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Abstract: Command-programming control contours of spacecraft are modelled with Markov chains. These models are 
used for the preliminary design of spacecraft control system effective structure. Corresponding optimization 
multi-objective problems with algorithmically given functions of mixed variables are solved with a special 
stochastic algorithms called Self-configuring Non-dominated Sorting Genetic Algorithm II, Cooperative 
Multi-Objective Genetic Algorithm with Parallel Implementation and Co-Operation of Biology Related 
Algorithms for solving multi-objective integer optimization problems which require no settings determination 
and parameter tuning. The high performance of the suggested algorithms is proved by solving real problems 
of the control contours structure preliminary design. 

1 INTRODUCTION 

The synthesis of a spacecraft control systems is a 
complex and undeveloped problem. Usually this 
problem is solved with more empirical methods rather 
than formalized mathematical tools. Nevertheless, it 
is possible to model some subproblems 
mathematically and to obtain some qualitative results 
of computations and tendencies that could provide 
experts with interesting information.  

We will model the functioning process of a 
spacecraft control subsystems with Markov chains. 
We explain all results with small models and then 
give illustration of large models that are closer to real 
system. The problem of choosing an effective variant 
for a spacecraft control system is formulated as a 
multi-objective discrete optimization problem with 
algorithmically given functions. In this paper, we use 
self-configuring evolutionary algorithms, 
Cooperative Multi-Objective Genetic Algorithm and 
Co-Operation of Biology Related Algorithms to solve 
the optimization problem. 

The rest of the paper is organized in the following 
way. Section 2 briefly describes the modeled system. 
In Sections 3 we describe models for command-
programming control contours. In Section 4 we 

describe optimization algorithms that have been used. 
In Section 5, the results of the algorithms 
performance evaluation on spacecraft control system 
optimization problems is given, and in the Conclusion 
section the article content is summarized and future 
research directions are discussed. 

2 PROBLEM DESCRIPTION 

If we simplify then we can describe the system for 
monitoring and control of an orbital group of 
telecommunication satellites as an automated, 
distributed, information-controlling system that 
includes on-board control complexes (BCC) of a 
spacecraft and the ground-based control complex 
(GCC) (Semenkin, 2012) in its composition. They 
interact through a distributed system of telemetry, 
command and ranging (TCR) stations and data 
telecommunication systems in each. BCC is the 
controlling subsystem of the satellite that ensures real 
time checking and controlling of on-board systems 
including pay-load equipment (PLE) as well as 
fulfilling program-temporal control. "Control 
contours" contain essentially different control tasks 
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from different subsystems of the automated control 
system. In this paper we will consider command-
programming contours.  

All contours are not function dependable and have 
many indexes that leads to many challenges during 
choosing an effective control system variant to ensure 
to all of the control contours. All this problems are 
multi-objective with criteria that cannot be given in 
the form of an analytical function of its variables but 
exist in an algorithmic form which requires a 
computation or simulation model to be run for 
criterion evaluation at any point. 

In order to have the possibility of choosing an 
effective variant of such a control system, we have to 
model the work of all control contours and then 
combine the results in one optimization problem with 
many models, criteria, constraints and 
algorithmically given functions of mixed variables. 
We suggest using adaptive stochastic direct search 
algorithms (evolutionary and bio-inspired) for 
solving such optimization problems. To deal with 
many criteria and constraints successfully we just 
have to incorporate techniques, well known in the 
evolutionary computation community.  

To support the choice of effective variants of 
spacecrafts' control systems, we have to develop the 
necessary models and resolve the problem of 
evolutionary algorithms (EA) and bio-inspired 
methods settings for multi-objective optimization. 

3 COMMAND-PROGRAMMING 
CONTROL CONTOUR 
MODELLING 

The main task of this contour is the maintenance of 
the tasks of creating of the command-programming 
information (CPI), transmitting it to BCC and 
executing it and control action as well as the 
realization of the temporal program (TP) mode of 
control (Semenkin, 2012). 

