
Mobile Data Store Platforms: Test Case based Performance Evaluation

Karim Kussainov and Bolatzhan Kumalakov
School of Science and Technology, Nazarbayev University, Kabanbay batyr 53, Astana, Republic of Kazakhstan

Keywords: Mobile Database, SQLite, Realm, SnappyDB, Performance Evaluation.

Abstract: Mobile applications are an important tool in knowledge management, as they collect and process massive
amount of user data. Day-to-day usage of mobile services has rocketed by factors over the last decade. Average
mobile device user installs multiple social network, messaging, professional and leisure applications. Saving
and retrieving associated data becomes a challenging task in the light of the growing number of applications on
a single device. While industry offers several well established platforms, such as BerkeleyDB and UnQLite,
we examine comparatively poorly examined Realm and SnappyDB against industry standard - SQLite. In
particular we are interested in performance and code maintainability, and use a test case in order to asses
them. Results revile that SQLite shows the poorest performance, while Realm provides the most intuitive way
of matching data to the application logic due to its object-oriented nature.

1 INTRODUCTION

The number of mobile services has rocketed by fac-
tors over the last decade. Average handheld device
user installs multiple social network and messaging
applications, apart from work related and, possibly,
gaming software. Storing state variables, user prefer-
ences and other data segments puts pressure on mo-
bile database engines, which have to cope with the
workload in order to support desired user experience.

Industry offers a range of solutions. SQLite is
a widely adopted mobile database management sys-
tem (Kreibich, 2010). It implements relational data
model, and natively supports industry standard - SQL
language specification. All major mobile operat-
ing systems in the market support it, while Android
comes with the pre-installed version by default.

Major players in the market offer at least a dozen
alternative solutions, such as BerkeleyDB and Un-
QLite. Most of them are well tested and positioned
against each other. NoSQL movement, however, also
offers emerging, but promising SnappyDB (Hachicha,
2016) and Realm (Realm, 2016) database engines.

SnappyDB is an open source “key-value” database
management system for Android OS. It is based on
Googles LevelDB storage library, which was initially
designed to overcome relational data model perfor-
mance boundaries by eliminating notions of relation
and referential integrity. It also makes advanced use
of compression algorithms, thus, attempts to optimize

disc space usage as well.
Realm, on the other hand, is a cross-platform,

object-oriented database engine that can be deployed
on Android and iOS devices. It requires storable ob-
jects to extend RealmObject class and define its ac-
cess methods. The data is stored encapsulated, and
access operations are performed in an object-oriented
manner.

This paper presents comparative performance
evaluation of SQLite, SnappyDB and Realm database
engines. Results revile that SQLite shows the poorest
performance, while Realm provides the most intuitive
way of matching data to the application logic due to
its object-oriented nature.

Remainder of the paper is structured as follows:
Section 2 defines research design, including test
cases, evaluation criteria and tools. Section 3 presents
experimental results and corresponding discussion,
while Section 4 concludes the paper.

2 RESEARCH DESIGN

Mobile databases are local storages, which operate on
machines with limited computing and storage capa-
bilities. In order to ensure realistic evaluation results,
test runs are performed on the same mobile device,
one after another. They do not overlap, but run on top
of a realistic set of common user applications, such as
WhatApp, Instagram and Telegram.

Kussainov, K. and Kumalakov, B.
Mobile Data Store Platforms: Test Case based Performance Evaluation.
DOI: 10.5220/0006032300950099
In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016) - Volume 3: KMIS, pages 95-99
ISBN: 978-989-758-203-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

95



2.1 Experiment Design

2.1.1 Read and Write Performance Evaluation
Design

Since mobile database systems follow centralized
DBMS architecture pattern, concurrent queries are
organized into a queue. The database engine then
processes it using threads. This in the worst case
is a sequential process, if majority of processes
try to process the same data segment. Thus, in-
stead of modelling concurrent processes that perform
read/write operations, we utilize single test applica-
tion that performs them with data segments of differ-
ent size. Database object/table structure stores two
fields/columns: planet and radius.

In order to test write performance we: first, ini-
tiate single entry of “mars” and “3000” values; sec-
ond, perform multiple entries of 10000 random char-
acter long strings. Corresponding processing times
are logged by the client application.

