21).

Obviously, characteristics of pcetb(δ) depicted in
Fig. 1 (generated for δ = 0.0001) looks the same
as the characteristics of pctb (see (Trojanowski and
Kulpa, 2015) for comparisons) and have the same dis-
tinctive shape of a funnel. Thus, as in the case of pctb,
they can also be classified into four main types.

Empirical evaluation of pcet is difficult, so, we in-
troduce the less restrictive measure, that is, a particle
weak convergence time.

Definition 4.2 (The particle weak convergence ex-
pected time). Let δ be a given positive number. The
particle weak convergence expected time pwcet(δ) is
the minimal number of steps necessary to get the ex-
pected value of difference between subsequent parti-
cle locations lower than δ, that is

pwcet(δ) = min{t : |et − et+1|< δ}. (26)

It is obvious that pwcet(δ)≤ pcet(δ) and equality
generally does not hold. Empirical characteristics of
pwcet are depicted in Fig. 2 and Fig. 3. The charac-
teristics were obtained with Algorithm 1.

Algorithm 1 : Particle weak convergence expected time
evaluation procedure.

1: Initialize: Tmax = 1e+5, two successive expected
locations e0 and e1, and an attractor of a particle,
for example, y = 0.

2: s1 = e1− e0
3: f = (c1 + c2)/2
4: t = 1
5: repeat
6: et+1 = (1+w− f )et −wet−1 + f y
7: st+1 = et+1− et
8: t = t +1
9: until (st > δ)∧ (st < 1e+10)∧ (t < Tmax)

10: if st < 1e+10 then
11: return t
12: else
13: return Tmax
14: end if

Fig. 2 depicts the values of pwcet generated for
δ = 0.0001 as a function of initial location and veloc-
ity represented by expected locations e0 and e1 where
E[φt ] and w are fixed. A grid of pairs [e0,e1] consists
of 40000 points (200× 200) varying from -10 to 10
for both e0 and e1.

Fig. 3 shows the values of pwcet also for δ =
0.0001 obtained for a grid of configurations (φmax,w)
starting from [φmax = 0.0, w = −1.0] and changing
with step 0.02 for w and step 0.04 for φmax (which
gave 200×100 points).
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Figure 1: Graphs of pcetb(e0,e1) for selected configurations (E[φt ],w).
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Figure 2: Graphs of recorded values of pwcet(e0,e1) for selected configurations (E[φt ],w).
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e0 = −9 and e1 = −5; 3D shape with logarithmic scale for pvwct(E[φt ],w) (left graph), and isolines from 0 to 20000 with
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In both figures the configurations generating
pwcet > 100000 have assigned a constant value of
100000. It is also assumed that c1 = c2 = φmax/2.

5 CONVERGENCE OF
VARIANCE OF PARTICLE
LOCATION DISTRIBUTION

Convergence of the expected value of the particle lo-
cation still does not guarantee the convergence of the
particle position. This is the case, for example, where
the particle oscillates symmetrically and the oscilla-
tions do not fade. In (Poli, 2009) author studied con-
vergence of the variance and standard deviation of the
particle location and obtained region (Ineq. (3)) of the
order-2 stability of the system. In the studied model
with the best particle stagnation assumption described
by Eq. (6) the variance of the particle location con-
verges to zero for the configurations originating from
the order-2 stability region (Ineq. 3).

It is interesting to show how fast the variance of
a particle location fades. Formally, we are interested
in evaluation of the particle location variance conver-
gence time. Below, dt denotes variance of particle
location in time t, that is

dt =Var[xt ] = mt − e2
t . (27)

Definition 5.1 (The particle location variance con-
vergence time). Let δ be a given positive num-
ber. The particle location variance convergence time
pvct(δ) is the minimal number of steps necessary to
get the variance of particle location lower than δ for
all subsequent time steps, that is

pvct(δ) = min{t : ds < δ f or all s≥ t}. (28)

Empirical evaluation of pvct is difficult, so, we in-
troduce the less restrictive measure, that is, a particle
location variance weak convergence time.
Definition 5.2 (The particle location variance weak
convergence time). Let δ be a given positive number.
The particle location variance weak convergence time
pvwct(δ) is the minimal number of steps necessary to
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get the variance of particle location lower than δ, that
is

pvwct(δ) = min{t : dt < δ}. (29)
As in the case of pwcet(δ) and pwct(δ) it is also

obvious that pvwct(δ) ≤ pvct(δ) and equality gener-
ally does not hold.

When pvwct(δ) has to be calculated according to
Def. 5.2, it is important to select appropriately initial
values of the algorithm parameters: h1 and m1. To do
this, lets first note that Eq. (1) can be converted to the
form: {

vt+1 = w · vt +ϕt(y− xt),
xt+1 = xt + vt+1.