Markov chains can be used for modelling this 
contour because of its internal features such as high 
reliability and work stability. That is why we are 
supposing that all stochastic flows in the system are 
Poisson. If we suppose that BCC can fail and GCC is 
absolutely reliable, then we can introduce the 
following notations: λ1 is the intensity of BCC 
failures, μ1 is the intensity of temporal program 
computation, μ2 is the intensity CPI loading into 
BCC, μ3 is the intensity of temporal program 
execution, μ4 is the intensity of BCC being restored 

after its failure. The graph of the states for command-
programming contour can be drawn as in Figure 1.  

There are also five possible states for this contour 
(Semenkin, 2012): 

1. BCC fulfills TP, GCC is free.  
2. BCC is free, GCC computes TP. 
3. BCC is free; GCC computes CPI and loads TP. 
4. BCC is restored with GCC which is waiting for 
continuation of TP computation. 
5. BCC is restored with GCC which is waiting for 
continuation of CPI computation. 

 

Figure 1: The states graph of the Markov chain for the 
simplified model of the command-programming control 
contour (Semenkin, 2012). 

After solving the Kolmogorov's system: 

P1·(λ1+μ3) - μ2·P3 = 0, 
P2·(λ1+μ1) - μ3·P1 - μ4·P4 = 0, 
P3·(λ1+μ2) - μ1·P2 - μ4·P5 = 0, 

P4·μ4 - λ1·P1 - λ1·P2 = 0, 
P5·μ4 - λ1·P3 = 0, 

P1 + P2 + P3 + P4 + P5 = 1. 

we can calculate the necessary indexes of control 
quality for the command-programming contour: 
1. T = P1/(μ2⋅P3)→max (the duration of the 
independent operating of the spacecraft for this 
contour); 
2. t1 = (P3+P5)/(μ1⋅P2)→min (the duration of BCC and 
GCC interactions when loading TP for the next 
interval of independent operation of the spacecraft); 
3. t2 = (P2+P3+P4+P5)/P1⋅(λ1+μ3) →min (the average 
time from the start of TP computation till the start of 
TP fulfillment by BCC). 

Optimization variables are stochastic flow 
intensities, i.e., the distribution of contour functions 
between BCC and GCC. If they are characteristics of 
existing variants of software-hardware equipment, we 
have the problem of effective variant choice, i.e., a 
discrete optimization problem.  

Recall that obtained optimization problem has 
algorithmically given objective functions so before 
the function value calculation we must solve the 
system of equations. 
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But in real life GCC is not absolutely reliable, if 
we suppose the GCC can fail then we have to add the 
states when GCC fails while the system is in any state. 
We will not describe the meaning of all notion in 
details, recall that λi indicates the intensities of 
subsystems failures and μj indicates the intensities of 
subsystems being restoring by BCC (for PLE) or 
GCC (for all subsystems including itself) (Semenkin, 
2012). Under the same conditions, the states graph for 
the command-programming contour consists of 96 
states and more than 300 transitions and cannot be 
shown here.  

So we need a reliable tool to solve so hard 
optimization problems, for example it can be some 
adaptive search algorithms. 

4 OPTIMIZATION 
ALGORITHMS DESCRIPTION  

There are many variants of evolutionary algorithms, 
which can be used for solving multi-objective 
optimization problems: Niched-Pareto Genetic 
Algorithm (NPGA) (Horn, 1994), Pareto Envelope-
based Selection Algorithm (PESA) (Corne, 2000) and 
their modifications PESA-II (Corne, 2001), Non-
dominated Sorting Genetic Algorithm II (NSGA-II) 
(Deb, 2002), Strength Pareto Evolutionary Algorithm 
II (SPEA-II) (Zitzler, 2002), the Preference-Inspired 
Co-Evolutionary Algorithm with goal vectors 
(PICEA-g) (Wang, 2013).  