Read performance, on the other hand, is tested
using two experiments. First queried number of en-
tries in the database and returned their total num-
ber. Prior to execution, SQLite and Realm got 30000
randomly generated entries per entity/RealmObject.
SnappyBD, however, searches values by its key pre-
fix. Thus, in order to generate 30000 values it re-
quired generating corresponding number of unique
keys, while in order to perform the operation it is not
necessary to apply count function to the number of
returned values. In SQLite query results had to be
processed using following method:
cursor.getCount();

For the second experiment we query all the plan-
ets, where radius is less than 4000. Data set contained
12000 objects/keys-value pairs that satisfy the con-
straint. Similarly to the previous experiment, SQLite
and Realm utilize build-in functionality:
select * from planets Where radius<4000;

for SQL and
realm.where(Planet.class).lessThan(radius, 4000)
.findAll();

for Realm respectively. SnappyDB, on the other hand,
adds the key to the list every time it comes across one
that starts with “Planet,” which also corresponds to a
value less than 12000.

Second, we measure RAM consumption during
10000 character long string value write operations ex-
ecution. In order to do so we use native android mem-
ory investigator and Cool Tool application. Both re-
port memory usage, and we were interested in average
and maximum consumption rate.

Finally, we alternate test application functional-
ity and measure how many lines of code had to be
modified in terms of database access. Which in-
cludes database query commands, response handling
and data matching.

2.1.2 Test Application Design

Test application implements three core functions:
adding entry, querying data and deleting them. The
use case diagram (Figure 1) illustrates the concept us-
ing UML 2.0 use case diagram.

Figure 1: Figure presents UML 2.0 Use case diagram,
which visualizes Test application functionality.

For the experiment proposes we developed three
Android applications, which implement the same
functionality. Most of the code was reused to guar-
antee that the only difference is in data store handling
part.

Figure 2 illustrates how write operation is per-
formed on its implementation level.

Figure 2: Figure presents UML 2.0 Sequence diagram for
”Add entry” procedure.

KMIS 2016 - 8th International Conference on Knowledge Management and Information Sharing

96



2.2 Implementation Details

Test applications were developed using Android Stu-
dio version 1.5.1, and installed on LG Nexus 5. The
device runs Android 6.0.1, and has quad-core Snap-
dragon 800 CPU (2.26 MHz) with 2 GB of RAM.
SQLite database engine came with the operating sys-
tem, while SnappyDB and Realm had to be installed
manually.

We performed following operations in order to
configure the environment:

• set “multiDexEnabled” to true in application level
“build.gradl” configuration file to facilitate work
with the SQLite database.

• add SnappyDB (version 0.5.0) .jar file to the
“jniLibs”, and corresponding field to the depen-
dencies field in application level “build.gradl”.

• install Realm (version 0.88.3) plugin, and add
class path dependency to the project level
“build.gradl”.

Initial application design includes EditText fields,
TextViews and several buttons. EditText fields are
used to add an entry to the database. TextViews dis-
play results such as status logs and time consumed.
Every operation is written as a button handler. Figure
3 presents a screenshot of the testing client applica-
tion.

3 EXPERIMENTAL RESULTS

3.1 Test Results

3.1.1 Memory Consumption

The experiment is designed in such a way, that it
is impossible to completely separate RAM usage of
the database engine and common user applications.
Nonetheless, given that we avoided active use of these
applications (only the background services run con-
stantly) it is possible to assume equal conditions.
When in stand-by mode average memory use of the
mobile device ranged from 200 KB to 2 MB. Table 1
presents memory consumption data during the tests.

Table 1: Table presents memory consumption data.

Platform name Average Maximum
SQLite 81 MB 115 MB
SnappyDB 12 MB 66 MB
Realm 15 MB 69 MB

Figure 3: Figure presents a screenshot of the client appli-
cation, which performs test entries and logs the execution
time. When the data is collected it is loaded to the MS Ex-
cel software to derive statistical data.

RealmTest and SnappyTest applications used
maximum of 60-70 MB, while SQLite consumed up
to 115 MB.

SnappyDB showed the lowest memory consump-
tion of about 12 MB and Realm needed up to 15MB
on average. SQLite showed different results in a dif-
ferent tests, ranging from 24 to 130 MB. Refreshing
rate of the app is one second and both SnappyDB and
Realm usually use less than one second.

3.1.2 Read/Write Performance

Difference in performance when writing single entry
is very little. SnappyDB shows the slowest result,
there is no sharp decline in performance for writing
a string of 10000 characters and a number. However,
there is a considerable difference in performance dur-
ing high amount of writing operations. While Realm
and Snappy manage to push 10000 data pairs within
1 second, it takes about 80000 seconds for SQLite to
do the same. Please, note the logarithmic scale in the
Figure 4.