(30)

When we substitute zero for t in Eq. (30) we obtain
Eq. (31):

x1 = x0 +w · v0 +ϕ0(y− x0). (31)

Let us assume, that x0 and v0 are independent ran-
dom variables. Applying the expectation operator to
both sides of Eq. (31) we get

e1 = e0(1− f )+w · s0 + f y, (32)

where s0 = Ev0. From Eq. (32) we obtain

s0 =
e1− e0(1− f )− f y

w
. (33)

Multiplying both sides of Eq. (31) by x0 we get

x1x0 = x2
0(1−ϕ0)+wx0v0 + x0ϕ0y. (34)

Applying expectation operator to both sides of the
Eq. (34) we obtain

h1 = m0(1− f )+we0s0 + e0 f y, (35)

and substituting expression from Eq. (33) for s0

h1 = m0(1− f )+ e0(e1− e0(1− f )− f y)+ e0 f y.
(36)

Eventually, above formula can be simplified to the
form

h1 = (m0− e2
0)(1− f )+ e0e1, (37)

or equivalent

h1 = d0(1− f )+ e0e1. (38)

Next, we raise both sides of Eq. (31) to the second
power and obtain

x2
1 =x2

0(1−ϕ0)
2 +w2v2

0 +ϕ2
0y2

+2wx0(1−ϕ0)v0 +2x0(1−ϕ0)v0

+2x0(1−ϕ0)ϕ0y+2wv0ϕ0y.
(39)

Applying the expectation operator to both sides of
Eq.(39) and because of the statistical independence
of x0, ϕ0 and v0 we get

m1 =m0(1−2 f +g)+w2s2 +gy2 +2we0(1− f )s0

+2e0( f −g)y+2ws0 f y,
(40)

where s2 = Ev2
0. Expression from Eq. (33) can be

substituted for s0 in Eq. (40). This way we obtain

m1 =m0(1−2 f +g)+w2s2 +gy2

+2(e1− e0(1− f )− f y)(e0(1− f )+ f y).
(41)

Let d0 =Var[x0] and lo =Var[v0] are given. Then
we can calculate

m0 = e2
0 +d0

and
s2 = s2

0 + l0,

what can be written in view of Eq. (33) as

s2 =
(e1− e0(1− f )− f y)2

w2 + l0. (42)

Expression from Eq. (42) can be substituted for s2 in
Eq. (41). This way one can obtain the final version of
equation for m1:

m1 =m0(1−2 f +g)+w2l0 +gy2

+ e2
1− (e0(1− f )+ f y)2.

(43)

Algorithm 2: Particle location variance weak convergence
time evaluation procedure.

1: Initialize: Tmax = 1e+5, two successive expected
locations e0 and e1, variance of initial location
and velocity, for example, d0 = 0 and l0 = 1 re-
spectively, and an attractor of a particle, for ex-
ample, y = 0.

2: f = (c1 + c2)/2;
3: g = (c1)

2/12+(c2)
2/12+((c1 + c2)/2)2;

4: m0 = e2
0 +d0.

5: m1 = m0(1−2 f +g)+w2l0 +gy2 +e2
1− (e0(1−

f )+ f y)2.
6: h1 = d0(1− f )+ e0e1.
7: d1 = m1− e2

1.
8: t = 1
9: repeat

10: ht+1 = (1+w− f )mt −wht + f yet
11: et+1 = (1+w− f )et −wet−1 + f y
12: mt+1 = mt((1 + w)2 − 2(1 + w) f + g) +

mt−1w2−2htw(1+w− f )+2ety( f (1+w)−g)−
2et−1wy f + y2g

13: dt+1 = mt+1− e2
t+1

14: t = t +1
15: until (dt > δ)∧ (dt < 1e+10)∧ (t < Tmax)
16: if dt < 1e+10 then
17: return t
18: else
19: return Tmax
20: end if
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Figure 5: Graphs of recorded values of the particle location variance pvwct(E[φt ],w) for selected configurations (E[φt ],w).

Empirical characteristics of the particle location
variance weak convergence time (pvwct) are given in
Fig. 4 and Fig. 5.

As in the case of empirical characteristics of
pwcet, Fig. 4 shows the values of pvwct also ob-
tained for a grid of configurations (φmax,w) start-
ing from [φmax = 0.0, w = −1.0] and changing with
step 0.02 but in both directions (which also gave
200× 100 points). The configurations generating
pvwct > 100000 also have assigned a constant value
of 100000 and it is assumed that c1 = c2 = φmax/2.

Fig. 5 presents the values of pvwct as a function
of e0 and e1 where E[φt ] and w are fixed. The grid
of pairs [e0,e1] consists of 40000 points (200× 200)
varying from -10 to 10 for both e0 and e1.

The characteristics depicted in Fig. 4 and Fig. 5
were obtained with Algorithm 2 for selected values of
variance of initial location d0 = 0 and velocity l0 = 1.

6 CONCLUSIONS

In the presented research for the stochastic model of
PSO with inertia weight we propose new measures
inspired by the measure of particle convergence time
earlier defined for the deterministic model of PSO.
The proposed measures are based on the order-1 and

order-2 analysis of PSO dynamics.
The order-1 equivalent of particle convergence

time (pct) is the particle convergence expected time
pcet(δ) which represents the minimal number of steps
necessary for the expected particle location to obtain
equilibrium. As in the deterministic case, the upper
bound formula (pcetb(δ)) is also derived.

For the order-2 analysis of the PSO model the par-
ticle location variance convergence time pvct(δ) is
proposed as a minimal number of steps necessary to
get variance of particle location lower than δ for all
subsequent time steps.

Weak versions of pcet(δ) and pvct(δ), that is,
pwcet(δ) and pvwct(δ) are also proposed as more
convenient for experimental evaluation. Empirical
characteristics of pwcet(δ) and pvwct(δ) are pre-
sented. The issue of appropriate selection of initial
parameters for the pvwct(δ) evaluation procedure is
discussed.
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