In this paper we consider three algorithms: Self-
configuring Non-dominated Sorting Genetic 
Algorithm II (SelfNSGA-II), Cooperative Multi-
Objective Genetic Algorithm (CoMOGA) and Co-
Operation of Biology Related Algorithms for solving 
multi-objective integer optimization problems 
(COBRA-mi). 

4.1 Co-Operation of Biology Related 
Algorithms 

Co-Operation of Biology Related Algorithms 
(COBRA) is a method for solving one-criterion 
unconstrained real-parameter optimization problems 
based on the cooperation of five nature-inspired 
algorithms (Akhmedova, 2013). This algorithm 
generates one population for each bio-inspired 
component algorithm, such as Particle Swarm 
Optimization (PSO) (Kennedy, 1995) for example.   
From some viewpoints these five algorithms have a 
similar behaviour and all of them are multi-agent 
algorithms for a stochastic direct search that makes 

almost impossible for end users choosing one of them 
for solving the problem in hand. COBRA is an 
algorithm with self-tuning of the population size that 
can increase or decrease depending on results of the 
work. Thus we have to choose only the maximum 
number of fitness function evaluations and initial 
number of individuals in population. After that 
population sizes can decrease for worst populations, 
increase for a winning algorithm and be constant 
when communicating with other algorithm.  

COBRA performance was evaluated on the 
representative set of benchmark problems with 2, 3, 
5, 10, and 30 variables (Akhmedova, 2013). Based on 
the test results we can say that COBRA is reliable on 
this benchmark and outperforms its component 
algorithms. We may conclude that COBRA can be 
used for solving our problem in hand. 

COBRA has a multi-objective version (COBRA-
m) (Akhmedova, 2015) with modified components. 
All these techniques were extended to produce a 
Pareto optimal front. So each component algorithm 
generates an archive of non-dominated solutions and 
a common external archive is created. The procedure 
of selecting the winning algorithm was changed by 
the modification of the fitness function when criteria 
are weighted by randomly generated coefficients 
(Akhmedova, 2015). The performance of COBRA-m 
was evaluated on the representative set of multi-
objective problems and its usefulness and workability 
were established (Akhmedova, 2015).  

Our problem in hand is an integer optimization 
problem. That is why real numbers are rounded to the 
nearest integers. Additionally, we make two 
modification of COBRA-m to tackle constraints: if 
individual falls beyond the set of possible values of 
the variables then  

1. It is randomly regenerated to be inside limits 
(COBRA-mi), or alternatively 
2. It is returned on the closest border (COBRA-
mim). 
Both variants are investigated in this study. 

4.2 Self-configuring Evolutionary 
Algorithms 

According to the research (Wang, 2013) NSGA-II is 
the most often used variant. NSGA-II is more 
effective than its predecessor (NSGA) in the sense of 
computational resources and the quality of the 
solutions (Abraham, 2005). Although its efficiency 
decreases with the growth of the criteria number we 
will implement it for solving our problem in hand 
because we have only three criteria.  
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Although NSGA-II is successful in solving many 
real world optimization problems (Abraham, 2005), 
its performance depends on the selection of its 
settings and tuning of its parameters. As well as for 
the genetic algorithm we need to choose variation 
operators (e.g. recombination and mutation) which 
are used to generate new solutions from the current 
population and some real-valued parameters of the 
chosen settings (the probability of recombination, the 
level of mutation, etc.). For reducing the role of this 
choice we have implemented a modification of 
NSGA-II transforming it into a self-configuring 
variant likely to SelfCGA from (Semenkin, 2012) 
which has demonstrated good performance for the 
integer optimization problem with one criteria and 
better reliability than the average reliability of the 
corresponding single best algorithm.  