Realm is an undisputed leader in querying oper-
ations. It takes 8 ms to count 30000 items and 3-4
seconds to perform a simple query. SnappyDB needs

Mobile Data Store Platforms: Test Case based Performance Evaluation

97



Figure 4: Figure visualizes write performance data.

Figure 5: Figure visualizes read performance data.

100-120 ms in order to perform the same operations.
SnappyDB exhibits no difference between 30000 and
12000 elements to count. It takes about half of a sec-
ond for SQLite to count 30000 rows in one entity and
about 112 ms to perform a simple query and write re-
sult to the StringBuffer.

Finally, the standard VM heap size for Nexus 5 is
fixed at 192 MB. In order to have reliable result, it
was manually increased through android.manifest file
to 512 MB.

3.1.3 Code Maintanability

Realm uses separate java classes for each type of ob-
jects (+20 lines in this example). It uses 1 line query.
Snappy querying is more complex due to the database
initialization and try-catch methods. On the other
hand, there is a simplest adding procedure in Snap-
pyDB. In Realm there are several lines of code with
respect to class setters. In SQLite there is only one
line of code.

3.2 Discussion

From the presented results we can see that platforms
show close code maintainability and memory usage

Table 2: Code complexity (LoC).

Platform AppTotal Add entry Query
SQLite 165 1 1
SnappyTest 186 3 5
RealmTest 159+20 6 1

characteristics. The only exception is the SQLite en-
gine, which in extreme cases uses eight times as much
RAM as the other ones. Of course, it may be justifi-
ably argued that we consider highly unlikely scenar-
ios, which do not normally accrue in the real world.
Nonetheless, we try to take into account the high rate
of mobile database load explained earlier.

From the performance perspective SQLite also
shown poorer performance. In particular, it takes al-
most twice the time for performing write operations,
and five times as much time for read operations. We
are also aware that there are SQLite modifications
that show better performance than the standard edi-
tion, such as (Bakibayev et al., 2012). However, in-
stalling and configuring them is not a standard pro-
cedure when the cell phone loses its service level.
Hence, they are of limited access to a common user.

SnappyDB has limited functionality, but it seems
to be the fastest in terms of reading/writing myriad
of entries. While it is mostly due to its data model
simplification (the simplest among considered), there
is additional work for the software engineer when
matching data segments to object fields of the pro-
gram. Realm has also proven to be an alternative to
SQLite database. It is also easier to match data seg-
ments, because it makes use of object encapsulation.

Nonetheless, within the described performance
map choosing one database engine the other depends
on the dataset. Some data do not fit into two-
dimensional row-column structure, while extracting
JSON segments create unnecessary computational
load (Dash, 2013). Relational databases are suitable
for complex queries, but lack flexibility, which results
in difficulties when database scheme changes signifi-
cantly. Hence, SQLite is a viable option for small to
medium datasets and solutions with low concurrency.
It is also widely accepted among mobile developer
community.

4 CONCLUSION

Paper presents case based comparative evaluation of
SQLite, SnappyDB and Realm mobile data store en-
gines. Test results revile that all of the solutions dis-
tribute close complexity in terms of code maintain-
ability and memory consumption.

In terms of performance, in extreme cases - such

KMIS 2016 - 8th International Conference on Knowledge Management and Information Sharing

98



as writing and reading large entries - SQLite showed
the poorest results, while Realm and SnappyDB are
significantly faster. Nonetheless, SQLite better suits
applications with medium datasets and low concur-
rency.

Mobile applications are an important tool in
knowledge management, as they collect and process
user side configurations, logs, etc. Information re-
viled in this studies may be used when engineering
such systems to facilitate better data retrieval and save
when needed.

ACKNOWLEDGEMENTS

This work is supported by Nazarbayev University
(Astana, Kazakhstan) under its internal Social Policy
Grant scheme.

REFERENCES

Bakibayev, N., Olteanu, D., and Zavodny, J. (2012).
Demonstration of the FDB query engine for factorised
databases. PVLDB, 5(12):1950–1953.

Dash, J. (2013). RDBMS vs. NoSQL: How do you
pick? http://zdnet.com/article/rdbms-vs-nosql-how-
do-you-pick/. [Online; accessed 11-August-2016].

Hachicha, N. (2016). A fast and lightweight
key/value database library for android. http://
www.snappydb.com/. [Online; accessed 20-April-
2016].

Kreibich, J. A. (2010). Using SQLite - Small. Fast. Reliable.
Choose any Three. O’Reilly.

Realm (2016). Realm is a replacement for sqlite and core
data. https://realm.io/. [Online; accessed 25-April-
2016].

Mobile Data Store Platforms: Test Case based Performance Evaluation

99