As it was done in (Semenkin, 2012) we use setting 
variants, namely types of crossover, population 
control and a level of mutation (medium, low, high) 
but we do not need to choose selection type because 
NSGA-II has the only one selection variant, namely 
the quick non-dominated sorting. Each of these has its 
own deployment probability distribution that is 
changed according to a special rule based on the 
operator productivity. In case of the genetic algorithm 
the ratio of the average offspring fitness obtained with 
this operator and the offspring population average 
fitness was used as the productivity of an operator. 
But in case of multi-objective optimization we have 
not just one function. That is the reason why we have 
implemented some modification in the operator of 
productivity evaluation such as the use of percent of 
non-dominated individuals which are generated by 
each operator type instead of average fitness value in 
SelfCGA. This introduced here algorithm we will 
refer as SelfNSGA-II. 

4.3 Cooperative Multi-objective 
Genetic Algorithm 

Another variant of self-adapting evolutionary 
algorithm for multi-objective problems can be 
described as a cooperation of several multi-objective 
genetic algorithm (MOGA). In our study an island 
model is applied to involve a few GAs which realize 
different concepts.  

Generally speaking, an island model (Whitley et 
al., 1997) of a GA implies the parallel work of several 
algorithms. A parallel implementation of GAs has 
shown not just an ability to preserve genetic diversity, 
since each island can potentially follow a different 
search trajectory, but also could be applied to 
separable problems. The initial number of individuals 

M is spread across L subpopulations. At each T-th 
generation algorithms exchange the best solutions 
(migration). There are two parameters: migration size, 
the number of candidates for migration, and migration 
interval, the number of generations between 
migrations. Moreover, it is necessary to define the 
island model topology, in other words, the scheme of 
migration. We use the fully connected topology that 
means each algorithm shares its best solutions with all 
other algorithms included in the island model. The 
multi-agent model is expected to preserve a higher 
level of genetic diversity. The benefits of the particular 
algorithm could be advantageous in different stages of 
optimization. 

In our implementation the NSGA-II, PICEA-g and 
SPEA2 are used to be involved as parallel working 
islands. This multi-agent heuristic procedure does not 
require additional experiments to expose the most 
appropriate algorithm for the problem considered. Its 
performance was thoroughly investigated on the set of 
test functions CEC2009 (Zhang., 2008). The results 
obtained demonstrated the high effectiveness (Brester, 
2015) of the cooperative algorithm (CoMOGA) and, 
therefore, we also decided to apply it as an optimizer 
in the current problem. 

4.4 Hybridisation with Pareto Local 
Search 

The main idea of a Pareto local search is to find a local 
Pareto non-dominated point near of the start point. 
This algorithm changes the start point if only it has 
been dominated by some neighbour point. In this 
work we will use the steepest decent strategy and 
Hamming metrics for determination all point’s 
neighbours in case of binary variables. Taking into 
account the properties of the problem in hand we can 
say that using the Pareto local search after global 
optimization techniques can give us a guarantee that 
point lays inside of Pareto set. 

5 PROBLEM SOLVING RESULTS  

First of all we evaluate performance of algorithms on 
the simplified models of command-programming 
control contours with 5 states. To choose an effective 
variant of the command-programming control 
contour we have to optimize the algorithmically given 
function with 5 discrete variables. The optimization 
space contains about 1.03·106 variants and can be 
enumerated with an exhaustive search within a 
reasonable time (60 minutes by Intel Core i5-4690K 
CPU 3.5 GHz). In such a situation, we know the real 
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Pareto front and can make an analysis. In all figures 
below the projection on the plane OTt2 of the real 
Pareto front for problem with 5 states are presented 
by white points mean points. We can note that for this 
problem the criterion t1 does not contradict two others 
and the Pareto front in other projections looks like 
horizontal (Ot2t1, OTt1) or vertical (Ot1t2, Ot1T) lines. 

We use 600 for each algorithm. This means the 
algorithm examines 600 points of the optimization 
space, i.e. about 0.057% of it (less than 1 minute by 
the same CPU). We execute 20 runs of the algorithms 
and determine their usual (typical) behaviour (almost 
impossible to distinguish the results of two separate 
runs).  

The usual behaviour of COBRA-mi is presented 
in Figure 2 (here and below black points mean the 
algorithm result). We can note that it gives points 
from the neighbourhood of Pareto front points which 
can be then reduced to Pareto front points with the 
help of the Pareto local search. The main problem for 
COBRA-mi became the necessity for some variables 
to catch exact border values. It is the main reason for 
introducing COBRA-mim.  

 

Figure 2: The projection of the Pareto front on the plane 
OTt2 obtained with COBRA-mi.  

The usual behaviour of COBRA-mim is depicted 
in Figure 3. We can note that it gives some points 
from the Pareto front. The main problem for COBRA-
mim arises from criteria random weighting for 
resources redistributing. We prefer subpopulations 
with the best value of one criterion, i.e. different for 
each cycle. It means that we use additive convolution 
which cannot give all Pareto front points, but can 
catch the ends of the Pareto front.  

The usual behaviour of SelfNSGA-II is presented 
in Figure 4. We can note that it gives about 60% 
points from the Pareto front that are uniformly 
distributed. However, SelfNSGA-II has some 
difficulties with catching ends of the Pareto front. It 
means that we can combine results of COBRA-mim 
and SelfNSGA-II and take almost all Pareto front 
points which can represent the whole front without 
essential loses, see the Figure 5. We can note that 
simple increasing of fitness function evaluations 

number do not lead to finding the whole Pareto front 
by single algorithm.  

The usual behaviour of CoMOGA is presented in 
Figure 6. We can note that it gives points from the 
Pareto front which are well distributed. However, 
CoMOGA gave almost the same points as 
SelfNSGA-II, but not all of them, i.e. much fewer 
Pareto points.  

 
Figure 3: The projection of the Pareto front on the plane 
OTt2 obtained with COBRA-mim. 

 

Figure 4: The projection on the plane OTt2 of the Pareto 
front obtained by SelfNSGA-II. 

 
Figure 5: The projection of the Pareto front on the plane 
OTt2 obtained with SelfNSGA-II and COBRA-mim. 

 

Figure 6: The projection of the Pareto front on the plane 
OTt2 obtained by CoMOGA. 
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For the model of the command-programming 
control contour with 96 states and more than 300 
transitions, we cannot give detailed information as we 
have done above. This problem has 13 variables and 
contains 4.5·1015 points in the optimization space and 
an exhaustive search cannot be used for any 
reasonable time. The execution of our algorithms 
requires the examination of 1.76·10-9% of the search 
space (80000 fitness function evaluations) and gives 
us as an answer only points from the Pareto front 
which have been verified with the Pareto local search. 
These points are uniformly distributed and look like 
the good representation of the Pareto front. However, 
certainly we cannot say at this stage of the research 
that all Pareto front points are determined.  

6 CONCLUSIONS 

In this paper, the mathematical models in the form of 
Markov chains have been implemented for choosing 
effective variants of spacecraft command-
programming control contours. We focused on the 
multi-objective part of the problem and suggested 
using the Self-configuring Non-dominated Sorting 
Genetic Algorithm II, Cooperative Multi-Objective 
Genetic Algorithm and Co-Operation of Biology 
Related Algorithms for solving multi-objective 
integer optimization problems in such a situation 
because of their reliability and high potential to be 
problem adaptable. The high performance of the 
considered algorithms has previously been 
demonstrated through experiments with test problems 
and then in this paper it is validated by the solving 
hard optimization problems.  

We suggested using three algorithms together as 
an ensemble for better representability of the Pareto 
front. These algorithms are suggested being used for 
choosing effective variants of spacecraft control 
systems as they are very reliable and require no expert 
knowledge in evolutionary or bio-inspired 
optimization from end users (aerospace engineers).  

The future research includes the expansion into 
using the simulation models and constrained 
optimization problem statements. 
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